/usr/include/deal.II/grid/manifold_lib.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 | // ---------------------------------------------------------------------
//
// Copyright (C) 1999 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__manifold_lib_h
#define dealii__manifold_lib_h
#include <deal.II/base/config.h>
#include <deal.II/grid/manifold.h>
#include <deal.II/base/function.h>
#include <deal.II/base/function_parser.h>
DEAL_II_NAMESPACE_OPEN
/**
* Manifold description for a polar coordinate system.
*
* You can use this Manifold object to describe any sphere, circle,
* hypersphere or hyperdisc in two or three dimensions, both as a
* co-dimension one manifold descriptor or as co-dimension zero
* manifold descriptor, provided that the north and south poles (in
* three dimensions) and the center (in both two and three dimensions)
* are excluded from the Manifold (as they are singular points of the
* polar change of coordinates).
*
* The two template arguments match the meaning of the two template arguments
* in Triangulation<dim, spacedim>, however this Manifold can be used to
* describe both thin and thick objects, and the behavior is identical when
* dim <= spacedim, i.e., the functionality of PolarManifold<2,3> is
* identical to PolarManifold<3,3>.
*
* This class works by transforming points to polar coordinates (in
* both two and three dimensions), taking the average in that
* coordinate system, and then transforming back the point to
* Cartesian coordinates. In order for this manifold to work
* correctly, it cannot be attached to cells containing the center of
* the coordinate system or the north and south poles in three
* dimensions. These points are singular points of the coordinate
* transformation, and taking averages around these points does not
* make any sense.
*
* @ingroup manifold
*
* @author Luca Heltai, Mauro Bardelloni, 2014-2016
*/
template <int dim, int spacedim = dim>
class PolarManifold : public ChartManifold<dim, spacedim, spacedim>
{
public:
/**
* The Constructor takes the center of the spherical coordinates system.
* This class uses the pull_back and push_forward mechanism to transform
* from Cartesian to spherical coordinate systems, taking into account the
* periodicity of base Manifold in two dimensions, while in three dimensions
* it takes the middle point, and project it along the radius using the
* average radius of the surrounding points.
*/
PolarManifold(const Point<spacedim> center = Point<spacedim>());
/**
* Pull back the given point from the Euclidean space. Will return the polar
* coordinates associated with the point @p space_point. Only used when
* spacedim = 2.
*/
virtual Point<spacedim>
pull_back(const Point<spacedim> &space_point) const;
/**
* Given a point in the spherical coordinate system, this method returns the
* Euclidean coordinates associated to the polar coordinates @p chart_point.
* Only used when spacedim = 3.
*/
virtual Point<spacedim>
push_forward(const Point<spacedim> &chart_point) const;
/**
* Given a point in the spacedim dimensional Euclidean space, this
* method returns the derivatives of the function $F$ that maps from
* the polar coordinate system to the Euclidean coordinate
* system. In other words, it is a matrix of size
* $\text{spacedim}\times\text{spacedim}$.
*
* This function is used in the computations required by the
* get_tangent_vector() function.
*
* Refer to the general documentation of this class for more information.
*/
virtual
DerivativeForm<1,spacedim,spacedim>
push_forward_gradient(const Point<spacedim> &chart_point) const;
/**
* The center of the spherical coordinate system.
*/
const Point<spacedim> center;
private:
/**
* Helper function which returns the periodicity associated with this
* coordinate system, according to dim, chartdim, and spacedim.
*/
static Tensor<1,spacedim> get_periodicity();
};
/**
* Manifold description for a spherical space coordinate system.
*
* You can use this Manifold object to describe any sphere, circle,
* hypersphere or hyperdisc in two or three dimensions. This manifold
* can be used as a co-dimension one manifold descriptor of a
* spherical surface embedded in a higher dimensional space, or as a
* co-dimension zero manifold descriptor for a body with positive
* volume, provided that the center of the spherical space is excluded
* from the domain.
*
* The two template arguments match the meaning of the two template arguments
* in Triangulation<dim, spacedim>, however this Manifold can be used to
* describe both thin and thick objects, and the behavior is identical when
* dim <= spacedim, i.e., the functionality of SphericalManifold<2,3> is
* identical to SphericalManifold<3,3>.
