/usr/include/deal.II/lac/parpack_solver.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 | // ---------------------------------------------------------------------
//
// Copyright (C) 2010 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__parpack_solver_h
#define dealii__parpack_solver_h
#include <deal.II/base/config.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/base/memory_consumption.h>
#include <deal.II/lac/solver_control.h>
#include <deal.II/lac/vector.h>
#include <deal.II/base/index_set.h>
#include <cstring>
#ifdef DEAL_II_ARPACK_WITH_PARPACK
DEAL_II_NAMESPACE_OPEN
extern "C" {
// http://www.mathkeisan.com/usersguide/man/pdnaupd.html
void pdnaupd_(MPI_Fint *comm, int *ido, char *bmat, int *n, char *which,
int *nev, double *tol, double *resid, int *ncv,
double *v, int *nloc, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl,
int *info);
// http://www.mathkeisan.com/usersguide/man/pdsaupd.html
void pdsaupd_(MPI_Fint *comm, int *ido, char *bmat, int *n, char *which,
int *nev, double *tol, double *resid, int *ncv,
double *v, int *nloc, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl,
int *info);
// http://www.mathkeisan.com/usersguide/man/pdneupd.html
void pdneupd_(MPI_Fint *comm, int *rvec, char *howmany, int *select, double *d,
double *di, double *z, int *ldz, double *sigmar,
double *sigmai, double *workev, char *bmat, int *n, char *which,
int *nev, double *tol, double *resid, int *ncv,
double *v, int *nloc, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl, int *info);
// http://www.mathkeisan.com/usersguide/man/pdseupd.html
void pdseupd_(MPI_Fint *comm, int *rvec, char *howmany, int *select, double *d,
double *z, int *ldz, double *sigmar,
char *bmat, int *n, char *which,
int *nev, double *tol, double *resid, int *ncv,
double *v, int *nloc, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl, int *info);
// other resources:
// http://acts.nersc.gov/superlu/example5/pnslac.c.html
// https://github.com/phpisciuneri/tijo/blob/master/dvr_parpack.cpp
}
/**
* Interface for using PARPACK. PARPACK is a collection of Fortran77
* subroutines designed to solve large scale eigenvalue problems. Here we
* interface to the routines <code>pdneupd</code>, <code>pdseupd</code>,
* <code>pdnaupd</code>, <code>pdsaupd</code> of PARPACK. The package is
* designed to compute a few eigenvalues and corresponding eigenvectors of a
* general n by n matrix A. It is most appropriate for large sparse matrices
* A.
*
* In this class we make use of the method applied to the generalized
* eigenspectrum problem $(A-\lambda B)x=0$, for $x\neq0$; where $A$ is a
* system matrix, $B$ is a mass matrix, and $\lambda, x$ are a set of
* eigenvalues and eigenvectors respectively.
*
* The ArpackSolver can be used in application codes in the following way:
* @code
* SolverControl solver_control (1000, 1e-9);
* const unsigned int num_arnoldi_vectors = 2*size_of_spectrum + 2;
* PArpackSolver<V>::AdditionalData
* additional_data(num_arnoldi_vectors,
* dealii::PArpackSolver<V>::largest_magnitude,
* true);
*
* PArpackSolver<V> eigensolver (solver_control,
* mpi_communicator,
* additional_data);
* eigensolver.set_shift(sigma);
* eigensolver.reinit(locally_owned_dofs);
* eigensolver.solve (A,
* B,
* OP,
* lambda,
* x,
* size_of_spectrum);
* @endcode
* for the generalized eigenvalue problem $Ax=B\lambda x$, where the variable
* <code>size_of_spectrum</code> tells PARPACK the number of
* eigenvector/eigenvalue pairs to solve for. Here, <code>lambda</code> is a
* vector that will contain the eigenvalues computed, <code>x</code> a vector
* of objects of type <code>V</code> that will contain the eigenvectors
* computed. <code>OP</code> is an inverse operation for the matrix <code>A -
* sigma * B</code>, where <code> sigma </code> is a shift value, set to zero
* by default. Note that (P)Arpack supports other transformations, but currently
* this class implements only shift-and-invert mode.
