/usr/include/deal.II/lac/arpack_solver.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 | // ---------------------------------------------------------------------
//
// Copyright (C) 2010 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__arpack_solver_h
#define dealii__arpack_solver_h
#include <deal.II/base/config.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/lac/solver_control.h>
#include <cstring>
#ifdef DEAL_II_WITH_ARPACK
DEAL_II_NAMESPACE_OPEN
extern "C" void dnaupd_(int *ido, char *bmat, unsigned int *n, char *which,
unsigned int *nev, const double *tol, double *resid, int *ncv,
double *v, int *ldv, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl,
int *info);
extern "C" void dsaupd_(int *ido, char *bmat, unsigned int *n, char *which,
unsigned int *nev, double *tol, double *resid, int *ncv,
double *v, int *ldv, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl,
int *info);
extern "C" void dneupd_(int *rvec, char *howmany, int *select, double *d,
double *di, double *z, int *ldz, double *sigmar,
double *sigmai, double *workev, char *bmat, unsigned int *n, char *which,
unsigned int *nev, double *tol, double *resid, int *ncv,
double *v, int *ldv, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl, int *info);
extern "C" void dseupd_(int *rvec, char *howmany, int *select, double *d,
double *z, int *ldz, double *sigmar,
char *bmat, unsigned int *n, char *which,
unsigned int *nev, double *tol, double *resid, int *ncv,
double *v, int *ldv, int *iparam, int *ipntr,
double *workd, double *workl, int *lworkl, int *info);
/**
* Interface for using ARPACK. ARPACK is a collection of Fortran77 subroutines
* designed to solve large scale eigenvalue problems. Here we interface to
* the routines <code>dnaupd</code> and <code>dneupd</code> of ARPACK.
* If the operator is specified to be symmetric we use the symmetric interface
* <code>dsaupd</code> and <code>dseupd</code> of ARPACK instead. The
* package is designed to compute a few eigenvalues and corresponding
* eigenvectors of a general n by n matrix A. It is most appropriate for large
* sparse matrices A.
*
* In this class we make use of the method applied to the generalized
* eigenspectrum problem $(A-\lambda B)x=0$, for $x\neq0$; where $A$ is a
* system matrix, $B$ is a mass matrix, and $\lambda, x$ are a set of
* eigenvalues and eigenvectors respectively.
*
* The ArpackSolver can be used in application codes with serial objects in
* the following way:
* @code
* SolverControl solver_control (1000, 1e-9);
* ArpackSolver (solver_control);
* system.solve (A, B, OP, lambda, x, size_of_spectrum);
* @endcode
* for the generalized eigenvalue problem $Ax=B\lambda x$, where the variable
* <code>size_of_spectrum</code> tells ARPACK the number of
* eigenvector/eigenvalue pairs to solve for. Here, <code>lambda</code> is a
* vector that will contain the eigenvalues computed, <code>x</code> a vector
* that will contain the eigenvectors computed, and <code>OP</code> is an
* inverse operation for the matrix <code>A</code>. Shift and invert
* transformation around zero is applied.
*
* Through the AdditionalData the user can specify some of the parameters to
* be set.
*
* For further information on how the ARPACK routines <code>dsaupd</code>,
* <code>dseupd</code>, <code>dnaupd</code> and <code>dneupd</code> work
* and also how to set the parameters appropriately
* please take a look into the ARPACK manual.
*
* @note Whenever you eliminate degrees of freedom using ConstraintMatrix, you
* generate spurious eigenvalues and eigenvectors. If you make sure that the
* diagonals of eliminated matrix rows are all equal to one, you get a single
* additional eigenvalue. But beware that some functions in deal.II set these
* diagonals to rather arbitrary (from the point of view of eigenvalue
* problems) values. See also
* @ref step_36 "step-36"
* for an example.
*
* @author Baerbel Janssen, Agnieszka Miedlar, 2010, Guido Kanschat 2015, Joscha Gedicke 2016
*/
class ArpackSolver : public Subscriptor
{
public:
/**
* Declare the type for container size.
*/
typedef types::global_dof_index size_type;
/**
* An enum that lists the possible choices for which eigenvalues to compute
* in the solve() function.
*/
enum WhichEigenvalues
{
/**
* The algebraically largest eigenvalues.
*/
algebraically_largest,
/**
* The algebraically smallest eigenvalues.
*/
algebraically_smallest,
/**
* The eigenvalue with the largest magnitudes.
