This file is indexed.

/usr/include/deal.II/lac/parpack_solver.h is in libdeal.ii-dev 8.5.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
// ---------------------------------------------------------------------
//
// Copyright (C) 2010 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__parpack_solver_h
#define dealii__parpack_solver_h

#include <deal.II/base/config.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/base/memory_consumption.h>
#include <deal.II/lac/solver_control.h>
#include <deal.II/lac/vector.h>
#include <deal.II/base/index_set.h>

#include <cstring>


#ifdef DEAL_II_ARPACK_WITH_PARPACK

DEAL_II_NAMESPACE_OPEN

extern "C" {

  // http://www.mathkeisan.com/usersguide/man/pdnaupd.html
  void pdnaupd_(MPI_Fint *comm, int *ido, char *bmat, int *n, char *which,
                int *nev, double *tol, double *resid, int *ncv,
                double *v, int *nloc, int *iparam, int *ipntr,
                double *workd, double *workl, int *lworkl,
                int *info);

  // http://www.mathkeisan.com/usersguide/man/pdsaupd.html
  void pdsaupd_(MPI_Fint *comm, int *ido, char *bmat, int *n, char *which,
                int *nev, double *tol, double *resid, int *ncv,
                double *v, int *nloc, int *iparam, int *ipntr,
                double *workd, double *workl, int *lworkl,
                int *info);

  // http://www.mathkeisan.com/usersguide/man/pdneupd.html
  void pdneupd_(MPI_Fint *comm, int *rvec, char *howmany, int *select, double *d,
                double *di, double *z, int *ldz, double *sigmar,
                double *sigmai, double *workev, char *bmat, int *n, char *which,
                int *nev, double *tol, double *resid, int *ncv,
                double *v, int *nloc, int *iparam, int *ipntr,
                double *workd, double *workl, int *lworkl, int *info);

  // http://www.mathkeisan.com/usersguide/man/pdseupd.html
  void pdseupd_(MPI_Fint *comm, int *rvec, char *howmany, int *select, double *d,
                double *z, int *ldz, double *sigmar,
                char *bmat, int *n, char *which,
                int *nev, double *tol, double *resid, int *ncv,
                double *v, int *nloc, int *iparam, int *ipntr,
                double *workd, double *workl, int *lworkl, int *info);

  // other resources:
  //    http://acts.nersc.gov/superlu/example5/pnslac.c.html
  //    https://github.com/phpisciuneri/tijo/blob/master/dvr_parpack.cpp