*
* The <code>OP</code> can be specified either using auxiliary Shift class together
* with IterativeInverse or by using LinearOperator
* @code
* const double shift = 5.0;
* const auto op_A = linear_operator<vector_t>(A);
* const auto op_B = linear_operator<vector_t>(B);
* const auto op_shift = op_A - shift * op_B;
* SolverControl solver_control_lin (1000, 1e-10,false,false);
*
* SolverCG<vector_t> cg(solver_control_lin);
* const auto op_shift_invert = inverse_operator(op_shift, cg, PreconditionIdentity ());
* @endcode
*
* Through the AdditionalData the user can specify some of the parameters to
* be set.
*
* The class is intended to be used with MPI and can work on arbitrary vector
* and matrix distributed classes. Both symmetric and non-symmetric
* <code>A</code> are supported.
*
* For further information on how the PARPACK routines <code>pdneupd</code>,
* <code>pdseupd</code>, <code>pdnaupd</code>, <code>pdsaupd</code> work and
* also how to set the parameters appropriately please take a look into the
* PARPACK manual.
*
* @author Denis Davydov, 2015.
*/
template <typename VectorType>
class PArpackSolver : public Subscriptor
{
public:
/**
* Declare the type for container size.
*/
typedef types::global_dof_index size_type;
/**
* An enum that lists the possible choices for which eigenvalues to compute
* in the solve() function. Note, that this corresponds to the problem after
* shift-and-invert (the only currently supported spectral transformation)
* is applied.
*
* A particular choice is limited based on symmetric or non-symmetric matrix
* <code>A</code> considered.
*/
enum WhichEigenvalues
{
/**
* The algebraically largest eigenvalues.
*/
algebraically_largest,
/**
* The algebraically smallest eigenvalues.
*/
algebraically_smallest,
/**
* The eigenvalue with the largest magnitudes.
*/
largest_magnitude,
/**
* The eigenvalue with the smallest magnitudes.
*/
smallest_magnitude,
/**
* The eigenvalues with the largest real parts.
*/
largest_real_part,
/**
* The eigenvalues with the smallest real parts.
*/
smallest_real_part,
/**
* The eigenvalues with the largest imaginary parts.
*/
largest_imaginary_part,
/**
* The eigenvalues with the smallest imaginary parts.
*/
smallest_imaginary_part,
/**
* Compute half of the eigenvalues from the high end of the spectrum and
* the other half from the low end. If the number of requested
* eigenvectors is odd, then the extra eigenvector comes from the high end
* of the spectrum.
*/
both_ends
};
/**
* Auxiliary class to represent <code>A-sigma*B</code> operator.
*/
template <typename MatrixType>
class Shift : public dealii::Subscriptor
{
public:
/**
* Constructor.
*/
Shift (const MatrixType &A,
const MatrixType &B,
const double sigma)
:
A(A),
B(B),
sigma(sigma)
{}
/**
* Apply <code>A-sigma * B</code>
*/
void vmult (VectorType &dst, const VectorType &src) const
{
B.vmult(dst,src);
dst *= (-sigma);
A.vmult_add(dst,src);
}
/**
* Apply <code>A^T-sigma * B^T</code>
*/
void Tvmult (VectorType &dst, const VectorType &src) const
{
B.Tvmult(dst,src);
dst *= (-sigma);
A.Tvmult_add(dst,src);
}
private:
const MatrixType &A;
const MatrixType &B;
const double sigma;
};
/**
* Standardized data struct to pipe additional data to the solver, should it
* be needed.
*/
struct AdditionalData
{
const unsigned int number_of_arnoldi_vectors;
const WhichEigenvalues eigenvalue_of_interest;
const bool symmetric;
AdditionalData(
const unsigned int number_of_arnoldi_vectors = 15,
const WhichEigenvalues eigenvalue_of_interest = largest_magnitude,
const bool symmetric = false);
};
/**
* Access to the object that controls convergence.
*/
SolverControl &control () const;
/**
* Constructor.
*/
PArpackSolver(SolverControl &control,
const MPI_Comm &mpi_communicator,
const AdditionalData &data = AdditionalData());
/**
* Initialize internal variables.
*/
void reinit(const IndexSet &locally_owned_dofs );
/**
* Initialize internal variables when working with BlockVectors.
* @p locally_owned_dofs is used to set the dimension of the problem,
* whereas @p partitioning is used for calling the reinit of the deal.II
* blockvectors used.