*/
largest_magnitude,
/**
* The eigenvalue with the smallest magnitudes.
*/
smallest_magnitude,
/**
* The eigenvalues with the largest real parts.
*/
largest_real_part,
/**
* The eigenvalues with the smallest real parts.
*/
smallest_real_part,
/**
* The eigenvalues with the largest imaginary parts.
*/
largest_imaginary_part,
/**
* The eigenvalues with the smallest imaginary parts.
*/
smallest_imaginary_part,
/**
* Compute half of the eigenvalues from the high end of the spectrum and
* the other half from the low end. If the number of requested
* eigenvectors is odd, then the extra eigenvector comes from the high end
* of the spectrum.
*/
both_ends
};
/**
* Standardized data struct to pipe additional data to the solver, should it
* be needed.
*/
struct AdditionalData
{
const unsigned int number_of_arnoldi_vectors;
const WhichEigenvalues eigenvalue_of_interest;
const bool symmetric;
AdditionalData(
const unsigned int number_of_arnoldi_vectors = 15,
const WhichEigenvalues eigenvalue_of_interest = largest_magnitude,
const bool symmetric = false);
};
/**
* Access to the object that controls convergence.
*/
SolverControl &control () const;
/**
* Constructor.
*/
ArpackSolver(SolverControl &control,
const AdditionalData &data = AdditionalData());
/**
* Set initial vector for building Krylov space.
*/
template <typename VectorType>
void set_initial_vector(const VectorType &vec);
/**
* Set shift @p sigma for shift-and-invert spectral transformation.
*
* If this function is not called, the shift is assumed to be zero.
*/
void set_shift(const std::complex<double> sigma);
/**
* Solve the generalized eigensprectrum problem $A x=\lambda B x$ by calling
* the <code>dsaupd</code> and <code>dseupd</code> or
* <code>dnaupd</code> and <code>dneupd</code> functions of ARPACK.
*
* The function returns a vector of eigenvalues of length <i>n</i> and a
* vector of eigenvectors of length <i>n</i> in the symmetric case
* and of length <i>n+1</i> in the non-symmetric case. In the symmetric case
* all eigenvectors are real. In the non-symmetric case complex eigenvalues
* always occur as complex conjugate pairs. Therefore the eigenvector for an
* eigenvalue with nonzero complex part is stored by putting the real and
* the imaginary parts in consecutive real-valued vectors. The eigenvector
* of the complex conjugate eigenvalue does not need to be stored, since it
* is just the complex conjugate of the stored eigenvector. Thus, if the last
* n-th eigenvalue has a nonzero imaginary part, Arpack needs in total n+1
* real-valued vectors to store real and imaginary parts of the eigenvectors.
*
* @param A The operator for which we want to compute eigenvalues. Actually,
* this parameter is entirely unused.
*
* @param B The inner product of the underlying space, typically the mass
* matrix. For constrained problems, it can be a partial mass matrix, like
* for instance the velocity mass matrix of a Stokes problem. Only its
* function <code>vmult()</code> is used.
*
* @param inverse This is the possibly shifted inverse that is actually used
* instead of <code>A</code>. Only its function <code>vmult()</code> is
* used.
*
* @param eigenvalues is a vector of complex numbers in which the
* eigenvalues are returned.
*
* @param eigenvectors is a <b>real</b> vector of eigenvectors, containing
* the real parts of all eigenvectors and the imaginary parts of the eigenvectors
* corresponding to complex conjugate eigenvalue pairs.
* Therefore, its length should be <i>n</i> in the symmetric case and <i>n+1</i>
* in the non-symmetric case. In the non-symmetric case the storage scheme
* leads for example to the following pattern. Suppose that the first two
* eigenvalues are real and the third and fourth are a complex conjugate
* pair. Asking for three eigenpairs results in <i>[real(v1),real(v2),
* real(v3),imag(v3)]</i>. Note that we get the same pattern if we ask for four
* eigenpairs in this example, since the fourth eigenvector is simply the
* complex conjugate of the third one.
*
* @param n_eigenvalues The purpose of this parameter is not clear, but it
* is safe to set it to the size of <code>eigenvalues</code> or greater.
* Leave it at its default zero, which will be reset to the size of
* <code>eigenvalues</code> internally.