}

/**
 * Interface for using PARPACK. PARPACK is a collection of Fortran77
 * subroutines designed to solve large scale eigenvalue problems. Here we
 * interface to the routines <code>pdneupd</code>, <code>pdseupd</code>,
 * <code>pdnaupd</code>, <code>pdsaupd</code> of PARPACK.  The package is
 * designed to compute a few eigenvalues and corresponding eigenvectors of a
 * general n by n matrix A. It is most appropriate for large sparse matrices
 * A.
 *
 * In this class we make use of the method applied to the generalized
 * eigenspectrum problem $(A-\lambda B)x=0$, for $x\neq0$; where $A$ is a
 * system matrix, $B$ is a mass matrix, and $\lambda, x$ are a set of
 * eigenvalues and eigenvectors respectively.
 *
 * The ArpackSolver can be used in application codes in the following way:
 * @code
 *   SolverControl solver_control (1000, 1e-9);
 *   const unsigned int num_arnoldi_vectors = 2*size_of_spectrum + 2;
 *   PArpackSolver<V>::AdditionalData
 *     additional_data(num_arnoldi_vectors,
 *                     dealii::PArpackSolver<V>::largest_magnitude,
 *                     true);
 *
 *    PArpackSolver<V> eigensolver (solver_control,
 *                                  mpi_communicator,
 *                                  additional_data);
 *    eigensolver.set_shift(sigma);
 *    eigensolver.reinit(locally_owned_dofs);
 *    eigensolver.solve (A,
 *                       B,
 *                       OP,
 *                       lambda,
 *                       x,
 *                       size_of_spectrum);
 * @endcode
 * for the generalized eigenvalue problem $Ax=B\lambda x$, where the variable
 * <code>size_of_spectrum</code> tells PARPACK the number of
 * eigenvector/eigenvalue pairs to solve for. Here, <code>lambda</code> is a
 * vector that will contain the eigenvalues computed, <code>x</code> a vector
 * of objects of type <code>V</code> that will contain the eigenvectors
 * computed. <code>OP</code> is an inverse operation for the matrix <code>A -
 * sigma * B</code>, where <code> sigma </code> is a shift value, set to zero
 * by default. Note that (P)Arpack supports other transformations, but currently
 * this class implements only shift-and-invert mode.
 *
 * The <code>OP</code> can be specified either using auxiliary Shift class together
 * with IterativeInverse or by using LinearOperator
 * @code
 *   const double shift = 5.0;
 *   const auto op_A = linear_operator<vector_t>(A);
 *   const auto op_B = linear_operator<vector_t>(B);
 *   const auto op_shift = op_A - shift * op_B;
 *   SolverControl solver_control_lin (1000, 1e-10,false,false);
 *
 *   SolverCG<vector_t> cg(solver_control_lin);
 *   const auto op_shift_invert = inverse_operator(op_shift, cg, PreconditionIdentity ());
 * @endcode
 *
 * Through the AdditionalData the user can specify some of the parameters to
 * be set.
 *
 * The class is intended to be used with MPI and can work on arbitrary vector
 * and matrix distributed classes.  Both symmetric and non-symmetric
 * <code>A</code> are supported.
 *
 * For further information on how the PARPACK routines <code>pdneupd</code>,
 * <code>pdseupd</code>, <code>pdnaupd</code>, <code>pdsaupd</code> work and
 * also how to set the parameters appropriately please take a look into the
 * PARPACK manual.
 *
 * @author Denis Davydov, 2015.
 */
template <typename VectorType>
class PArpackSolver : public Subscriptor
{
public:
  /**
   * Declare the type for container size.
   */
  typedef types::global_dof_index size_type;

  /**
   * An enum that lists the possible choices for which eigenvalues to compute
   * in the solve() function. Note, that this corresponds to the problem after
   * shift-and-invert (the only currently supported spectral transformation)
   * is applied.
   *
   * A particular choice is limited based on symmetric or non-symmetric matrix
   * <code>A</code> considered.
   */
  enum WhichEigenvalues
  {
    /**
     * The algebraically largest eigenvalues.
     */
    algebraically_largest,
    /**
     * The algebraically smallest eigenvalues.
     */
    algebraically_smallest,
    /**
     * The eigenvalue with the largest magnitudes.
     */
    largest_magnitude,
    /**
     * The eigenvalue with the smallest magnitudes.
     */
    smallest_magnitude,
    /**
     * The eigenvalues with the largest real parts.
     */
    largest_real_part,
    /**
     * The eigenvalues with the smallest real parts.
     */
    smallest_real_part,
    /**
     * The eigenvalues with the largest imaginary parts.
     */
    largest_imaginary_part,
    /**
     * The eigenvalues with the smallest imaginary parts.
     */
    smallest_imaginary_part,
    /**
     * Compute half of the eigenvalues from the high end of the spectrum and
     * the other half from the low end. If the number of requested
     * eigenvectors is odd, then the extra eigenvector comes from the high end
     * of the spectrum.
     */
    both_ends
  };

  /**
   * Auxiliary class to represent <code>A-sigma*B</code> operator.
   */
  template <typename MatrixType>
  class Shift : public dealii::Subscriptor
  {
  public:

    /**
     * Constructor.
     */
    Shift (const MatrixType &A,
           const MatrixType &B,
           const double      sigma)
      :
      A(A),
      B(B),
      sigma(sigma)
    {}

    /**
     * Apply <code>A-sigma * B</code>
     */
    void vmult (VectorType &dst, const VectorType &src) const
    {
      B.vmult(dst,src);
      dst *= (-sigma);
      A.vmult_add(dst,src);
    }