*/
void reinit(const IndexSet &locally_owned_dofs,
const std::vector<IndexSet> &partitioning);
/**
* Initialize internal variables from the input @p distributed_vector.
*/
void reinit(const VectorType &distributed_vector);
/**
* Set initial vector for building Krylov space.
*/
void set_initial_vector(const VectorType &vec);
/**
* Set shift @p sigma for shift-and-invert spectral transformation.
*
* If this function is not called, the shift is assumed to be zero.
*/
void set_shift(const std::complex<double> sigma);
/**
* Solve the generalized eigensprectrum problem $A x=\lambda B x$ by calling
* the <code>pd(n/s)eupd</code> and <code>pd(n/s)aupd</code> functions of
* PARPACK.
*/
template <typename MatrixType1,
typename MatrixType2, typename INVERSE>
void solve
(const MatrixType1 &A,
const MatrixType2 &B,
const INVERSE &inverse,
std::vector<std::complex<double> > &eigenvalues,
std::vector<VectorType> &eigenvectors,
const unsigned int n_eigenvalues);
std::size_t memory_consumption() const;
protected:
/**
* Reference to the object that controls convergence of the iterative
* solver.
*/
SolverControl &solver_control;
/**
* Store a copy of the flags for this particular solver.
*/
const AdditionalData additional_data;
// keep MPI communicator non-const as Arpack functions are not const either:
/**
* C++ MPI communicator.
*/
MPI_Comm mpi_communicator;
/**
* Fortran MPI communicator.
*/
MPI_Fint mpi_communicator_fortran;
// C++98 guarantees that the elements of a vector are stored contiguously
/**
* Length of the work array workl.
*/
int lworkl;
/**
* Double precision work array of length lworkl
*/
std::vector<double> workl;
/**
* Double precision work array of length 3*N
*/
std::vector<double> workd;
/**
* Number of local degrees of freedom.
*/
int nloc;
/**
* Number of Arnoldi basis vectors specified in additional_data
*/
int ncv;
/**
* The leading dimension of the array v
*/
int ldv;
/**
* Double precision vector of size ldv by NCV. Will contains the final set
* of Arnoldi basis vectors.
*/
std::vector<double> v;
/**
* An auxiliary flag which is set to true when initial vector is provided.
*/
bool initial_vector_provided;
/**
* The initial residual vector, possibly from a previous run. On output, it
* contains the final residual vector.
*/
std::vector<double> resid;
/**
* The leading dimension of the array Z equal to nloc.
*/
int ldz;
/**
* A vector of minimum size of nloc by NEV+1. Z contains the B-orthonormal
* Ritz vectors of the eigensystem A*z = lambda*B*z corresponding to the
* Ritz value approximations.
*/
std::vector<double> z;
/**
* The size of the workev array.
*/
int lworkev;
/**
* Double precision work array of dimension 3* NCV.
*/
std::vector<double> workev;
/**
* A vector of dimension NCV.
*/
std::vector<int> select;
/**
* Temporary vectors used between Arpack and deal.II
*/
VectorType src,dst,tmp;
/**
* Indices of local degrees of freedom.
*/
std::vector< types::global_dof_index > local_indices;
/**
* Real part of the shift
*/
double sigmar;
/**
* Imaginary part of the shift
*/
double sigmai;
private:
/**
* Initialize internal variables which depend on
* @p locally_owned_dofs.
*
* This function is called inside the reinit() functions
*/
void internal_reinit(const IndexSet &locally_owned_dofs);
/**
* PArpackExcInfoPdnaupds.