*/
template <typename VectorType, typename MatrixType1,
typename MatrixType2, typename INVERSE>
void solve (const MatrixType1 &A,
const MatrixType2 &B,
const INVERSE &inverse,
std::vector<std::complex<double> > &eigenvalues,
std::vector<VectorType> &eigenvectors,
const unsigned int n_eigenvalues = 0);
protected:
/**
* Reference to the object that controls convergence of the iterative
* solver.
*/
SolverControl &solver_control;
/**
* Store a copy of the flags for this particular solver.
*/
const AdditionalData additional_data;
/**
* Store an initial vector
*/
bool initial_vector_provided;
std::vector<double> resid;
/**
* Real part of the shift
*/
double sigmar;
/**
* Imaginary part of the shift
*/
double sigmai;
private:
/**
* Exceptions.
*/
DeclException2 (ArpackExcInvalidNumberofEigenvalues, int, int,
<< "Number of wanted eigenvalues " << arg1
<< " is larger that the size of the matrix " << arg2);
DeclException2 (ArpackExcInvalidEigenvectorSize, int, int,
<< "Number of wanted eigenvalues " << arg1
<< " is larger that the size of eigenvectors " << arg2);
DeclException2 (ArpackExcInvalidEigenvectorSizeNonsymmetric, int, int,
<< "To store the real and complex parts of " << arg1
<< " eigenvectors in real-valued vectors, their size (currently set to " << arg2
<< ") should be greater than or equal to " << arg1+1);
DeclException2 (ArpackExcInvalidEigenvalueSize, int, int,
<< "Number of wanted eigenvalues " << arg1
<< " is larger that the size of eigenvalues " << arg2);
DeclException2 (ArpackExcInvalidNumberofArnoldiVectors, int, int,
<< "Number of Arnoldi vectors " << arg1
<< " is larger that the size of the matrix " << arg2);
DeclException2 (ArpackExcSmallNumberofArnoldiVectors, int, int,
<< "Number of Arnoldi vectors " << arg1
<< " is too small to obtain " << arg2
<< " eigenvalues");
DeclException1 (ArpackExcArpackIdo, int, << "This ido " << arg1
<< " is not supported. Check documentation of ARPACK");
DeclException1 (ArpackExcArpackMode, int, << "This mode " << arg1
<< " is not supported. Check documentation of ARPACK");
DeclException1 (ArpackExcArpackInfodsaupd, int,
<< "Error with dsaupd, info " << arg1
<< ". Check documentation of ARPACK");
DeclException1 (ArpackExcArpackInfodnaupd, int,
<< "Error with dnaupd, info " << arg1
<< ". Check documentation of ARPACK");
DeclException1 (ArpackExcArpackInfodseupd, int,
<< "Error with dseupd, info " << arg1
<< ". Check documentation of ARPACK");
DeclException1 (ArpackExcArpackInfodneupd, int,
<< "Error with dneupd, info " << arg1
<< ". Check documentation of ARPACK");
DeclException1 (ArpackExcArpackInfoMaxIt, int,
<< "Maximum number " << arg1
<< " of iterations reached.");
DeclExceptionMsg (ArpackExcArpackNoShifts,
"No shifts could be applied during implicit"
" Arnoldi update, try increasing the number of"
" Arnoldi vectors.");
};
inline
ArpackSolver::AdditionalData::
AdditionalData (const unsigned int number_of_arnoldi_vectors,
const WhichEigenvalues eigenvalue_of_interest,
const bool symmetric)
:
number_of_arnoldi_vectors(number_of_arnoldi_vectors),
eigenvalue_of_interest(eigenvalue_of_interest),
symmetric(symmetric)
{
//Check for possible options for symmetric problems
if (symmetric)
{
Assert(eigenvalue_of_interest!=largest_real_part,
ExcMessage("'largest real part' can only be used for non-symmetric problems!"));
Assert(eigenvalue_of_interest!=smallest_real_part,
ExcMessage("'smallest real part' can only be used for non-symmetric problems!"));
Assert(eigenvalue_of_interest!=largest_imaginary_part,
ExcMessage("'largest imaginary part' can only be used for non-symmetric problems!"));
Assert(eigenvalue_of_interest!=smallest_imaginary_part,
ExcMessage("'smallest imaginary part' can only be used for non-symmetric problems!"));
}
}
inline
