/usr/include/deal.II/fe/fe_tools.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 | // ---------------------------------------------------------------------
//
// Copyright (C) 2000 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__fe_tools_H
#define dealii__fe_tools_H
#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/geometry_info.h>
#include <deal.II/base/tensor.h>
#include <deal.II/base/symmetric_tensor.h>
#include <deal.II/distributed/tria.h>
#include <deal.II/fe/component_mask.h>
#include <deal.II/lac/parallel_vector.h>
#include <vector>
#include <string>
DEAL_II_NAMESPACE_OPEN
template <typename number> class FullMatrix;
template <int dim> class Quadrature;
template <int dim, int spacedim> class FiniteElement;
template <int dim, int spacedim> class DoFHandler;
template <int dim> class FiniteElementData;
class ConstraintMatrix;
/*!@addtogroup feall */
/*@{*/
/**
* This namespace offers interpolations and extrapolations of discrete
* functions of one @p FiniteElement @p fe1 to another @p FiniteElement @p
* fe2.
*
* It also provides the local interpolation matrices that interpolate on each
* cell. Furthermore it provides the difference matrix $id-I_h$ that is needed
* for evaluating $(id-I_h)z$ for e.g. the dual solution $z$.
*
* For more information about the <tt>spacedim</tt> template parameter check
* the documentation of FiniteElement or the one of Triangulation.
*
* @author Wolfgang Bangerth, Ralf Hartmann, Guido Kanschat; 2000, 2003, 2004,
* 2005, 2006
*/
namespace FETools
{
/**
* A base class for factory objects creating finite elements of a given
* degree. Derived classes are called whenever one wants to have a
* transparent way to create a finite element object.
*
* This class is used in the FETools::get_fe_by_name() and
* FETools::add_fe_name() functions.
*
* @author Guido Kanschat, 2006
*/
template <int dim, int spacedim=dim>
class FEFactoryBase : public Subscriptor
{
public:
/**
* Create a FiniteElement and return a pointer to it.
*/
virtual FiniteElement<dim,spacedim> *
get (const unsigned int degree) const = 0;
/**
* Create a FiniteElement from a quadrature formula (currently only
* implemented for FE_Q) and return a pointer to it.
*/
virtual FiniteElement<dim,spacedim> *
get (const Quadrature<1> &quad) const = 0;
/**
* Virtual destructor doing nothing but making the compiler happy.
*/
virtual ~FEFactoryBase();
};
/**
* A concrete class for factory objects creating finite elements of a given
* degree.
*
* The class's get() function generates a finite element object of the type
* given as template argument, and with the degree (however the finite
* element class wishes to interpret this number) given as argument to
* get().
*
* @author Guido Kanschat, 2006
*/
template <class FE>
class FEFactory : public FEFactoryBase<FE::dimension,FE::space_dimension>
{
public:
/**
* Create a FiniteElement and return a pointer to it.
*/
virtual FiniteElement<FE::dimension,FE::space_dimension> *
get (const unsigned int degree) const;
/**
* Create a FiniteElement from a quadrature formula (currently only
* implemented for FE_Q) and return a pointer to it.
*/
virtual FiniteElement<FE::dimension,FE::space_dimension> *
get (const Quadrature<1> &quad) const;
};
/**
* @warning In most cases, you will probably want to use
* compute_base_renumbering().
*
* Compute the vector required to renumber the dofs of a cell by component.
* Furthermore, compute the vector storing the start indices of each
* component in the local block vector.
*
* The second vector is organized such that there is a vector for each base
* element containing the start index for each component served by this base
* element.
*
* While the first vector is checked to have the correct size, the second
* one is reinitialized for convenience.
*/
template<int dim, int spacedim>
void compute_component_wise(
const FiniteElement<dim,spacedim> &fe,
std::vector<unsigned int> &renumbering,
std::vector<std::vector<unsigned int> > &start_indices);
/**
* Compute the vector required to renumber the dofs of a cell by block.
* Furthermore, compute the vector storing either the start indices or the
* size of each local block vector.
*
* If the @p bool parameter is true, @p block_data is filled with the start
* indices of each local block. If it is false, then the block sizes are
* returned.
*
* The vector <tt>renumbering</tt> will be indexed by the standard numbering
* of local degrees of freedom, namely first first vertex, then second
* vertex, after vertices lines, quads, and hexes. For each index, the entry
* indicates the index which this degree of freedom receives in a numbering
* scheme, where the first block is numbered completely before the second.