*/
DeclException2 (PArpackExcConvergedEigenvectors, int, int,
<< arg1 << " eigenpairs were requested, but only "
<< arg2 << " converged");
DeclException2 (PArpackExcInvalidNumberofEigenvalues, int, int,
<< "Number of wanted eigenvalues " << arg1
<< " is larger that the size of the matrix " << arg2);
DeclException2 (PArpackExcInvalidEigenvectorSize, int, int,
<< "Number of wanted eigenvalues " << arg1
<< " is larger that the size of eigenvectors " << arg2);
DeclException2 (PArpackExcInvalidEigenvectorSizeNonsymmetric, int, int,
<< "To store the real and complex parts of " << arg1
<< " eigenvectors in real-valued vectors, their size (currently set to " << arg2
<< ") should be greater than or equal to " << arg1+1);
DeclException2 (PArpackExcInvalidEigenvalueSize, int, int,
<< "Number of wanted eigenvalues " << arg1
<< " is larger that the size of eigenvalues " << arg2);
DeclException2 (PArpackExcInvalidNumberofArnoldiVectors, int, int,
<< "Number of Arnoldi vectors " << arg1
<< " is larger that the size of the matrix " << arg2);
DeclException2 (PArpackExcSmallNumberofArnoldiVectors, int, int,
<< "Number of Arnoldi vectors " << arg1
<< " is too small to obtain " << arg2
<< " eigenvalues");
DeclException1 (PArpackExcIdo, int, << "This ido " << arg1
<< " is not supported. Check documentation of ARPACK");
DeclException1 (PArpackExcMode, int, << "This mode " << arg1
<< " is not supported. Check documentation of ARPACK");
DeclException1 (PArpackExcInfoPdnaupd, int,
<< "Error with Pdnaupd, info " << arg1
<< ". Check documentation of ARPACK");
DeclException1 (PArpackExcInfoPdneupd, int,
<< "Error with Pdneupd, info " << arg1
<< ". Check documentation of ARPACK");
DeclException1 (PArpackExcInfoMaxIt, int,
<< "Maximum number " << arg1
<< " of iterations reached.");
DeclException1 (PArpackExcNoShifts, int,
<< "No shifts could be applied during implicit"
<< " Arnoldi update, try increasing the number of"
<< " Arnoldi vectors.");
};
template <typename VectorType>
std::size_t
PArpackSolver<VectorType>::memory_consumption() const
{
return MemoryConsumption::memory_consumption (double()) *
(workl.size() +
workd.size() +
v.size() +
resid.size() +
z.size() +
workev.size() ) +
src.memory_consumption() +
dst.memory_consumption() +
tmp.memory_consumption() +
MemoryConsumption::memory_consumption (types::global_dof_index()) * local_indices.size();
}
template <typename VectorType>
PArpackSolver<VectorType>::AdditionalData::
AdditionalData (const unsigned int number_of_arnoldi_vectors,
const WhichEigenvalues eigenvalue_of_interest,
const bool symmetric)
:
number_of_arnoldi_vectors(number_of_arnoldi_vectors),
eigenvalue_of_interest(eigenvalue_of_interest),
symmetric(symmetric)
{
//Check for possible options for symmetric problems
if (symmetric)
{
Assert(eigenvalue_of_interest!=largest_real_part,
ExcMessage("'largest real part' can only be used for non-symmetric problems!"));
Assert(eigenvalue_of_interest!=smallest_real_part,
ExcMessage("'smallest real part' can only be used for non-symmetric problems!"));
Assert(eigenvalue_of_interest!=largest_imaginary_part,
ExcMessage("'largest imaginary part' can only be used for non-symmetric problems!"));
Assert(eigenvalue_of_interest!=smallest_imaginary_part,
ExcMessage("'smallest imaginary part' can only be used for non-symmetric problems!"));
}
}
template <typename VectorType>
PArpackSolver<VectorType>::PArpackSolver (SolverControl &control,
const MPI_Comm &mpi_communicator,
const AdditionalData &data)
:
solver_control (control),
additional_data (data),
mpi_communicator( mpi_communicator ),
mpi_communicator_fortran ( MPI_Comm_c2f( mpi_communicator ) ),
lworkl(0),
nloc(0),
ncv(0),
ldv(0),
initial_vector_provided(false),
ldz(0),
lworkev(0),
sigmar(0.0),
sigmai(0.0)
{}
template <typename VectorType>
void PArpackSolver<VectorType>::set_shift(const std::complex<double> sigma)
{
sigmar = sigma.real();
sigmai = sigma.imag();
}
template <typename VectorType>
void PArpackSolver<VectorType>::
set_initial_vector(const VectorType &vec)
{
initial_vector_provided = true;
Assert (resid.size() == local_indices.size(),
ExcDimensionMismatch(resid.size(),local_indices.size()));
vec.extract_subvector_to (local_indices.begin(),
local_indices.end(),
&resid[0]);
}
template <typename VectorType>
void PArpackSolver<VectorType>::
internal_reinit(const IndexSet &locally_owned_dofs)
{
// store local indices to write to vectors
locally_owned_dofs.fill_index_vector(local_indices);
// scalars
nloc = locally_owned_dofs.n_elements ();
ncv = additional_data.number_of_arnoldi_vectors;
Assert ((int)local_indices.size() == nloc, ExcInternalError() );
// vectors
ldv = nloc;
v.resize (ldv*ncv, 0.0);
resid.resize(nloc, 1.0);
// work arrays for ARPACK
workd.resize(3*nloc,0.0);
lworkl = additional_data.symmetric ?