    /**
     * Apply <code>A^T-sigma * B^T</code>
     */
    void Tvmult (VectorType &dst, const VectorType &src) const
    {
      B.Tvmult(dst,src);
      dst *= (-sigma);
      A.Tvmult_add(dst,src);
    }

  private:
    const MatrixType &A;
    const MatrixType &B;
    const double sigma;
  };

  /**
   * Standardized data struct to pipe additional data to the solver, should it
   * be needed.
   */
  struct AdditionalData
  {
    const unsigned int number_of_arnoldi_vectors;
    const WhichEigenvalues eigenvalue_of_interest;
    const bool symmetric;
    AdditionalData(
      const unsigned int number_of_arnoldi_vectors = 15,
      const WhichEigenvalues eigenvalue_of_interest = largest_magnitude,
      const bool symmetric = false);
  };

  /**
   * Access to the object that controls convergence.
   */
  SolverControl &control () const;

  /**
   * Constructor.
   */
  PArpackSolver(SolverControl &control,
                const MPI_Comm &mpi_communicator,
                const AdditionalData &data = AdditionalData());

  /**
   * Initialize internal variables.
   */
  void reinit(const IndexSet &locally_owned_dofs );

  /**
   * Initialize internal variables when working with BlockVectors.
   * @p locally_owned_dofs is used to set the dimension of the problem,
   * whereas @p partitioning is used for calling the reinit of the deal.II
   * blockvectors used.
   */
  void reinit(const IndexSet &locally_owned_dofs,
              const std::vector<IndexSet> &partitioning);

  /**
   * Initialize internal variables from the input @p distributed_vector.
   */
  void reinit(const VectorType &distributed_vector);

  /**
   * Set initial vector for building Krylov space.
   */
  void set_initial_vector(const VectorType &vec);

  /**
   * Set shift @p sigma for shift-and-invert spectral transformation.
   *
   * If this function is not called, the shift is assumed to be zero.
   */
  void set_shift(const std::complex<double> sigma);

  /**
   * Solve the generalized eigensprectrum problem $A x=\lambda B x$ by calling
   * the <code>pd(n/s)eupd</code> and <code>pd(n/s)aupd</code> functions of
   * PARPACK.
   */
  template <typename MatrixType1,
            typename MatrixType2, typename INVERSE>
  void solve
  (const MatrixType1                  &A,
   const MatrixType2                  &B,
   const INVERSE                      &inverse,
   std::vector<std::complex<double> > &eigenvalues,
   std::vector<VectorType>            &eigenvectors,
   const unsigned int                  n_eigenvalues);

  std::size_t memory_consumption() const;

protected:

  /**
   * Reference to the object that controls convergence of the iterative
   * solver.
   */
  SolverControl &solver_control;

  /**
   * Store a copy of the flags for this particular solver.
   */
  const AdditionalData additional_data;

  // keep MPI communicator non-const as Arpack functions are not const either:

  /**
   * C++ MPI communicator.
   */
  MPI_Comm mpi_communicator;

  /**
   * Fortran MPI communicator.
   */
  MPI_Fint mpi_communicator_fortran;

  // C++98 guarantees that the elements of a vector are stored contiguously

  /**
   * Length of the work array workl.
   */
  int lworkl;

  /**
   * Double precision  work array of length lworkl
   */
  std::vector<double> workl;

  /**
   * Double precision  work array of length 3*N
   */
  std::vector<double> workd;

  /**
   * Number of local degrees of freedom.
   */
  int nloc;

  /**
   * Number of Arnoldi basis vectors specified in additional_data
   */
  int ncv;


  /**
   * The leading dimension of the array v
   */
  int ldv;

  /**
   * Double precision vector of size ldv by NCV.  Will contains the final set
   * of Arnoldi basis vectors.
   */
  std::vector<double> v;

  /**
   * An auxiliary flag which is set to true when initial vector is provided.
   */
  bool initial_vector_provided;

  /**
   * The initial residual vector, possibly from a previous run.  On output, it
   * contains the final residual vector.
   */
  std::vector<double> resid;

  /**
   * The leading dimension of the array Z equal to nloc.
   */
  int ldz;

