This file is indexed.

/usr/include/deal.II/lac/arpack_solver.h is in libdeal.ii-dev 8.5.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
// ---------------------------------------------------------------------
//
// Copyright (C) 2010 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__arpack_solver_h
#define dealii__arpack_solver_h

#include <deal.II/base/config.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/lac/solver_control.h>

#include <cstring>


#ifdef DEAL_II_WITH_ARPACK

DEAL_II_NAMESPACE_OPEN


extern "C" void dnaupd_(int *ido, char *bmat, unsigned int *n, char *which,
                        unsigned int *nev, const double *tol, double *resid, int *ncv,
                        double *v, int *ldv, int *iparam, int *ipntr,
                        double *workd, double *workl, int *lworkl,
                        int *info);

extern "C" void dsaupd_(int *ido, char *bmat, unsigned int *n, char *which,
                        unsigned int *nev, double *tol, double *resid, int *ncv,
                        double *v, int *ldv, int *iparam, int *ipntr,
                        double *workd, double *workl, int *lworkl,
                        int *info);

extern "C" void dneupd_(int *rvec, char *howmany, int *select, double *d,
                        double *di, double *z, int *ldz, double *sigmar,
                        double *sigmai, double *workev, char *bmat, unsigned int *n, char *which,
                        unsigned int *nev, double *tol, double *resid, int *ncv,
                        double *v, int *ldv, int *iparam, int *ipntr,
                        double *workd, double *workl, int *lworkl, int *info);

extern "C" void dseupd_(int *rvec, char *howmany, int *select, double *d,
                        double *z, int *ldz, double *sigmar,
                        char *bmat, unsigned int *n, char *which,
                        unsigned int *nev, double *tol, double *resid, int *ncv,
                        double *v, int *ldv, int *iparam, int *ipntr,
                        double *workd, double *workl, int *lworkl, int *info);

/**
 * Interface for using ARPACK. ARPACK is a collection of Fortran77 subroutines
 * designed to solve large scale eigenvalue problems.  Here we interface to
 * the routines <code>dnaupd</code> and <code>dneupd</code> of ARPACK.
 * If the operator is specified to be symmetric we use the symmetric interface
 * <code>dsaupd</code> and <code>dseupd</code> of ARPACK instead.  The
 * package is designed to compute a few eigenvalues and corresponding
 * eigenvectors of a general n by n matrix A. It is most appropriate for large
 * sparse matrices A.
 *
 * In this class we make use of the method applied to the generalized
 * eigenspectrum problem $(A-\lambda B)x=0$, for $x\neq0$; where $A$ is a
 * system matrix, $B$ is a mass matrix, and $\lambda, x$ are a set of
 * eigenvalues and eigenvectors respectively.
 *
 * The ArpackSolver can be used in application codes with serial objects in
 * the following way:
 * @code
 * SolverControl solver_control (1000, 1e-9);
 * ArpackSolver (solver_control);
 * system.solve (A, B, OP, lambda, x, size_of_spectrum);
 * @endcode
 * for the generalized eigenvalue problem $Ax=B\lambda x$, where the variable
 * <code>size_of_spectrum</code> tells ARPACK the number of
 * eigenvector/eigenvalue pairs to solve for. Here, <code>lambda</code> is a
 * vector that will contain the eigenvalues computed, <code>x</code> a vector
 * that will contain the eigenvectors computed, and <code>OP</code> is an
 * inverse operation for the matrix <code>A</code>. Shift and invert
 * transformation around zero is applied.
 *
 * Through the AdditionalData the user can specify some of the parameters to
 * be set.
 *
 * For further information on how the ARPACK routines <code>dsaupd</code>,
 * <code>dseupd</code>, <code>dnaupd</code> and <code>dneupd</code> work
 * and also how to set the parameters appropriately
 * please take a look into the ARPACK manual.
 *
 * @note Whenever you eliminate degrees of freedom using ConstraintMatrix, you
 * generate spurious eigenvalues and eigenvectors. If you make sure that the
 * diagonals of eliminated matrix rows are all equal to one, you get a single
 * additional eigenvalue. But beware that some functions in deal.II set these
 * diagonals to rather arbitrary (from the point of view of eigenvalue
 * problems) values. See also
 * @ref step_36 "step-36"
 * for an example.
 *
 * @author Baerbel Janssen, Agnieszka Miedlar, 2010, Guido Kanschat 2015, Joscha Gedicke 2016
 */
class ArpackSolver : public Subscriptor
{
public:
  /**
   * Declare the type for container size.
   */
  typedef types::global_dof_index size_type;