ncv*ncv + 8*ncv
:
3*ncv*ncv+6*ncv;
workl.resize (lworkl, 0.);
ldz = nloc;
z.resize (ldz*ncv, 0.); // TODO we actually need only ldz*nev
// WORKEV Double precision work array of dimension 3*NCV.
lworkev = additional_data.symmetric ?
0 /*not used in symmetric case*/
:
3*ncv;
workev.resize (lworkev, 0.);
select.resize (ncv, 0);
}
template <typename VectorType>
void PArpackSolver<VectorType>::reinit(const IndexSet &locally_owned_dofs)
{
internal_reinit(locally_owned_dofs);
// deal.II vectors:
src.reinit (locally_owned_dofs,mpi_communicator);
dst.reinit (locally_owned_dofs,mpi_communicator);
tmp.reinit (locally_owned_dofs,mpi_communicator);
}
template <typename VectorType>
void PArpackSolver<VectorType>::reinit(const VectorType &distributed_vector)
{
internal_reinit(distributed_vector.locally_owned_elements());
// deal.II vectors:
src.reinit (distributed_vector);
dst.reinit (distributed_vector);
tmp.reinit (distributed_vector);
}
template <typename VectorType>
void PArpackSolver<VectorType>::reinit(const IndexSet &locally_owned_dofs,
const std::vector<IndexSet> &partitioning)
{
internal_reinit(locally_owned_dofs);
// deal.II vectors:
src.reinit (partitioning,mpi_communicator);
dst.reinit (partitioning,mpi_communicator);
tmp.reinit (partitioning,mpi_communicator);
}
template <typename VectorType>
template <typename MatrixType1,typename MatrixType2, typename INVERSE>
void PArpackSolver<VectorType>::solve
(const MatrixType1 &/*system_matrix*/,
const MatrixType2 &mass_matrix,
const INVERSE &inverse,
std::vector<std::complex<double> > &eigenvalues,
std::vector<VectorType> &eigenvectors,
const unsigned int n_eigenvalues)
{
if (additional_data.symmetric)
{
Assert (n_eigenvalues <= eigenvectors.size(),
PArpackExcInvalidEigenvectorSize(n_eigenvalues, eigenvectors.size()));
}
else
Assert (n_eigenvalues+1 <= eigenvectors.size(),
PArpackExcInvalidEigenvectorSizeNonsymmetric(n_eigenvalues, eigenvectors.size()));
Assert (n_eigenvalues <= eigenvalues.size(),
PArpackExcInvalidEigenvalueSize(n_eigenvalues, eigenvalues.size()));
// use eigenvectors to get the problem size so that it is possible to
// employ LinearOperator for mass_matrix.
Assert (n_eigenvalues < eigenvectors[0].size(),
PArpackExcInvalidNumberofEigenvalues(n_eigenvalues, eigenvectors[0].size()));
Assert (additional_data.number_of_arnoldi_vectors < eigenvectors[0].size(),
PArpackExcInvalidNumberofArnoldiVectors(
additional_data.number_of_arnoldi_vectors, eigenvectors[0].size()));
Assert (additional_data.number_of_arnoldi_vectors > 2*n_eigenvalues+1,
PArpackExcSmallNumberofArnoldiVectors(
additional_data.number_of_arnoldi_vectors, n_eigenvalues));
// ARPACK mode for dnaupd, here only
// Mode 3: K*x = lambda*M*x, K symmetric, M symmetric positive semi-definite
//c ===> OP = (inv[K - sigma*M])*M and B = M.