  /**
   * A vector of minimum size of nloc by NEV+1.  Z contains the B-orthonormal
   * Ritz vectors of the eigensystem A*z = lambda*B*z corresponding to the
   * Ritz value approximations.
   */
  std::vector<double> z;

  /**
   * The size of the workev array.
   */
  int lworkev;

  /**
   * Double precision  work array of dimension 3* NCV.
   */
  std::vector<double> workev;

  /**
   * A vector of dimension NCV.
   */
  std::vector<int> select;

  /**
   * Temporary vectors used between Arpack and deal.II
   */
  VectorType src,dst,tmp;

  /**
   * Indices of local degrees of freedom.
   */
  std::vector< types::global_dof_index > local_indices;

  /**
   * Real part of the shift
   */
  double sigmar;

  /**
   * Imaginary part of the shift
   */
  double sigmai;

private:

  /**
   * Initialize internal variables which depend on
   * @p locally_owned_dofs.
   *
   * This function is called inside the reinit() functions
   */
  void internal_reinit(const IndexSet &locally_owned_dofs);

  /**
   * PArpackExcInfoPdnaupds.
   */
  DeclException2 (PArpackExcConvergedEigenvectors, int, int,
                  << arg1 << " eigenpairs were requested, but only "
                  << arg2 << " converged");

  DeclException2 (PArpackExcInvalidNumberofEigenvalues, int, int,
                  << "Number of wanted eigenvalues " << arg1
                  << " is larger that the size of the matrix " << arg2);

  DeclException2 (PArpackExcInvalidEigenvectorSize, int, int,
                  << "Number of wanted eigenvalues " << arg1
                  << " is larger that the size of eigenvectors " << arg2);

  DeclException2 (PArpackExcInvalidEigenvectorSizeNonsymmetric, int, int,
                  << "To store the real and complex parts of " << arg1
                  << " eigenvectors in real-valued vectors, their size (currently set to " << arg2
                  << ") should be greater than or equal to " << arg1+1);

  DeclException2 (PArpackExcInvalidEigenvalueSize, int, int,
                  << "Number of wanted eigenvalues " << arg1
                  << " is larger that the size of eigenvalues " << arg2);

  DeclException2 (PArpackExcInvalidNumberofArnoldiVectors, int, int,
                  << "Number of Arnoldi vectors " << arg1
                  << " is larger that the size of the matrix " << arg2);

  DeclException2 (PArpackExcSmallNumberofArnoldiVectors, int, int,
                  << "Number of Arnoldi vectors " << arg1
                  << " is too small to obtain " << arg2
                  << " eigenvalues");

  DeclException1 (PArpackExcIdo, int, << "This ido " << arg1
                  << " is not supported. Check documentation of ARPACK");

  DeclException1 (PArpackExcMode, int, << "This mode " << arg1
                  << " is not supported. Check documentation of ARPACK");

  DeclException1 (PArpackExcInfoPdnaupd, int,
                  << "Error with Pdnaupd, info " << arg1
                  << ". Check documentation of ARPACK");

  DeclException1 (PArpackExcInfoPdneupd, int,
                  << "Error with Pdneupd, info " << arg1
                  << ". Check documentation of ARPACK");

  DeclException1 (PArpackExcInfoMaxIt, int,
                  << "Maximum number " << arg1
                  << " of iterations reached.");

  DeclException1 (PArpackExcNoShifts, int,
                  << "No shifts could be applied during implicit"
                  << " Arnoldi update, try increasing the number of"
                  << " Arnoldi vectors.");
};

template <typename VectorType>
std::size_t
PArpackSolver<VectorType>::memory_consumption() const
{
  return  MemoryConsumption::memory_consumption (double()) *
          (workl.size()  +
           workd.size()  +
           v.size()      +
           resid.size()  +
           z.size()      +
           workev.size()  )       +
          src.memory_consumption() +
          dst.memory_consumption() +
          tmp.memory_consumption() +
          MemoryConsumption::memory_consumption (types::global_dof_index()) * local_indices.size();
}