*
* While PolarManifold reflects the usual notion of polar coordinates,
* it may not be suitable for domains that contain either the north or
* south poles. Consider for instance the pair of points
* $x_1=(1,\pi/3,0)$ and $x_2=(1,\pi/3,\pi)$ in polar
* coordinates (lying on the surface of a sphere with radius one, on
* a parallel at at height $\pi/3$). In this case connecting the points
* with a straight line in polar coordinates would take the long road
* around the globe, without passing through the north pole.
*
* These two points would be connented (using a PolarManifold) by the curve
* @f{align*}{
* s: [0,1] & \rightarrow & \mathbb S^3 \\
* t & \mapsto & (1,\pi/3,0) + (0,0,t\pi)
* @f}
* This curve is not a geodesic on the sphere, and it is not how we
* would connect those two points. A better curve, would be the one
* passing through the North pole:
* @f[
* s(t) = x_1 \cos(\alpha(t)) + \kappa \times x_1 \sin(\alpha(t)) +
* \kappa ( \kappa \cdot x_1) (1-\cos(\alpha(t))).
* @f]
* where $\kappa = \frac{x_1 \times x_2}{\Vert x_1 \times x_2 \Vert}$
* and $\alpha(t) = t \cdot \arccos(x_1 \cdot x_2)$ for $t\in[0,1]$.
* Indeed, this is a geodesic, and it is the natural choice when
* connecting points on the surface of the sphere. In the examples above,
* the PolarManifold class implements the first way of connecting two
* points on the surface of a sphere, while SphericalManifold implements
* the second way, i.e., if the codimension of the Manifold is one,
* than this Manifold connects points using geodesics. In all other cases
* it is a continuus extension of the codimension one case.
*
* In particular, this class implements a Manifold that joins any two
* points in space by first projecting them onto the surface of a
* sphere with unit radius, then connecting them with a geodesic, and
* finally rescaling the final radius so that the resulting one is the
* weighted average of the starting radii. This Manifold is identical
* to PolarManifold in dimension two, while for dimension three it
* returns points that are more uniformly distributed on the sphere,
* and it is invariant with respect to rotations of the coordinate
* system, therefore avoiding the problems that PolarManifold has at
* the poles. Notice, in particular, that computing tangent vectors at
* the poles with a PolarManifold is not well defined, while it is
* perfectly fine with this class.
*
* For mathematical reasons, it is impossible to construct a unique
* map of a sphere using only geodesic curves, and therefore, using
* this class with MappingManifold is discouraged. If you use this
* Manifold to describe the geometry of a sphere, you should use
* MappingQ as the underlying mapping, and not MappingManifold.
*
* This Manifold can be used *only* on geometries where a ball with
* finite radius is removed from the center. Indeed, the center is a
* singular point for this manifold, and if you try to connect two
* points across the center, they would travel on spherical
* coordinates, avoiding the center.
*
* The ideal geometry for this Manifold is an HyperShell. If you plan
* to use this Manifold on a HyperBall, you have to make sure you do
* not attach this Manifold to the cell containing the center.
*
* @ingroup manifold
*
* @author Mauro Bardelloni, Luca Heltai, 2016
*/
template <int dim, int spacedim = dim>
class SphericalManifold : public Manifold<dim, spacedim>
{
public:
/**
* The Constructor takes the center of the spherical coordinates.
*/
SphericalManifold(const Point<spacedim> center = Point<spacedim>());
/**
* Given any two points in space, first project them on the surface
* of a sphere with unit radius, then connect them with a geodesic
* and find the intermediate point, and finally rescale the final
* radius so that the resulting one is the convex combination of the
* starting radii.
*/
virtual
Point<spacedim>
get_intermediate_point(const Point<spacedim> &p1,
const Point<spacedim> &p2,
const double w) const;
/**
* Compute the derivative of the get_intermediate_point() function
* with parameter w equal to zero.
*/
virtual
Tensor<1,spacedim>
get_tangent_vector (const Point<spacedim> &x1,
const Point<spacedim> &x2) const;
/**
* Return a point on the spherical manifold which is intermediate
* with respect to the surrounding points.
*
* @deprecated Use the other function that takes points and weights separately instead.
*/
virtual
Point<spacedim>
get_new_point(const dealii::Quadrature<spacedim> &quadrature) const DEAL_II_DEPRECATED;
/**
* Return a point on the spherical manifold which is intermediate
* with respect to the surrounding points.