*/
template<int dim, int spacedim>
void compute_block_renumbering (
const FiniteElement<dim,spacedim> &fe,
std::vector<types::global_dof_index> &renumbering,
std::vector<types::global_dof_index> &block_data,
bool return_start_indices = true);
/**
* @name Generation of local matrices
* @{
*/
/**
* Gives the interpolation matrix that interpolates a @p fe1- function to a
* @p fe2-function on each cell. The interpolation_matrix needs to be of
* size <tt>(fe2.dofs_per_cell, fe1.dofs_per_cell)</tt>.
*
* Note, that if the finite element space @p fe1 is a subset of the finite
* element space @p fe2 then the @p interpolation_matrix is an embedding
* matrix.
*/
template <int dim, typename number, int spacedim>
void
get_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
const FiniteElement<dim,spacedim> &fe2,
FullMatrix<number> &interpolation_matrix);
/**
* Gives the interpolation matrix that interpolates a @p fe1- function to a
* @p fe2-function, and interpolates this to a second @p fe1-function on
* each cell. The interpolation_matrix needs to be of size
* <tt>(fe1.dofs_per_cell, fe1.dofs_per_cell)</tt>.
*
* Note, that this function only makes sense if the finite element space due
* to @p fe1 is not a subset of the finite element space due to @p fe2, as
* if it were a subset then the @p interpolation_matrix would be only the
* unit matrix.
*/
template <int dim, typename number, int spacedim>
void
get_back_interpolation_matrix(const FiniteElement<dim,spacedim> &fe1,
const FiniteElement<dim,spacedim> &fe2,
FullMatrix<number> &interpolation_matrix);
/**
* Gives the unit matrix minus the back interpolation matrix. The @p
* difference_matrix needs to be of size <tt>(fe1.dofs_per_cell,
* fe1.dofs_per_cell)</tt>.
*
* This function gives the matrix that transforms a @p fe1 function $z$ to
* $z-I_hz$ where $I_h$ denotes the interpolation operator from the @p fe1
* space to the @p fe2 space. This matrix hence is useful to evaluate error-
* representations where $z$ denotes the dual solution.
*/
template <int dim, typename number, int spacedim>
void
get_interpolation_difference_matrix(const FiniteElement<dim,spacedim> &fe1,
const FiniteElement<dim,spacedim> &fe2,
FullMatrix<number> &difference_matrix);
/**
* Compute the local $L^2$-projection matrix from fe1 to fe2.
*/
template <int dim, typename number, int spacedim>
void get_projection_matrix(const FiniteElement<dim,spacedim> &fe1,
const FiniteElement<dim,spacedim> &fe2,
FullMatrix<number> &matrix);
/**
* This is a rather specialized function used during the construction of
* finite element objects. It is used to build the basis of shape functions
* for an element, given a set of polynomials and interpolation points. The
* function is only implemented for finite elements with exactly @p dim
* vector components. In particular, this applies to classes derived from
* the FE_PolyTensor class.
*
* Specifically, the purpose of this function is as follows: FE_PolyTensor
* receives, from its derived classes, an argument that describes a polynomial
* space. This space may be parameterized in terms of monomials, or in some
* other way, but is in general not in the form that we use for finite
* elements where we typically want to use a basis that is derived from
* some kind of node functional (e.g., the interpolation at specific points).
* Concretely, assume that the basis used by the polynomial space is
* $\{\tilde\varphi_j(\mathbf x)\}_{j=1}^N$, and that the node functionals
* of the finite element are $\{\Psi_i\}_{i=1}^N$. We then want to compute a
* basis $\{\varphi_j(\mathbf x)\}_{j=1}^N$ for the finite element space so
* that $\Psi_i[\varphi_j] = \delta_{ij}$. To do this, we can set
* $\varphi_j(\mathbf x) = \sum_{k=1}^N c_{jk} \tilde\varphi_k(\mathbf x)$
* where we need to determine the expansion coefficients $c_{jk}$. We do this
* by applying $\Psi_i$ to both sides of the equation, to obtain
* @f{align*}{
* \Psi_i [\varphi_j] = \sum_{k=1}^N c_{jk} \Psi_i[\tilde\varphi_k],
* @f}
* and we know that the left hand side equals $\delta_{ij}$.
* If you think of this as a system of $N\times N$ equations for the
* elements of a matrix on the left and on the right, then this can be
* written as
* @f{align*}{
* I = C X^T
* @f}
* where $C$ is the matrix of coefficients $c_{jk}$ and
* $X_{ik} = \Psi_i[\tilde\varphi_k]$. Consequently, in order to compute
* the expansion coefficients $C=X^{-T}$, we need to apply the node
* functionals to all functions of the "raw" basis of the polynomial space.