template <typename VectorType>
PArpackSolver<VectorType>::AdditionalData::
AdditionalData (const unsigned int     number_of_arnoldi_vectors,
                const WhichEigenvalues eigenvalue_of_interest,
                const bool             symmetric)
  :
  number_of_arnoldi_vectors(number_of_arnoldi_vectors),
  eigenvalue_of_interest(eigenvalue_of_interest),
  symmetric(symmetric)
{
  //Check for possible options for symmetric problems
  if (symmetric)
    {
      Assert(eigenvalue_of_interest!=largest_real_part,
             ExcMessage("'largest real part' can only be used for non-symmetric problems!"));
      Assert(eigenvalue_of_interest!=smallest_real_part,
             ExcMessage("'smallest real part' can only be used for non-symmetric problems!"));
      Assert(eigenvalue_of_interest!=largest_imaginary_part,
             ExcMessage("'largest imaginary part' can only be used for non-symmetric problems!"));
      Assert(eigenvalue_of_interest!=smallest_imaginary_part,
             ExcMessage("'smallest imaginary part' can only be used for non-symmetric problems!"));
    }
}

template <typename VectorType>
PArpackSolver<VectorType>::PArpackSolver (SolverControl        &control,
                                          const MPI_Comm       &mpi_communicator,
                                          const AdditionalData &data)
  :
  solver_control (control),
  additional_data (data),
  mpi_communicator( mpi_communicator ),
  mpi_communicator_fortran ( MPI_Comm_c2f( mpi_communicator ) ),
  lworkl(0),
  nloc(0),
  ncv(0),
  ldv(0),
  initial_vector_provided(false),
  ldz(0),
  lworkev(0),
  sigmar(0.0),
  sigmai(0.0)
{}

template <typename VectorType>
void PArpackSolver<VectorType>::set_shift(const std::complex<double> sigma)
{
  sigmar = sigma.real();
  sigmai = sigma.imag();
}

template <typename VectorType>
void PArpackSolver<VectorType>::
set_initial_vector(const VectorType &vec)
{
  initial_vector_provided = true;
  Assert (resid.size() == local_indices.size(),
          ExcDimensionMismatch(resid.size(),local_indices.size()));
  vec.extract_subvector_to (local_indices.begin(),
                            local_indices.end(),
                            &resid[0]);
}


template <typename VectorType>
void PArpackSolver<VectorType>::
internal_reinit(const IndexSet &locally_owned_dofs)
{
  // store local indices to write to vectors
  locally_owned_dofs.fill_index_vector(local_indices);

  // scalars
  nloc = locally_owned_dofs.n_elements ();
  ncv  = additional_data.number_of_arnoldi_vectors;

  Assert ((int)local_indices.size() == nloc, ExcInternalError() );

  // vectors
  ldv = nloc;
  v.resize (ldv*ncv, 0.0);

  resid.resize(nloc, 1.0);

  // work arrays for ARPACK
  workd.resize(3*nloc,0.0);

  lworkl = additional_data.symmetric ?
           ncv*ncv + 8*ncv
           :
           3*ncv*ncv+6*ncv;
  workl.resize (lworkl, 0.);

  ldz = nloc;
  z.resize (ldz*ncv, 0.); // TODO we actually need only ldz*nev

  // WORKEV  Double precision  work array of dimension 3*NCV.
  lworkev = additional_data.symmetric ?
            0 /*not used in symmetric case*/
            :
            3*ncv;
  workev.resize (lworkev, 0.);

  select.resize (ncv, 0);
}

template <typename VectorType>
void PArpackSolver<VectorType>::reinit(const IndexSet &locally_owned_dofs)
{
  internal_reinit(locally_owned_dofs);

  // deal.II vectors:
  src.reinit (locally_owned_dofs,mpi_communicator);
  dst.reinit (locally_owned_dofs,mpi_communicator);
  tmp.reinit (locally_owned_dofs,mpi_communicator);
}

template <typename VectorType>
void PArpackSolver<VectorType>::reinit(const VectorType &distributed_vector)
{
  internal_reinit(distributed_vector.locally_owned_elements());