*/
virtual
Point<spacedim>
get_new_point (const std::vector<Point<spacedim> > &vertices,
const std::vector<double> &weights) const;
/**
* The center of the spherical coordinate system.
*/
const Point<spacedim> center;
};
/**
* Cylindrical Manifold description. In three dimensions, points are
* transformed using a cylindrical coordinate system along the <tt>x-</tt>,
* <tt>y-</tt> or <tt>z</tt>-axis (when using the first constructor of this
* class), or an arbitrarily oriented cylinder described by the direction of
* its axis and a point located on the axis.
*
* This class was developed to be used in conjunction with the @p cylinder or
* @p cylinder_shell functions of GridGenerator. This function will throw an
* exception whenever spacedim is not equal to three.
*
* @ingroup manifold
*
* @author Luca Heltai, 2014
*/
template <int dim, int spacedim = dim>
class CylindricalManifold : public Manifold<dim,spacedim>
{
public:
/**
* Constructor. Using default values for the constructor arguments yields a
* cylinder along the x-axis (<tt>axis=0</tt>). Choose <tt>axis=1</tt> or
* <tt>axis=2</tt> for a tube along the y- or z-axis, respectively. The
* tolerance value is used to determine if a point is on the axis.
*/
CylindricalManifold (const unsigned int axis = 0,
const double tolerance = 1e-10);
/**
* Constructor. If constructed with this constructor, the manifold described
* is a cylinder with an axis that points in direction #direction and goes
* through the given #point_on_axis. The direction may be arbitrarily
* scaled, and the given point may be any point on the axis. The tolerance
* value is used to determine if a point is on the axis.
*/
CylindricalManifold (const Point<spacedim> &direction,
const Point<spacedim> &point_on_axis,
const double tolerance = 1e-10);
/**
* Compute new points on the CylindricalManifold. See the documentation of
* the base class for a detailed description of what this function does.
*/
virtual Point<spacedim>
get_new_point(const Quadrature<spacedim> &quad) const DEAL_II_DEPRECATED;
/**
* Compute new points on the CylindricalManifold. See the documentation of
* the base class for a detailed description of what this function does.
*/
virtual Point<spacedim>
get_new_point(const std::vector<Point<spacedim> > &surrounding_points,
const std::vector<double> &weights) const;
protected:
/**
* The direction vector of the axis.
*/
const Point<spacedim> direction;
/**
* An arbitrary point on the axis.
*/
const Point<spacedim> point_on_axis;
private:
/**
* Helper FlatManifold to compute tentative midpoints.
*/
FlatManifold<dim,spacedim> flat_manifold;
/**
* Relative tolerance to measure zero distances.
*/
double tolerance;
};
/**
* Manifold description derived from ChartManifold, based on explicit
* Function<spacedim> and Function<chartdim> objects describing the
* push_forward() and pull_back() functions.
*
* You can use this Manifold object to describe any arbitrary shape domain, as
* long as you can express it in terms of an invertible map, for which you
* provide both the forward expression, and the inverse expression.
*
* In debug mode, a check is performed to verify that the transformations are
* actually one the inverse of the other.
*
* @ingroup manifold
*
* @author Luca Heltai, 2014
*/
template <int dim, int spacedim=dim, int chartdim=dim>
class FunctionManifold : public ChartManifold<dim, spacedim, chartdim>
{
public:
/**
* Explicit functions constructor. Takes a push_forward function of spacedim
* components, and a pull_back function of @p chartdim components. See the
* documentation of the base class ChartManifold for the meaning of the
* optional @p periodicity argument.
*
* The tolerance argument is used in debug mode to actually check that the
* two functions are one the inverse of the other.
*/
FunctionManifold(const Function<chartdim> &push_forward_function,
const Function<spacedim> &pull_back_function,
const Tensor<1,chartdim> &periodicity=Tensor<1,chartdim>(),
const double tolerance=1e-10);
/**
* Expressions constructor. Takes the expressions of the push_forward
* function of spacedim components, and of the pull_back function of @p
* chartdim components. See the documentation of the base class
* ChartManifold for the meaning of the optional @p periodicity argument.
*
* The strings should be the readable by the default constructor of the
* FunctionParser classes. You can specify custom variable expressions with
* the last two optional arguments. If you don't, the default names are
* used, i.e., "x,y,z".