  /**
   * An enum that lists the possible choices for which eigenvalues to compute
   * in the solve() function.
   */
  enum WhichEigenvalues
  {
    /**
     * The algebraically largest eigenvalues.
     */
    algebraically_largest,
    /**
     * The algebraically smallest eigenvalues.
     */
    algebraically_smallest,
    /**
     * The eigenvalue with the largest magnitudes.
     */
    largest_magnitude,
    /**
     * The eigenvalue with the smallest magnitudes.
     */
    smallest_magnitude,
    /**
     * The eigenvalues with the largest real parts.
     */
    largest_real_part,
    /**
     * The eigenvalues with the smallest real parts.
     */
    smallest_real_part,
    /**
     * The eigenvalues with the largest imaginary parts.
     */
    largest_imaginary_part,
    /**
     * The eigenvalues with the smallest imaginary parts.
     */
    smallest_imaginary_part,
    /**
     * Compute half of the eigenvalues from the high end of the spectrum and
     * the other half from the low end. If the number of requested
     * eigenvectors is odd, then the extra eigenvector comes from the high end
     * of the spectrum.
     */
    both_ends
  };

  /**
   * Standardized data struct to pipe additional data to the solver, should it
   * be needed.
   */
  struct AdditionalData
  {
    const unsigned int number_of_arnoldi_vectors;
    const WhichEigenvalues eigenvalue_of_interest;
    const bool symmetric;
    AdditionalData(
      const unsigned int number_of_arnoldi_vectors = 15,
      const WhichEigenvalues eigenvalue_of_interest = largest_magnitude,
      const bool symmetric = false);
  };

  /**
   * Access to the object that controls convergence.
   */
  SolverControl &control () const;

  /**
   * Constructor.
   */
  ArpackSolver(SolverControl &control,
               const AdditionalData &data = AdditionalData());

  /**
   * Set initial vector for building Krylov space.
   */
  template <typename VectorType>
  void set_initial_vector(const VectorType &vec);

  /**
   * Set shift @p sigma for shift-and-invert spectral transformation.
   *
   * If this function is not called, the shift is assumed to be zero.
   */
  void set_shift(const std::complex<double> sigma);