*
* Until the finite element receives this matrix $X$ back, it describes its
* shape functions (e.g., in FiniteElement::shape_value()) in the form
* $\tilde\varphi_j$. After it calls this function, it has the expansion
* coefficients and can describe its shape functions as $\varphi_j$.
*
* This function therefore computes this matrix $X$, for the following
* specific circumstances:
* - That the node functionals $\Psi_i$ are point evaluations at points
* $\mathbf x_i$ that the finite element in question describes via its
* "generalized" support points (through
* FiniteElement::get_generalized_support_points(), see also
* @ref GlossGeneralizedSupport "this glossary entry"). These point
* evaluations need to necessarily evaluate the <i>value</i> of a shape
* function at that point (the shape function may be vector-valued, and
* so the functional may be a linear combination of the individual
* components of the values); but, in particular, the nodal functions may
* not be <i>integrals</i> over entire edges or faces,
* or other non-local functionals. In other words, we assume that
* $\Psi_i[\tilde\varphi_j] = f_j(\tilde\varphi_j(\mathbf x_i))$
* where $f_j$ is a function of the (possibly vector-valued) argument
* that returns a scalar.
* - That the finite element has exactly @p dim vector components.
* - That the function $f_j$ is given by whatever the element implements
* through the FiniteElement::convert_generalized_support_point_values_to_nodal_values()
* function.
*
* @param fe The finite element for which the operations above are to be
* performed.
* @return The matrix $X$ as discussed above.
*/
template <int dim, int spacedim>
FullMatrix<double>
compute_node_matrix(const FiniteElement<dim,spacedim> &fe);
/**
* Same as the function above, but return the matrix by reference through
* the first argument, rather than as the function's return value.
*
* @deprecated
*/
template <int dim, int spacedim>
void
compute_node_matrix(FullMatrix<double> &M,
const FiniteElement<dim,spacedim> &fe) DEAL_II_DEPRECATED;
/**
* For all possible (isotropic and anisotropic) refinement cases compute the
* embedding matrices from a coarse cell to the child cells. Each column of
* the resulting matrices contains the representation of a coarse grid basis
* function by the fine grid basis; the matrices are split such that there
* is one matrix for every child.
*
* This function computes the coarse grid function in a sufficiently large
* number of quadrature points and fits the fine grid functions using least
* squares approximation. Therefore, the use of this function is restricted
* to the case that the finite element spaces are actually nested.
*
* Note, that <code>matrices[refinement_case-1][child]</code> includes the
* embedding (or prolongation) matrix of child <code>child</code> for the
* RefinementCase <code>refinement_case</code>. Here, we use
* <code>refinement_case-1</code> instead of <code>refinement_case</code> as
* for RefinementCase::no_refinement(=0) there are no prolongation matrices
* available.
*
* Typically this function is called by the various implementations of
* FiniteElement classes in order to fill the respective
* FiniteElement::prolongation matrices.
*
* @param fe The finite element class for which we compute the embedding
* matrices.
*
* @param matrices A reference to RefinementCase<dim>::isotropic_refinement
* vectors of FullMatrix objects. Each vector corresponds to one
* RefinementCase @p refinement_case and is of the vector size
* GeometryInfo<dim>::n_children(refinement_case). This is the format used
* in FiniteElement, where we want to use this function mostly.
*
* @param isotropic_only Set to <code>true</code> if you only want to
* compute matrices for isotropic refinement.
*
* @param threshold is the gap allowed in the least squares algorithm
* computing the embedding.
*/
template <int dim, typename number, int spacedim>
void compute_embedding_matrices(const FiniteElement<dim,spacedim> &fe,
std::vector<std::vector<FullMatrix<number> > > &matrices,
const bool isotropic_only = false,
const double threshold = 1.e-12);
/**
* Compute the embedding matrices on faces needed for constraint matrices.
*
* @param fe The finite element for which to compute these matrices.
*
* @param matrices An array of <i>GeometryInfo<dim>::subfaces_per_face =
* 2<sup>dim-1</sup></i> FullMatrix objects,holding the embedding matrix for
* each subface.
*
* @param face_coarse The number of the face on the coarse side of the face
* for which this is computed.
*
* @param face_fine The number of the face on the refined side of the face
* for which this is computed.
*
* @param threshold is the gap allowed in the least squares algorithm
* computing the embedding.
*
* @warning This function will be used in computing constraint matrices. It
* is not sufficiently tested yet.
