/usr/include/deal.II/lac/diagonal_matrix.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 | // ---------------------------------------------------------------------
//
// Copyright (C) 2016 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__diagonal_matrix_h
#define dealii__diagonal_matrix_h
#include <deal.II/lac/vector.h>
DEAL_II_NAMESPACE_OPEN
/**
* This class represents a <i>n x n</i> diagonal matrix based on a vector of
* size <i>n</i>. The matrix-vector products are realized by @p
* VectorType::scale, so the template vector class needs to provide a
* @p scale() method.
*
* When using this class with ConstraintsMatrix::distribute_local_to_global(),
* the underlying vector needs to provide write access to all entries referenced
* by cells in an assembly process. This means that this class also needs access
* to ghost entries that are owned by other processors than the calling one.
* In practice this requires initialization of the vector as follows
* @code
* DiagonalMatrix<LinearAlgebra::distributed::Vector<double> > diagonal_matrix;
* LinearAlgebra::distributed::Vector<double> &diagonal_vector = diagonal_matrix.get_vector();
* diagonal_vector.reinit(locally_owned_dofs,
* locally_relevant_dofs,
* mpi_communicator);
* @endcode
*
* @author Martin Kronbichler, 2016
*/
template <typename VectorType=Vector<double> >
class DiagonalMatrix : public Subscriptor
{
public:
typedef typename VectorType::value_type value_type;
typedef typename VectorType::size_type size_type;
/**
* Constructor.
*/
DiagonalMatrix();
/**
* Initialize with a given vector by copying the content of the vector
* @p vec.
*/
void reinit (const VectorType &vec);
/**
* Compresses the data structures and allows the resulting matrix to be used
* in all other operations like matrix-vector products. This is a collective
* operation, i.e., it needs to be run on all processors when used in parallel.
*/
void compress (VectorOperation::values operation);
/**
* Returns a reference to the underlying vector for manipulation of the
* entries on the matrix diagonal.
*/
VectorType &get_vector();
/**
* Clear content of this object and reset to the state of default constructor.
*/
void clear();
/**
* Returns a read-only reference to the underlying vector.
*/
const VectorType &get_vector() const;
/**
* Number of rows of this matrix. This number corresponds to the size of the
* underlying vector.
*/
size_type m () const;
/**
* Number of columns of this matrix. This number corresponds to the size of
* the underlying vector.
*/
size_type n () const;
/**
* Read-only access to a value. This is restricted to the case where
* <i>i==j</i> due to the matrix storage.
*
* If the vector representing the diagonal is distributed with MPI, not all
* of the indices <i>i</i> might actually be accessible. Refer to the method
* <code>get_vector().locally_owned_elements()</code> for the entries that
* actually are accessible.
*/
value_type operator()(const size_type i,
const size_type j) const;
/**
* Read-write access to a value. This is restricted to the case where
* <i>i==j</i> due to the matrix storage.
*
* If the vector representing the diagonal is distributed with MPI, not all
* of the indices <i>i</i> might actually be accessible. Refer to the method
* <code>get_vector().locally_owned_elements()</code> for the entries that
* actually are accessible.
*/
value_type &operator()(const size_type i,
const size_type j);
/**
* Add an array of values given by <tt>values</tt> in the given global
* matrix row at columns specified by col_indices. Due to the storage of
* this matrix, entries are only added to the diagonal of the matrix. All
* other entries are ignored and no exception is thrown.
*
* This function is for a consistent interface with the other matrix classes
* in deal.II and can be used in
* ConstraintMatrix::distribute_local_to_global to get exactly the same
* diagonal as when assembling into a sparse matrix.
*/
template <typename number2>
void add (const size_type row,
const size_type n_cols,
const size_type *col_indices,
const number2 *values,
const bool elide_zero_values = true,
const bool col_indices_are_sorted = false);
/**
* Add value to the element (i,j).
*
* Due to the storage of this matrix, entries are only added to the diagonal
* of the matrix. All other entries are ignored and no exception is thrown.
*/
void add (const size_type i,
const size_type j,
const value_type value);
/**
* Performs a matrix-vector multiplication with the given matrix.
*/
void vmult (VectorType &dst,
const VectorType &src) const;
/**
* Performs a transpose matrix-vector multiplication with the given
* matrix. Since this represents a diagonal matrix, exactly the same as
* vmult().
*/
void Tvmult (VectorType &dst,
const VectorType &src) const;
/**
* Adds the result of a matrix-vector multiplication into the destination
* vector dst. Needs to create a temporary vector, which makes performance
* slower than for @p vmult().
*/
void vmult_add (VectorType &dst,
const VectorType &src) const;
/**
* Adds the result of a transpose matrix-vector multiplication into the
* destination vector dst. Needs to create a temporary vector, which makes
* performance slower than for @p Tvmult().
*/
void Tvmult_add (VectorType &dst,
const VectorType &src) const;
/**
* Return the memory consumption of this object.
*/
std::size_t memory_consumption () const;
private:
/**
* The stored vector.
*/
VectorType diagonal;
};
/* ---------------------------------- Inline functions ------------------- */
#ifndef DOXYGEN
template <typename VectorType>
DiagonalMatrix<VectorType>::DiagonalMatrix()
:
Subscriptor()
{}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::clear()
{
diagonal.reinit(0);
}
template <typename VectorType>
std::size_t
DiagonalMatrix<VectorType>::memory_consumption () const
{
return diagonal.memory_consumption();
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::reinit(const VectorType &vec)
{
diagonal = vec;
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::compress (VectorOperation::values operation)
{
diagonal.compress(operation);
}
template <typename VectorType>
VectorType &
DiagonalMatrix<VectorType>::get_vector()
{
return diagonal;
}
template <typename VectorType>
const VectorType &
DiagonalMatrix<VectorType>::get_vector() const
{
return diagonal;
}
template <typename VectorType>
typename VectorType::size_type
DiagonalMatrix<VectorType>::m() const
{
return diagonal.size();
}
template <typename VectorType>
typename VectorType::size_type
DiagonalMatrix<VectorType>::n() const
{
return diagonal.size();
}
template <typename VectorType>
typename VectorType::value_type
DiagonalMatrix<VectorType>::operator()(const size_type i,
const size_type j) const
{
Assert (i==j, ExcIndexRange(j,i,i+1));
(void) j;
return diagonal(i);
}
template <typename VectorType>
typename VectorType::value_type &
DiagonalMatrix<VectorType>::operator()(const size_type i,
const size_type j)
{
Assert (i==j, ExcIndexRange(j,i,i+1));
(void)j;
return diagonal(i);
}
template <typename VectorType>
template <typename number2>
void
DiagonalMatrix<VectorType>::add (const size_type row,
const size_type n_cols,
const size_type *col_indices,
const number2 *values,
const bool ,
const bool )
{
for (size_type i=0; i<n_cols; ++i)
if (col_indices[i] == row)
diagonal(row) += values[i];
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::add (const size_type i,
const size_type j,
const value_type value)
{
if (i == j)
diagonal(i) += value;
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::vmult(VectorType &dst,
const VectorType &src) const
{
dst = src;
dst.scale(diagonal);
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::Tvmult(VectorType &dst,
const VectorType &src) const
{
vmult(dst, src);
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::vmult_add(VectorType &dst,
const VectorType &src) const
{
VectorType tmp(src);
tmp.scale(diagonal);
dst += tmp;
}
template <typename VectorType>
void
DiagonalMatrix<VectorType>::Tvmult_add(VectorType &dst,
const VectorType &src) const
{
vmult_add(dst, src);
}
#endif
DEAL_II_NAMESPACE_CLOSE
#endif
|