  /**
   * Solve the generalized eigensprectrum problem $A x=\lambda B x$ by calling
   * the <code>dsaupd</code> and <code>dseupd</code> or
   * <code>dnaupd</code> and <code>dneupd</code> functions of ARPACK.
   *
   * The function returns a vector of eigenvalues of length <i>n</i> and a
   * vector of eigenvectors of length <i>n</i> in the symmetric case
   * and of length <i>n+1</i> in the non-symmetric case. In the symmetric case
   * all eigenvectors are real. In the non-symmetric case complex eigenvalues
   * always occur as complex conjugate pairs. Therefore the eigenvector for an
   * eigenvalue with nonzero complex part is stored by putting the real and
   * the imaginary parts in consecutive real-valued vectors. The eigenvector
   * of the complex conjugate eigenvalue does not need to be stored, since it
   * is just the complex conjugate of the stored eigenvector. Thus, if the last
   * n-th eigenvalue has a nonzero imaginary part, Arpack needs in total n+1
   * real-valued vectors to store real and imaginary parts of the eigenvectors.
   *
   * @param A The operator for which we want to compute eigenvalues. Actually,
   * this parameter is entirely unused.
   *
   * @param B The inner product of the underlying space, typically the mass
   * matrix. For constrained problems, it can be a partial mass matrix, like
   * for instance the velocity mass matrix of a Stokes problem. Only its
   * function <code>vmult()</code> is used.
   *
   * @param inverse This is the possibly shifted inverse that is actually used
   * instead of <code>A</code>. Only its function <code>vmult()</code> is
   * used.
   *
   * @param eigenvalues is a vector of complex numbers in which the
   * eigenvalues are returned.
   *
   * @param eigenvectors is a <b>real</b> vector of eigenvectors, containing
   * the real parts of all eigenvectors and the imaginary parts of the eigenvectors
   * corresponding to complex conjugate eigenvalue pairs.
   * Therefore, its length should be <i>n</i> in the symmetric case and <i>n+1</i>
   * in the non-symmetric case. In the non-symmetric case the storage scheme
   * leads for example to the following pattern. Suppose that the first two
   * eigenvalues are real and the third and fourth are a complex conjugate
   * pair. Asking for three eigenpairs results in <i>[real(v1),real(v2),
   * real(v3),imag(v3)]</i>. Note that we get the same pattern if we ask for four
   * eigenpairs in this example, since the fourth eigenvector is simply the
   * complex conjugate of the third one.
   *
   * @param n_eigenvalues The purpose of this parameter is not clear, but it
   * is safe to set it to the size of <code>eigenvalues</code> or greater.
   * Leave it at its default zero, which will be reset to the size of
   * <code>eigenvalues</code> internally.
   */
  template <typename VectorType, typename MatrixType1,
            typename MatrixType2, typename INVERSE>
  void solve (const MatrixType1                  &A,
              const MatrixType2                  &B,
              const INVERSE                      &inverse,
              std::vector<std::complex<double> > &eigenvalues,
              std::vector<VectorType>            &eigenvectors,
              const unsigned int                  n_eigenvalues = 0);

protected:

  /**
   * Reference to the object that controls convergence of the iterative
   * solver.
   */
  SolverControl &solver_control;

  /**
   * Store a copy of the flags for this particular solver.
   */
  const AdditionalData additional_data;

  /**
   * Store an initial vector
   */
  bool initial_vector_provided;
  std::vector<double> resid;

  /**
   * Real part of the shift
   */
  double sigmar;

  /**
   * Imaginary part of the shift
   */
  double sigmai;


private:

  /**
   * Exceptions.
   */
  DeclException2 (ArpackExcInvalidNumberofEigenvalues, int, int,
                  << "Number of wanted eigenvalues " << arg1
                  << " is larger that the size of the matrix " << arg2);

  DeclException2 (ArpackExcInvalidEigenvectorSize, int, int,
                  << "Number of wanted eigenvalues " << arg1
                  << " is larger that the size of eigenvectors " << arg2);

  DeclException2 (ArpackExcInvalidEigenvectorSizeNonsymmetric, int, int,
                  << "To store the real and complex parts of " << arg1
                  << " eigenvectors in real-valued vectors, their size (currently set to " << arg2
                  << ") should be greater than or equal to " << arg1+1);

  DeclException2 (ArpackExcInvalidEigenvalueSize, int, int,
                  << "Number of wanted eigenvalues " << arg1
                  << " is larger that the size of eigenvalues " << arg2);

  DeclException2 (ArpackExcInvalidNumberofArnoldiVectors, int, int,
                  << "Number of Arnoldi vectors " << arg1
                  << " is larger that the size of the matrix " << arg2);

  DeclException2 (ArpackExcSmallNumberofArnoldiVectors, int, int,
                  << "Number of Arnoldi vectors " << arg1
                  << " is too small to obtain " << arg2
                  << " eigenvalues");

  DeclException1 (ArpackExcArpackIdo, int, << "This ido " << arg1
                  << " is not supported. Check documentation of ARPACK");

  DeclException1 (ArpackExcArpackMode, int, << "This mode " << arg1
                  << " is not supported. Check documentation of ARPACK");

  DeclException1 (ArpackExcArpackInfodsaupd, int,
                  << "Error with dsaupd, info " << arg1
                  << ". Check documentation of ARPACK");