//c ===> Shift-and-Invert mode
int mode = 3;
// reverse communication parameter
// must be zero on the first call to pdnaupd
int ido = 0;
// 'G' generalized eigenvalue problem
// 'I' standard eigenvalue problem
char bmat[2] = "G";
// Specify the eigenvalues of interest, possible parameters:
// "LA" algebraically largest
// "SA" algebraically smallest
// "LM" largest magnitude
// "SM" smallest magnitude
// "LR" largest real part
// "SR" smallest real part
// "LI" largest imaginary part
// "SI" smallest imaginary part
// "BE" both ends of spectrum simultaneous
char which[3];
switch (additional_data.eigenvalue_of_interest)
{
case algebraically_largest:
std::strcpy (which, "LA");
break;
case algebraically_smallest:
std::strcpy (which, "SA");
break;
case largest_magnitude:
std::strcpy (which, "LM");
break;
case smallest_magnitude:
std::strcpy (which, "SM");
break;
case largest_real_part:
std::strcpy (which, "LR");
break;
case smallest_real_part:
std::strcpy (which, "SR");
break;
case largest_imaginary_part:
std::strcpy (which, "LI");
break;
case smallest_imaginary_part:
std::strcpy (which, "SI");
break;
case both_ends:
std::strcpy (which, "BE");
break;
}
// tolerance for ARPACK
double tol = control().tolerance();
//information to the routines
std::vector<int> iparam (11, 0);
iparam[0] = 1;
// shift strategy: exact shifts with respect to the current Hessenberg matrix H.
// maximum number of iterations
iparam[2] = control().max_steps();
// Parpack currently works only for NB = 1
iparam[3] = 1;
// Sets the mode of dsaupd:
// 1 is exact shifting,
// 2 is user-supplied shifts,
// 3 is shift-invert mode,
// 4 is buckling mode,
// 5 is Cayley mode.
iparam[6] = mode;
std::vector<int> ipntr (14, 0);
//information out of the iteration
// If INFO .EQ. 0, a random initial residual vector is used.
// If INFO .NE. 0, RESID contains the initial residual vector,
// possibly from a previous run.
// Typical choices in this situation might be to use the final value
// of the starting vector from the previous eigenvalue calculation
int info = initial_vector_provided? 1 : 0;
// Number of eigenvalues of OP to be computed. 0 < NEV < N.
int nev = n_eigenvalues;
int n_inside_arpack = nloc;
// IDO = 99: done
while (ido != 99)
{
// call of ARPACK pdnaupd routine
if (additional_data.symmetric)
pdsaupd_(&mpi_communicator_fortran,&ido, bmat, &n_inside_arpack, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
&workd[0], &workl[0], &lworkl, &info);
else
pdnaupd_(&mpi_communicator_fortran,&ido, bmat, &n_inside_arpack, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
&workd[0], &workl[0], &lworkl, &info);
if (ido == 99)
break;
switch (mode)
{
// OP = (inv[K - sigma*M])*M
case 3:
{
switch (ido)
{
case -1:
// compute Y = OP * X where
// IPNTR(1) is the pointer into WORKD for X,
// IPNTR(2) is the pointer into WORKD for Y.
{
const int shift_x = ipntr[0]-1;
const int shift_y = ipntr[1]-1;
Assert (shift_x>=0, dealii::ExcInternalError() );
Assert (shift_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
Assert (shift_y>=0, dealii::ExcInternalError() );
Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );
src = 0.0;
src.add (nloc,
&local_indices[0],
&workd[0]+shift_x );
src.compress (VectorOperation::add);
// multiplication with mass matrix M
mass_matrix.vmult(tmp, src);
// solving linear system
inverse.vmult(dst,tmp);
// store the result
dst.extract_subvector_to (local_indices.begin(),
local_indices.end(),
&workd[0]+shift_y );
}
break;
case 1:
// compute Y = OP * X where
// IPNTR(1) is the pointer into WORKD for X,
// IPNTR(2) is the pointer into WORKD for Y.
// In mode 3,4 and 5, the vector B * X is already
// available in WORKD(ipntr(3)). It does not
// need to be recomputed in forming OP * X.