*/
template <int dim, typename number, int spacedim>
void
compute_face_embedding_matrices(const FiniteElement<dim,spacedim> &fe,
FullMatrix<number> (&matrices)[GeometryInfo<dim>::max_children_per_face],
const unsigned int face_coarse,
const unsigned int face_fine,
const double threshold = 1.e-12);
/**
* For all possible (isotropic and anisotropic) refinement cases compute the
* <i>L<sup>2</sup></i>-projection matrices from the children to a coarse
* cell.
*
* Note, that <code>matrices[refinement_case-1][child]</code> includes the
* projection (or restriction) matrix of child <code>child</code> for the
* RefinementCase <code>refinement_case</code>. Here, we use
* <code>refinement_case-1</code> instead of <code>refinement_case</code> as
* for RefinementCase::no_refinement(=0) there are no projection matrices
* available.
*
* Typically this function is called by the various implementations of
* FiniteElement classes in order to fill the respective
* FiniteElement::restriction matrices.
*
* @arg fe The finite element class for which we compute the projection
* matrices. @arg matrices A reference to
* <tt>RefinementCase<dim>::isotropic_refinement</tt> vectors of FullMatrix
* objects. Each vector corresponds to one RefinementCase @p refinement_case
* and is of the vector size
* <tt>GeometryInfo<dim>::n_children(refinement_case)</tt>. This is the
* format used in FiniteElement, where we want to use this function mostly.
*
* @arg isotropic_only Set to <code>true</code> if you only want to compute
* matrices for isotropic refinement.
*/
template <int dim, typename number, int spacedim>
void compute_projection_matrices(
const FiniteElement<dim,spacedim> &fe,
std::vector<std::vector<FullMatrix<number> > > &matrices,
const bool isotropic_only = false);
/**
* Projects scalar data defined in quadrature points to a finite element
* space on a single cell.
*
* What this function does is the following: assume that there is scalar
* data <tt>u<sub>q</sub>, 0 <= q < Q:=quadrature.size()</tt> defined at the
* quadrature points of a cell, with the points defined by the given
* <tt>rhs_quadrature</tt> object. We may then want to ask for that finite
* element function (on a single cell) <tt>v<sub>h</sub></tt> in the finite-
* dimensional space defined by the given FE object that is the projection
* of <tt>u</tt> in the following sense:
*
* Usually, the projection <tt>v<sub>h</sub></tt> is that function that
* satisfies <tt>(v<sub>h</sub>,w)=(u,w)</tt> for all discrete test
* functions <tt>w</tt>. In the present case, we can't evaluate the right
* hand side, since <tt>u</tt> is only defined in the quadrature points
* given by <tt>rhs_quadrature</tt>, so we replace it by a quadrature
* approximation. Likewise, the left hand side is approximated using the
* <tt>lhs_quadrature</tt> object; if this quadrature object is chosen
* appropriately, then the integration of the left hand side can be done
* exactly, without any approximation. The use of different quadrature
* objects is necessary if the quadrature object for the right hand side has
* too few quadrature points -- for example, if data <tt>q</tt> is only
* defined at the cell center, then the corresponding one-point quadrature
* formula is obviously insufficient to approximate the scalar product on
* the left hand side by a definite form.
*
* After these quadrature approximations, we end up with a nodal
* representation <tt>V<sub>h</sub></tt> of <tt>v<sub>h</sub></tt> that
* satisfies the following system of linear equations: <tt>M V<sub>h</sub> =
* Q U</tt>, where <tt>M<sub>ij</sub>=(phi_i,phi_j)</tt> is the mass matrix
* approximated by <tt>lhs_quadrature</tt>, and <tt>Q</tt> is the matrix
* <tt>Q<sub>iq</sub>=phi<sub>i</sub>(x<sub>q</sub>) w<sub>q</sub></tt>
* where <tt>w<sub>q</sub></tt> are quadrature weights; <tt>U</tt> is the
* vector of quadrature point data <tt>u<sub>q</sub></tt>.
*
* In order to then get the nodal representation <tt>V<sub>h</sub></tt> of
* the projection of <tt>U</tt>, one computes <tt>V<sub>h</sub> = X U,
* X=M<sup>-1</sup> Q</tt>. The purpose of this function is to compute the
* matrix <tt>X</tt> and return it through the last argument of this
* function.
*
* Note that this function presently only supports scalar data. An extension
* of the mass matrix is of course trivial, but one has to define the order
* of data in the vector <tt>U</tt> if it contains vector valued data in all
* quadrature points.
*
* A use for this function is described in the introduction to the step-18
* example program.
*
* The opposite of this function, interpolation of a finite element function
* onto quadrature points is essentially what the
* <tt>FEValues::get_function_values</tt> functions do; to make things a
* little simpler, the
* <tt>FETools::compute_interpolation_to_quadrature_points_matrix</tt>
* provides the matrix form of this.