  DeclException1 (ArpackExcArpackInfodnaupd, int,
                  << "Error with dnaupd, info " << arg1
                  << ". Check documentation of ARPACK");

  DeclException1 (ArpackExcArpackInfodseupd, int,
                  << "Error with dseupd, info " << arg1
                  << ". Check documentation of ARPACK");

  DeclException1 (ArpackExcArpackInfodneupd, int,
                  << "Error with dneupd, info " << arg1
                  << ". Check documentation of ARPACK");

  DeclException1 (ArpackExcArpackInfoMaxIt, int,
                  << "Maximum number " << arg1
                  << " of iterations reached.");

  DeclExceptionMsg (ArpackExcArpackNoShifts,
                    "No shifts could be applied during implicit"
                    " Arnoldi update, try increasing the number of"
                    " Arnoldi vectors.");
};


inline
ArpackSolver::AdditionalData::
AdditionalData (const unsigned int number_of_arnoldi_vectors,
                const WhichEigenvalues eigenvalue_of_interest,
                const bool symmetric)
  :
  number_of_arnoldi_vectors(number_of_arnoldi_vectors),
  eigenvalue_of_interest(eigenvalue_of_interest),
  symmetric(symmetric)
{
  //Check for possible options for symmetric problems
  if (symmetric)
    {
      Assert(eigenvalue_of_interest!=largest_real_part,
             ExcMessage("'largest real part' can only be used for non-symmetric problems!"));
      Assert(eigenvalue_of_interest!=smallest_real_part,
             ExcMessage("'smallest real part' can only be used for non-symmetric problems!"));
      Assert(eigenvalue_of_interest!=largest_imaginary_part,
             ExcMessage("'largest imaginary part' can only be used for non-symmetric problems!"));
      Assert(eigenvalue_of_interest!=smallest_imaginary_part,
             ExcMessage("'smallest imaginary part' can only be used for non-symmetric problems!"));
    }
}


inline
ArpackSolver::ArpackSolver (SolverControl &control,
                            const AdditionalData &data)
  :
  solver_control (control),
  additional_data (data),
  initial_vector_provided(false),
  sigmar(0.0),
  sigmai(0.0)
{}




inline
void
ArpackSolver::set_shift(const std::complex<double> sigma)
{
  sigmar = sigma.real();
  sigmai = sigma.imag();
}



template <typename VectorType>
inline
void ArpackSolver::
set_initial_vector(const VectorType &vec)
{
  initial_vector_provided = true;
  resid.resize(vec.size());
  for (size_type i = 0; i < vec.size(); ++i)
    resid[i] = vec[i];
}


template <typename VectorType, typename MatrixType1,
          typename MatrixType2, typename INVERSE>
inline
void ArpackSolver::solve (const MatrixType1                  &/*system_matrix*/,
                          const MatrixType2                  &mass_matrix,
                          const INVERSE                      &inverse,
                          std::vector<std::complex<double> > &eigenvalues,
                          std::vector<VectorType>            &eigenvectors,
                          const unsigned int                  n_eigenvalues)
{
  // Problem size
  unsigned int n = eigenvectors[0].size();

  // Number of eigenvalues
  const unsigned int nev_const = (n_eigenvalues == 0) ? eigenvalues.size() : n_eigenvalues;
  // nev for arpack, which might change by plus one during dneupd
  unsigned int nev = nev_const;

  // check input sizes
  if (additional_data.symmetric)
    {
      Assert (nev <= eigenvectors.size(),
              ArpackExcInvalidEigenvectorSize(nev, eigenvectors.size()));
    }
  else
    Assert (nev+1 <= eigenvectors.size(),
            ArpackExcInvalidEigenvectorSizeNonsymmetric(nev, eigenvectors.size()));

  Assert (nev <= eigenvalues.size(),
          ArpackExcInvalidEigenvalueSize(nev, eigenvalues.size()));

  // check large enough problem size
  Assert (nev < n,
          ArpackExcInvalidNumberofEigenvalues(nev, n));