  // deal.II vectors:
  src.reinit (distributed_vector);
  dst.reinit (distributed_vector);
  tmp.reinit (distributed_vector);
}


template <typename VectorType>
void PArpackSolver<VectorType>::reinit(const IndexSet &locally_owned_dofs,
                                       const std::vector<IndexSet> &partitioning)
{
  internal_reinit(locally_owned_dofs);

  // deal.II vectors:
  src.reinit (partitioning,mpi_communicator);
  dst.reinit (partitioning,mpi_communicator);
  tmp.reinit (partitioning,mpi_communicator);
}

template <typename VectorType>
template <typename MatrixType1,typename MatrixType2, typename INVERSE>
void PArpackSolver<VectorType>::solve
(const MatrixType1                  &/*system_matrix*/,
 const MatrixType2                  &mass_matrix,
 const INVERSE                      &inverse,
 std::vector<std::complex<double> > &eigenvalues,
 std::vector<VectorType>            &eigenvectors,
 const unsigned int                  n_eigenvalues)
{

  if (additional_data.symmetric)
    {
      Assert (n_eigenvalues <= eigenvectors.size(),
              PArpackExcInvalidEigenvectorSize(n_eigenvalues, eigenvectors.size()));
    }
  else
    Assert (n_eigenvalues+1 <= eigenvectors.size(),
            PArpackExcInvalidEigenvectorSizeNonsymmetric(n_eigenvalues, eigenvectors.size()));

  Assert (n_eigenvalues <= eigenvalues.size(),
          PArpackExcInvalidEigenvalueSize(n_eigenvalues, eigenvalues.size()));


  // use eigenvectors to get the problem size so that it is possible to
  // employ LinearOperator for mass_matrix.
  Assert (n_eigenvalues < eigenvectors[0].size(),
          PArpackExcInvalidNumberofEigenvalues(n_eigenvalues, eigenvectors[0].size()));

  Assert (additional_data.number_of_arnoldi_vectors < eigenvectors[0].size(),
          PArpackExcInvalidNumberofArnoldiVectors(
            additional_data.number_of_arnoldi_vectors, eigenvectors[0].size()));

  Assert (additional_data.number_of_arnoldi_vectors > 2*n_eigenvalues+1,
          PArpackExcSmallNumberofArnoldiVectors(
            additional_data.number_of_arnoldi_vectors, n_eigenvalues));
  // ARPACK mode for dnaupd, here only
  //  Mode 3:  K*x = lambda*M*x, K symmetric, M symmetric positive semi-definite
  //c           ===> OP = (inv[K - sigma*M])*M  and  B = M.
  //c           ===> Shift-and-Invert mode
  int mode = 3;

  // reverse communication parameter
  // must be zero on the first call to pdnaupd
  int ido = 0;

  // 'G' generalized eigenvalue problem
  // 'I' standard eigenvalue problem
  char bmat[2] = "G";

  // Specify the eigenvalues of interest, possible parameters:
  // "LA" algebraically largest
  // "SA" algebraically smallest
  // "LM" largest magnitude
  // "SM" smallest magnitude
  // "LR" largest real part
  // "SR" smallest real part
  // "LI" largest imaginary part
  // "SI" smallest imaginary part
  // "BE" both ends of spectrum simultaneous
  char which[3];
  switch (additional_data.eigenvalue_of_interest)
    {
    case algebraically_largest:
      std::strcpy (which, "LA");
      break;
    case algebraically_smallest:
      std::strcpy (which, "SA");
      break;
    case largest_magnitude:
      std::strcpy (which, "LM");
      break;
    case smallest_magnitude:
      std::strcpy (which, "SM");
      break;
    case largest_real_part:
      std::strcpy (which, "LR");
      break;
    case smallest_real_part:
      std::strcpy (which, "SR");
      break;
    case largest_imaginary_part:
      std::strcpy (which, "LI");
      break;
    case smallest_imaginary_part:
      std::strcpy (which, "SI");
      break;
    case both_ends:
      std::strcpy (which, "BE");
      break;
    }

  // tolerance for ARPACK
  double tol = control().tolerance();

  //information to the routines
  std::vector<int> iparam (11, 0);

  iparam[0] = 1;
  // shift strategy: exact shifts with respect to the current Hessenberg matrix H.