*
* The tolerance argument is used in debug mode to actually check that the
* two functions are one the inverse of the other.
*/
FunctionManifold(const std::string push_forward_expression,
const std::string pull_back_expression,
const Tensor<1,chartdim> &periodicity=Tensor<1,chartdim>(),
const typename FunctionParser<spacedim>::ConstMap = typename FunctionParser<spacedim>::ConstMap(),
const std::string chart_vars=FunctionParser<chartdim>::default_variable_names(),
const std::string space_vars=FunctionParser<spacedim>::default_variable_names(),
const double tolerance=1e-10,
const double h=1e-8);
/**
* If needed, we delete the pointers we own.
*/
~FunctionManifold();
/**
* Given a point in the @p chartdim coordinate system, uses the
* push_forward_function to compute the push_forward of points in @p
* chartdim space dimensions to @p spacedim space dimensions.
*/
virtual Point<spacedim>
push_forward(const Point<chartdim> &chart_point) const;
/**
* Given a point in the chartdim dimensional Euclidean space, this
* method returns the derivatives of the function $F$ that maps from
* the sub_manifold coordinate system to the Euclidean coordinate
* system. In other words, it is a matrix of size
* $\text{spacedim}\times\text{chartdim}$.
*
* This function is used in the computations required by the
* get_tangent_vector() function. The default implementation calls
* the get_gradient() method of the
* FunctionManifold::push_forward_function() member class. If you
* construct this object using the constructor that takes two string
* expression, then the default implementation of this method uses a
* finite difference scheme to compute the gradients(see the
* AutoDerivativeFunction() class for details), and you can specify
* the size of the spatial step size at construction time with the
* @p h parameter.
*
* Refer to the general documentation of this class for more information.
*/
virtual
DerivativeForm<1,chartdim,spacedim>
push_forward_gradient(const Point<chartdim> &chart_point) const;
/**
* Given a point in the spacedim coordinate system, uses the
* pull_back_function to compute the pull_back of points in @p spacedim
* space dimensions to @p chartdim space dimensions.
*/
virtual Point<chartdim>
pull_back(const Point<spacedim> &space_point) const;
private:
/**
* Constants for the FunctionParser classes.
*/
const typename FunctionParser<spacedim>::ConstMap const_map;
/**
* Pointer to the push_forward function.
*/
SmartPointer<const Function<chartdim>,
FunctionManifold<dim,spacedim,chartdim> > push_forward_function;
/**
* Pointer to the pull_back function.
*/
SmartPointer<const Function<spacedim>,
FunctionManifold<dim,spacedim,chartdim> > pull_back_function;
/**
* Relative tolerance. In debug mode, we check that the two functions
* provided at construction time are actually one the inverse of the other.
* This value is used as relative tolerance in this check.
*/
const double tolerance;
/**
* Check ownership of the smart pointers. Indicates whether this class is
* the owner of the objects pointed to by the previous two member variables.
* This value is set in the constructor of the class. If @p true, then the
* destructor will delete the function objects pointed to be the two
* pointers.
*/
const bool owns_pointers;
};
/**
* Manifold description for the surface of a Torus in three dimensions. The
* Torus is assumed to be in the x-z plane. The reference coordinate system
* is given by the angle $phi$ around the y axis, the angle $theta$ around
* the centerline of the torus, and the distance to the centerline $w$
* (between 0 and 1).
*
* This class was developed to be used in conjunction with
* GridGenerator::torus.
*
* @ingroup manifold
*
* @author Timo Heister, 2016
*/
template <int dim>
class TorusManifold : public ChartManifold<dim,3,3>
{
public:
static const int chartdim = 3;
static const int spacedim = 3;
/**
* Constructor. Specify the radius of the centerline @p R and the radius
* of the torus itself (@p r). The variables have the same meaning as
* the parameters in GridGenerator::torus().
*/
TorusManifold (const double R, const double r);
/**
* Pull back operation.
*/
virtual Point<3>
pull_back(const Point<3> &p) const;
/**
* Push forward operation.
*/
virtual Point<3>
push_forward(const Point<3> &chart_point) const;
/**
* Gradient.
*/
virtual
DerivativeForm<1,3,3>
push_forward_gradient(const Point<3> &chart_point) const;
private:
double r, R;
};
DEAL_II_NAMESPACE_CLOSE
#endif
|