  Assert (additional_data.number_of_arnoldi_vectors < n,
          ArpackExcInvalidNumberofArnoldiVectors(
            additional_data.number_of_arnoldi_vectors, n));

  // check whether we have enough Arnoldi vectors
  Assert (additional_data.number_of_arnoldi_vectors > 2*nev+1,
          ArpackExcSmallNumberofArnoldiVectors(
            additional_data.number_of_arnoldi_vectors, nev));

  /* ARPACK mode for dsaupd/dnaupd, here only mode 3,
   * i.e. shift-invert mode
   */
  int mode = 3;

  // reverse communication parameter
  int ido = 0;

  /**
   * 'G' generalized eigenvalue problem 'I' standard eigenvalue problem
   */
  char bmat[2] = "G";

  /**
   * Specify the eigenvalues of interest, possible parameters "LA"
   * algebraically largest "SA" algebraically smallest "LM" largest magnitude
   * "SM" smallest magnitude "LR" largest real part "SR" smallest real part
   * "LI" largest imaginary part "SI" smallest imaginary part "BE" both ends
   * of spectrum simultaneous
   */
  char which[3];
  switch (additional_data.eigenvalue_of_interest)
    {
    case algebraically_largest:
      std::strcpy (which, "LA");
      break;
    case algebraically_smallest:
      std::strcpy (which, "SA");
      break;
    case largest_magnitude:
      std::strcpy (which, "LM");
      break;
    case smallest_magnitude:
      std::strcpy (which, "SM");
      break;
    case largest_real_part:
      std::strcpy (which, "LR");
      break;
    case smallest_real_part:
      std::strcpy (which, "SR");
      break;
    case largest_imaginary_part:
      std::strcpy (which, "LI");
      break;
    case smallest_imaginary_part:
      std::strcpy (which, "SI");
      break;
    case both_ends:
      std::strcpy (which, "BE");
      break;
    }

  // tolerance for ARPACK
  double tol = control().tolerance();

  // if the starting vector is used it has to be in resid
  if (!initial_vector_provided || resid.size() != n)
    resid.resize(n, 1.);

  // number of Arnoldi basis vectors specified
  // in additional_data
  int ncv = additional_data.number_of_arnoldi_vectors;

  int ldv = n;
  std::vector<double> v (ldv*ncv, 0.0);

  //information to the routines
  std::vector<int> iparam (11, 0);

  iparam[0] = 1;        // shift strategy

  // maximum number of iterations
  iparam[2] = control().max_steps();

  /**
   * Set the mode of dsaupd. 1 is exact shifting, 2 is user-supplied shifts,
   * 3 is shift-invert mode, 4 is buckling mode, 5 is Cayley mode.
   */

  iparam[6] = mode;
  std::vector<int> ipntr (14, 0);

  // work arrays for ARPACK
  std::vector<double> workd (3*n, 0.);
  int lworkl = additional_data.symmetric ? ncv*ncv + 8*ncv : 3*ncv*ncv+6*ncv;
  std::vector<double> workl (lworkl, 0.);

  //information out of the iteration
  int info = 1;

  while (ido != 99)
    {
      // call of ARPACK dsaupd/dnaupd routine
      if (additional_data.symmetric)
        dsaupd_(&ido, bmat, &n, which, &nev, &tol,
                &resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
                &workd[0], &workl[0], &lworkl, &info);
      else
        dnaupd_(&ido, bmat, &n, which, &nev, &tol,
                &resid[0], &ncv, &v[0], &ldv, &iparam[0], &ipntr[0],
                &workd[0], &workl[0], &lworkl, &info);

      if (ido == 99)
        break;

      switch (mode)
        {
        case 3:
        {
          switch (ido)
            {
            case -1:
            {

              VectorType src,dst,tmp;
              src.reinit(eigenvectors[0]);
              dst.reinit(src);
              tmp.reinit(src);


              for (size_type i=0; i<src.size(); ++i)
                src(i) = workd[ipntr[0]-1+i];