{
const int shift_x = ipntr[0]-1;
const int shift_y = ipntr[1]-1;
const int shift_b_x = ipntr[2]-1;
Assert (shift_x>=0, dealii::ExcInternalError() );
Assert (shift_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
Assert (shift_y>=0, dealii::ExcInternalError() );
Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );
Assert (shift_b_x>=0, dealii::ExcInternalError() );
Assert (shift_b_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
Assert (shift_y>=0, dealii::ExcInternalError() );
Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );
src = 0.0; // B*X
src.add (nloc,
&local_indices[0],
&workd[0]+shift_b_x );
tmp = 0.0; // X
tmp.add (nloc,
&local_indices[0],
&workd[0]+shift_x);
src.compress (VectorOperation::add);
tmp.compress (VectorOperation::add);
// solving linear system
inverse.vmult(dst,src);
// store the result
dst.extract_subvector_to (local_indices.begin(),
local_indices.end(),
&workd[0]+shift_y );
}
break;
case 2:
// compute Y = B * X where
// IPNTR(1) is the pointer into WORKD for X,
// IPNTR(2) is the pointer into WORKD for Y.
{
const int shift_x = ipntr[0]-1;
const int shift_y = ipntr[1]-1;
Assert (shift_x>=0, dealii::ExcInternalError() );
Assert (shift_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
Assert (shift_y>=0, dealii::ExcInternalError() );
Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );
src = 0.0;
src.add (nloc,
&local_indices[0],
&workd[0]+shift_x );
src.compress (VectorOperation::add);
// Multiplication with mass matrix M
mass_matrix.vmult(dst, src);
// store the result
dst.extract_subvector_to (local_indices.begin(),
local_indices.end(),
&workd[0]+shift_y);
}
break;
default:
AssertThrow (false, PArpackExcIdo(ido));
break;
}
}
break;
default:
AssertThrow (false, PArpackExcMode(mode));
break;
}
}
if (info<0)
{
AssertThrow (false, PArpackExcInfoPdnaupd(info));
}
else
{
// 1 - compute eigenvectors,
// 0 - only eigenvalues
int rvec = 1;
// which eigenvectors
char howmany[4] = "All";
std::vector<double> eigenvalues_real (n_eigenvalues+1, 0.);
std::vector<double> eigenvalues_im (n_eigenvalues+1, 0.);
// call of ARPACK pdneupd routine
if (additional_data.symmetric)
pdseupd_(&mpi_communicator_fortran, &rvec, howmany, &select[0], &eigenvalues_real[0],
&z[0], &ldz, &sigmar,
bmat, &n_inside_arpack, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv,
&iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
else
pdneupd_(&mpi_communicator_fortran, &rvec, howmany, &select[0], &eigenvalues_real[0],
&eigenvalues_im[0], &v[0], &ldz, &sigmar, &sigmai,
&workev[0], bmat, &n_inside_arpack, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv,
&iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
if (info == 1)
{
AssertThrow (false, PArpackExcInfoMaxIt(control().max_steps()));
}
else if (info == 3)
{
AssertThrow (false, PArpackExcNoShifts(1));
}
else if (info!=0)
{
AssertThrow (false, PArpackExcInfoPdneupd(info));
}
for (int i=0; i<nev; ++i)
{
eigenvectors[i] = 0.0;
Assert (i*nloc + nloc <= (int)v.size(), dealii::ExcInternalError() );
eigenvectors[i].add (nloc,
&local_indices[0],
&v[i*nloc] );
eigenvectors[i].compress (VectorOperation::add);
}
for (size_type i=0; i<n_eigenvalues; ++i)
eigenvalues[i] = std::complex<double> (eigenvalues_real[i],
eigenvalues_im[i]);
}
// Throw an error if the solver did not converge.
AssertThrow (iparam[4] >= (int)n_eigenvalues,
PArpackExcConvergedEigenvectors(n_eigenvalues,iparam[4]));
// both PDNAUPD and PDSAUPD compute eigenpairs of inv[A - sigma*M]*M
// with respect to a semi-inner product defined by M.
// resid likely contains residual with respect to M-norm.
{
tmp = 0.0;
tmp.add (nloc,
&local_indices[0],
&resid[0]);
solver_control.check ( iparam[2], tmp.l2_norm() );
}
}
template <typename VectorType>
SolverControl &PArpackSolver<VectorType>::control () const
{
return solver_control;
}
DEAL_II_NAMESPACE_CLOSE
#endif
#endif
|