  // maximum number of iterations
  iparam[2] = control().max_steps();

  // Parpack currently works only for NB = 1
  iparam[3] = 1;

  // Sets the mode of dsaupd:
  // 1 is exact shifting,
  // 2 is user-supplied shifts,
  // 3 is shift-invert mode,
  // 4 is buckling mode,
  // 5 is Cayley mode.

  iparam[6] = mode;
  std::vector<int> ipntr (14, 0);

  //information out of the iteration
  //  If INFO .EQ. 0, a random initial residual vector is used.
  //  If INFO .NE. 0, RESID contains the initial residual vector,
  //  possibly from a previous run.
  // Typical choices in this situation might be to use the final value
  // of the starting vector from the previous eigenvalue calculation
  int info = initial_vector_provided? 1 : 0;

  // Number of eigenvalues of OP to be computed. 0 < NEV < N.
  int nev = n_eigenvalues;
  int n_inside_arpack = nloc;

  // IDO = 99: done
  while (ido != 99)
    {
      // call of ARPACK pdnaupd routine
      if (additional_data.symmetric)
        pdsaupd_(&mpi_communicator_fortran,&ido, bmat, &n_inside_arpack, which, &nev, &tol,
                 &resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
                 &workd[0], &workl[0], &lworkl, &info);
      else
        pdnaupd_(&mpi_communicator_fortran,&ido, bmat, &n_inside_arpack, which, &nev, &tol,
                 &resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
                 &workd[0], &workl[0], &lworkl, &info);

      if (ido == 99)
        break;

      switch (mode)
        {
//        OP = (inv[K - sigma*M])*M
        case 3:
        {
          switch (ido)
            {
            case -1:
              // compute  Y = OP * X  where
              // IPNTR(1) is the pointer into WORKD for X,
              // IPNTR(2) is the pointer into WORKD for Y.
            {
              const int shift_x = ipntr[0]-1;
              const int shift_y = ipntr[1]-1;
              Assert (shift_x>=0, dealii::ExcInternalError() );
              Assert (shift_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
              Assert (shift_y>=0, dealii::ExcInternalError() );
              Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );

              src = 0.0;
              src.add (nloc,
                       &local_indices[0],
                       &workd[0]+shift_x );
              src.compress (VectorOperation::add);

              // multiplication with mass matrix M
              mass_matrix.vmult(tmp, src);
              // solving linear system
              inverse.vmult(dst,tmp);

              // store the result
              dst.extract_subvector_to (local_indices.begin(),
                                        local_indices.end(),
                                        &workd[0]+shift_y  );
            }
            break;

            case  1:
              // compute  Y = OP * X where
              // IPNTR(1) is the pointer into WORKD for X,
              // IPNTR(2) is the pointer into WORKD for Y.
              // In mode 3,4 and 5, the vector B * X is already
              // available in WORKD(ipntr(3)).  It does not
              // need to be recomputed in forming OP * X.
            {
              const int shift_x   = ipntr[0]-1;
              const int shift_y   = ipntr[1]-1;
              const int shift_b_x = ipntr[2]-1;

              Assert (shift_x>=0, dealii::ExcInternalError() );
              Assert (shift_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
              Assert (shift_y>=0, dealii::ExcInternalError() );
              Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );
              Assert (shift_b_x>=0, dealii::ExcInternalError() );
              Assert (shift_b_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
              Assert (shift_y>=0, dealii::ExcInternalError() );
              Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );

              src = 0.0; // B*X
              src.add (nloc,
                       &local_indices[0],
                       &workd[0]+shift_b_x );

              tmp = 0.0; // X
              tmp.add (nloc,
                       &local_indices[0],
                       &workd[0]+shift_x);

              src.compress (VectorOperation::add);
              tmp.compress (VectorOperation::add);

              // solving linear system
              inverse.vmult(dst,src);

              // store the result
              dst.extract_subvector_to (local_indices.begin(),
                                        local_indices.end(),
                                        &workd[0]+shift_y  );