              // multiplication with mass matrix M
              mass_matrix.vmult(tmp, src);
              // solving linear system
              inverse.vmult(dst,tmp);

              for (size_type i=0; i<dst.size(); ++i)
                workd[ipntr[1]-1+i] = dst(i);
            }
            break;

            case  1:
            {

              VectorType src,dst,tmp, tmp2;
              src.reinit(eigenvectors[0]);
              dst.reinit(src);
              tmp.reinit(src);
              tmp2.reinit(src);

              for (size_type i=0; i<src.size(); ++i)
                {
                  src(i) = workd[ipntr[2]-1+i];
                  tmp(i) = workd[ipntr[0]-1+i];
                }
              // solving linear system
              inverse.vmult(dst,src);

              for (size_type i=0; i<dst.size(); ++i)
                workd[ipntr[1]-1+i] = dst(i);
            }
            break;

            case  2:
            {

              VectorType src,dst;
              src.reinit(eigenvectors[0]);
              dst.reinit(src);

              for (size_type i=0; i<src.size(); ++i)
                src(i) = workd[ipntr[0]-1+i];

              // Multiplication with mass matrix M
              mass_matrix.vmult(dst, src);

              for (size_type i=0; i<dst.size(); ++i)
                workd[ipntr[1]-1+i] = dst(i);

            }
            break;

            default:
              Assert (false, ArpackExcArpackIdo(ido));
              break;
            }
        }
        break;
        default:
          Assert (false, ArpackExcArpackMode(mode));
          break;
        }
    }

  if (info<0)
    {
      if (additional_data.symmetric)
        {
          Assert (false, ArpackExcArpackInfodsaupd(info));
        }
      else
        Assert (false, ArpackExcArpackInfodnaupd(info));
    }
  else
    {
      /**
       * 1 - compute eigenvectors, 0 - only eigenvalues
       */
      int rvec = 1;

      // which eigenvectors
      char howmany = 'A';

      std::vector<int> select (ncv, 1);

      int ldz = n;

      std::vector<double> eigenvalues_real (nev+1, 0.);
      std::vector<double> eigenvalues_im (nev+1, 0.);

      // call of ARPACK dseupd/dneupd routine
      if (additional_data.symmetric)
        {
          std::vector<double> z (ldz*nev, 0.);
          dseupd_(&rvec, &howmany, &select[0], &eigenvalues_real[0],
                  &z[0], &ldz, &sigmar, bmat, &n, which, &nev, &tol,
                  &resid[0], &ncv, &v[0], &ldv,
                  &iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
        }
      else
        {
          std::vector<double> workev (3*ncv, 0.);
          dneupd_(&rvec, &howmany, &select[0], &eigenvalues_real[0],
                  &eigenvalues_im[0], &v[0], &ldz, &sigmar, &sigmai,
                  &workev[0], bmat, &n, which, &nev, &tol,
                  &resid[0], &ncv, &v[0], &ldv,
                  &iparam[0], &ipntr[0], &workd[0], &workl[0], &lworkl, &info);
        }

      if (info == 1)
        {
          Assert (false, ArpackExcArpackInfoMaxIt(control().max_steps()));
        }
      else if (info == 3)
        {
          Assert (false, ArpackExcArpackNoShifts());
        }
      else if (info!=0)
        {
          if (additional_data.symmetric)
            {
              Assert (false, ArpackExcArpackInfodseupd(info));
            }
          else
            Assert (false, ArpackExcArpackInfodneupd(info));
        }

      for (unsigned int i=0; i<nev; ++i)
        for (unsigned int j=0; j<n; ++j)
          eigenvectors[i](j) = v[i*n+j];

      for (unsigned int i=0; i<nev_const; ++i)
        eigenvalues[i] = std::complex<double> (eigenvalues_real[i],
                                               eigenvalues_im[i]);
    }
}


inline
SolverControl &ArpackSolver::control () const
{
  return solver_control;
}

DEAL_II_NAMESPACE_CLOSE


#endif
#endif