ArpackSolver::ArpackSolver (SolverControl &control,
const AdditionalData &data)
:
solver_control (control),
additional_data (data),
initial_vector_provided(false),
sigmar(0.0),
sigmai(0.0)
{}
inline
void
ArpackSolver::set_shift(const std::complex<double> sigma)
{
sigmar = sigma.real();
sigmai = sigma.imag();
}
template <typename VectorType>
inline
void ArpackSolver::
set_initial_vector(const VectorType &vec)
{
initial_vector_provided = true;
resid.resize(vec.size());
for (size_type i = 0; i < vec.size(); ++i)
resid[i] = vec[i];
}
template <typename VectorType, typename MatrixType1,
typename MatrixType2, typename INVERSE>
inline
void ArpackSolver::solve (const MatrixType1 &/*system_matrix*/,
const MatrixType2 &mass_matrix,
const INVERSE &inverse,
std::vector<std::complex<double> > &eigenvalues,
std::vector<VectorType> &eigenvectors,
const unsigned int n_eigenvalues)
{
// Problem size
unsigned int n = eigenvectors[0].size();
// Number of eigenvalues
const unsigned int nev_const = (n_eigenvalues == 0) ? eigenvalues.size() : n_eigenvalues;
// nev for arpack, which might change by plus one during dneupd
unsigned int nev = nev_const;
// check input sizes
if (additional_data.symmetric)
{
Assert (nev <= eigenvectors.size(),
ArpackExcInvalidEigenvectorSize(nev, eigenvectors.size()));
}
else
Assert (nev+1 <= eigenvectors.size(),
ArpackExcInvalidEigenvectorSizeNonsymmetric(nev, eigenvectors.size()));
Assert (nev <= eigenvalues.size(),
ArpackExcInvalidEigenvalueSize(nev, eigenvalues.size()));
// check large enough problem size
Assert (nev < n,
ArpackExcInvalidNumberofEigenvalues(nev, n));
Assert (additional_data.number_of_arnoldi_vectors < n,
ArpackExcInvalidNumberofArnoldiVectors(
additional_data.number_of_arnoldi_vectors, n));
// check whether we have enough Arnoldi vectors
Assert (additional_data.number_of_arnoldi_vectors > 2*nev+1,
ArpackExcSmallNumberofArnoldiVectors(
additional_data.number_of_arnoldi_vectors, nev));
/* ARPACK mode for dsaupd/dnaupd, here only mode 3,
* i.e. shift-invert mode
*/
int mode = 3;
// reverse communication parameter
int ido = 0;
/**
* 'G' generalized eigenvalue problem 'I' standard eigenvalue problem
*/
char bmat[2] = "G";
/**
* Specify the eigenvalues of interest, possible parameters "LA"
* algebraically largest "SA" algebraically smallest "LM" largest magnitude
* "SM" smallest magnitude "LR" largest real part "SR" smallest real part
* "LI" largest imaginary part "SI" smallest imaginary part "BE" both ends
* of spectrum simultaneous
*/
char which[3];
switch (additional_data.eigenvalue_of_interest)
{
case algebraically_largest:
std::strcpy (which, "LA");
break;
case algebraically_smallest:
std::strcpy (which, "SA");
break;
case largest_magnitude:
std::strcpy (which, "LM");
break;
case smallest_magnitude:
std::strcpy (which, "SM");
break;
case largest_real_part:
std::strcpy (which, "LR");
break;
case smallest_real_part:
std::strcpy (which, "SR");
break;
case largest_imaginary_part:
std::strcpy (which, "LI");
break;
case smallest_imaginary_part:
std::strcpy (which, "SI");
break;
case both_ends:
std::strcpy (which, "BE");
break;
}
// tolerance for ARPACK
double tol = control().tolerance();
// if the starting vector is used it has to be in resid
if (!initial_vector_provided || resid.size() != n)
resid.resize(n, 1.);
// number of Arnoldi basis vectors specified
// in additional_data
int ncv = additional_data.number_of_arnoldi_vectors;
int ldv = n;
std::vector<double> v (ldv*ncv, 0.0);
//information to the routines
std::vector<int> iparam (11, 0);
iparam[0] = 1; // shift strategy
// maximum number of iterations
iparam[2] = control().max_steps();
/**
* Set the mode of dsaupd. 1 is exact shifting, 2 is user-supplied shifts,
* 3 is shift-invert mode, 4 is buckling mode, 5 is Cayley mode.