            }
            break;

            case  2:
              // compute  Y = B * X  where
              // IPNTR(1) is the pointer into WORKD for X,
              // IPNTR(2) is the pointer into WORKD for Y.
            {

              const int shift_x = ipntr[0]-1;
              const int shift_y = ipntr[1]-1;
              Assert (shift_x>=0, dealii::ExcInternalError() );
              Assert (shift_x+nloc <= (int)workd.size(), dealii::ExcInternalError() );
              Assert (shift_y>=0, dealii::ExcInternalError() );
              Assert (shift_y+nloc <= (int)workd.size(), dealii::ExcInternalError() );

              src = 0.0;
              src.add (nloc,
                       &local_indices[0],
                       &workd[0]+shift_x );
              src.compress (VectorOperation::add);

              // Multiplication with mass matrix M
              mass_matrix.vmult(dst, src);

              // store the result
              dst.extract_subvector_to (local_indices.begin(),
                                        local_indices.end(),
                                        &workd[0]+shift_y);

            }
            break;

            default:
              AssertThrow (false, PArpackExcIdo(ido));
              break;
            }
        }
        break;
        default:
          AssertThrow (false, PArpackExcMode(mode));
          break;
        }
    }

  if (info<0)
    {
      AssertThrow (false, PArpackExcInfoPdnaupd(info));
    }
  else
    {
      // 1 - compute eigenvectors,
      // 0 - only eigenvalues
      int rvec = 1;

      // which eigenvectors
      char howmany[4] = "All";

      std::vector<double> eigenvalues_real (n_eigenvalues+1, 0.);
      std::vector<double> eigenvalues_im (n_eigenvalues+1, 0.);

      // call of ARPACK pdneupd routine
      if (additional_data.symmetric)
        pdseupd_(&mpi_communicator_fortran, &rvec, howmany, &select[0], &eigenvalues_real[0],
                 &z[0], &ldz, &sigmar,
                 bmat, &n_inside_arpack, which, &nev, &tol,
                 &resid[0], &ncv, &v[0], &ldv,
                 &iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
      else
        pdneupd_(&mpi_communicator_fortran, &rvec, howmany, &select[0], &eigenvalues_real[0],
                 &eigenvalues_im[0], &v[0], &ldz, &sigmar, &sigmai,
                 &workev[0], bmat, &n_inside_arpack, which, &nev, &tol,
                 &resid[0], &ncv, &v[0], &ldv,
                 &iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);

      if (info == 1)
        {
          AssertThrow (false, PArpackExcInfoMaxIt(control().max_steps()));
        }
      else if (info == 3)
        {
          AssertThrow (false, PArpackExcNoShifts(1));
        }
      else if (info!=0)
        {
          AssertThrow (false, PArpackExcInfoPdneupd(info));
        }

      for (int i=0; i<nev; ++i)
        {
          eigenvectors[i] = 0.0;
          Assert (i*nloc + nloc <= (int)v.size(), dealii::ExcInternalError() );

          eigenvectors[i].add (nloc,
                               &local_indices[0],
                               &v[i*nloc] );
          eigenvectors[i].compress (VectorOperation::add);
        }

      for (size_type i=0; i<n_eigenvalues; ++i)
        eigenvalues[i] = std::complex<double> (eigenvalues_real[i],
                                               eigenvalues_im[i]);
    }

  // Throw an error if the solver did not converge.
  AssertThrow (iparam[4] >= (int)n_eigenvalues,
               PArpackExcConvergedEigenvectors(n_eigenvalues,iparam[4]));

  // both PDNAUPD and PDSAUPD compute eigenpairs of inv[A - sigma*M]*M
  // with respect to a semi-inner product defined by M.

  // resid likely contains residual with respect to M-norm.
  {

    tmp = 0.0;
    tmp.add (nloc,
             &local_indices[0],
             &resid[0]);
    solver_control.check  ( iparam[2], tmp.l2_norm() );
  }


}

template <typename VectorType>
SolverControl &PArpackSolver<VectorType>::control () const
{
  return solver_control;
}

DEAL_II_NAMESPACE_CLOSE


#endif
#endif