*/
iparam[6] = mode;
std::vector<int> ipntr (14, 0);
// work arrays for ARPACK
std::vector<double> workd (3*n, 0.);
int lworkl = additional_data.symmetric ? ncv*ncv + 8*ncv : 3*ncv*ncv+6*ncv;
std::vector<double> workl (lworkl, 0.);
//information out of the iteration
int info = 1;
while (ido != 99)
{
// call of ARPACK dsaupd/dnaupd routine
if (additional_data.symmetric)
dsaupd_(&ido, bmat, &n, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
&workd[0], &workl[0], &lworkl, &info);
else
dnaupd_(&ido, bmat, &n, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
&workd[0], &workl[0], &lworkl, &info);
if (ido == 99)
break;
switch (mode)
{
case 3:
{
switch (ido)
{
case -1:
{
VectorType src,dst,tmp;
src.reinit(eigenvectors[0]);
dst.reinit(src);
tmp.reinit(src);
for (size_type i=0; i<src.size(); ++i)
src(i) = workd[ipntr[0]-1+i];
// multiplication with mass matrix M
mass_matrix.vmult(tmp, src);
// solving linear system
inverse.vmult(dst,tmp);
for (size_type i=0; i<dst.size(); ++i)
workd[ipntr[1]-1+i] = dst(i);
}
break;
case 1:
{
VectorType src,dst,tmp, tmp2;
src.reinit(eigenvectors[0]);
dst.reinit(src);
tmp.reinit(src);
tmp2.reinit(src);
for (size_type i=0; i<src.size(); ++i)
{
src(i) = workd[ipntr[2]-1+i];
tmp(i) = workd[ipntr[0]-1+i];
}
// solving linear system
inverse.vmult(dst,src);
for (size_type i=0; i<dst.size(); ++i)
workd[ipntr[1]-1+i] = dst(i);
}
break;
case 2:
{
VectorType src,dst;
src.reinit(eigenvectors[0]);
dst.reinit(src);
for (size_type i=0; i<src.size(); ++i)
src(i) = workd[ipntr[0]-1+i];
// Multiplication with mass matrix M
mass_matrix.vmult(dst, src);
for (size_type i=0; i<dst.size(); ++i)
workd[ipntr[1]-1+i] = dst(i);
}
break;
default:
Assert (false, ArpackExcArpackIdo(ido));
break;
}
}
break;
default:
Assert (false, ArpackExcArpackMode(mode));
break;
}
}
if (info<0)
{
if (additional_data.symmetric)
{
Assert (false, ArpackExcArpackInfodsaupd(info));
}
else
Assert (false, ArpackExcArpackInfodnaupd(info));
}
else
{
/**
* 1 - compute eigenvectors, 0 - only eigenvalues
*/
int rvec = 1;
// which eigenvectors
char howmany = 'A';
std::vector<int> select (ncv, 1);
int ldz = n;
std::vector<double> eigenvalues_real (nev+1, 0.);
std::vector<double> eigenvalues_im (nev+1, 0.);
// call of ARPACK dseupd/dneupd routine
if (additional_data.symmetric)
{
std::vector<double> z (ldz*nev, 0.);
dseupd_(&rvec, &howmany, &select[0], &eigenvalues_real[0],
&z[0], &ldz, &sigmar, bmat, &n, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv,
&iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
}
else
{
std::vector<double> workev (3*ncv, 0.);
dneupd_(&rvec, &howmany, &select[0], &eigenvalues_real[0],
&eigenvalues_im[0], &v[0], &ldz, &sigmar, &sigmai,
&workev[0], bmat, &n, which, &nev, &tol,
&resid[0], &ncv, &v[0], &ldv,
&iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
}
if (info == 1)
{
Assert (false, ArpackExcArpackInfoMaxIt(control().max_steps()));
}
else if (info == 3)
{
Assert (false, ArpackExcArpackNoShifts());
}
else if (info!=0)
{
if (additional_data.symmetric)
{
Assert (false, ArpackExcArpackInfodseupd(info));
}
else
Assert (false, ArpackExcArpackInfodneupd(info));
}
for (unsigned int i=0; i<nev; ++i)
for (unsigned int j=0; j<n; ++j)
eigenvectors[i](j) = v[i*n+j];
for (unsigned int i=0; i<nev_const; ++i)
eigenvalues[i] = std::complex<double> (eigenvalues_real[i],
eigenvalues_im[i]);
}
}
inline
SolverControl &ArpackSolver::control () const
{
return solver_control;
}
DEAL_II_NAMESPACE_CLOSE
#endif
#endif
|