*
* Note that this function works on a single cell, rather than an entire
* triangulation. In effect, it therefore doesn't matter if you use a
* continuous or discontinuous version of the finite element.
*
* It is worth noting that there are a few confusing cases of this function.
* The first one is that it really only makes sense to project onto a finite
* element that has at most as many degrees of freedom per cell as there are
* quadrature points; the projection of N quadrature point data into a space
* with M>N unknowns is well-defined, but often yields funny and non-
* intuitive results. Secondly, one would think that if the quadrature point
* data is defined in the support points of the finite element, i.e. the
* quadrature points of <tt>ths_quadrature</tt> equal
* <tt>fe.get_unit_support_points()</tt>, then the projection should be the
* identity, i.e. each degree of freedom of the finite element equals the
* value of the given data in the support point of the corresponding shape
* function. However, this is not generally the case: while the matrix
* <tt>Q</tt> in that case is the identity matrix, the mass matrix
* <tt>M</tt> is not equal to the identity matrix, except for the special
* case that the quadrature formula <tt>lhs_quadrature</tt> also has its
* quadrature points in the support points of the finite element.
*
* Finally, this function only defines a cell wise projection, while one
* frequently wants to apply it to all cells in a triangulation. However, if
* it is applied to one cell after the other, the results from later cells
* may overwrite nodal values computed already from previous cells if
* degrees of freedom live on the interfaces between cells. The function is
* therefore most useful for discontinuous elements.
*/
template <int dim, int spacedim>
void
compute_projection_from_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
const Quadrature<dim> &lhs_quadrature,
const Quadrature<dim> &rhs_quadrature,
FullMatrix<double> &X);
/**
* Given a (scalar) local finite element function, compute the matrix that
* maps the vector of nodal values onto the vector of values of this
* function at quadrature points as given by the second argument. In a
* sense, this function does the opposite of the
* FETools::compute_projection_from_quadrature_points_matrix function.
*/
template <int dim, int spacedim>
void
compute_interpolation_to_quadrature_points_matrix (const FiniteElement<dim,spacedim> &fe,
const Quadrature<dim> &quadrature,
FullMatrix<double> &I_q);
/**
* Compute the projection of tensorial (first-order tensor) data stored at
* the quadrature points @p vector_of_tensors_at_qp to data @p
* vector_of_tensors_at_nodes at the support points of the cell. The data
* in @p vector_of_tensors_at_qp is ordered sequentially following the
* quadrature point numbering. The size of @p vector_of_tensors_at_qp must
* correspond to the number of columns of @p projection_matrix. The size of
* @p vector_of_tensors_at_nodes must correspond to the number of rows of @p
* vector_of_tensors_at_nodes . The projection matrix @p projection_matrix
* describes the projection of scalar data from the quadrature points and
* can be obtained from the
* FETools::compute_projection_from_quadrature_points_matrix function.
*/
template <int dim>
void
compute_projection_from_quadrature_points(
const FullMatrix<double> &projection_matrix,
const std::vector< Tensor<1, dim > > &vector_of_tensors_at_qp,
std::vector< Tensor<1, dim > > &vector_of_tensors_at_nodes);
/**
* same as last function but for a @p SymmetricTensor .
*/
template <int dim>
void
compute_projection_from_quadrature_points(
const FullMatrix<double> &projection_matrix,
const std::vector< SymmetricTensor<2, dim > > &vector_of_tensors_at_qp,
std::vector< SymmetricTensor<2, dim > > &vector_of_tensors_at_nodes);
/**
* This method implements the
* FETools::compute_projection_from_quadrature_points_matrix method for
* faces of a mesh. The matrix that it returns, X, is face specific and its
* size is fe.dofs_per_cell by rhs_quadrature.size(). The dimension, dim
* must be larger than 1 for this class, since Quadrature<dim-1> objects are
* required. See the documentation on the Quadrature class for more
* information.
*/
template <int dim, int spacedim>
void
compute_projection_from_face_quadrature_points_matrix (const FiniteElement<dim, spacedim> &fe,
const Quadrature<dim-1> &lhs_quadrature,
const Quadrature<dim-1> &rhs_quadrature,
const typename DoFHandler<dim, spacedim>::active_cell_iterator &cell,
const unsigned int face,
FullMatrix<double> &X);
//@}
/**
* @name Functions which should be in DoFTools
*/
//@{
/**
* Gives the interpolation of a the @p dof1-function @p u1 to a @p
* dof2-function @p u2. @p dof1 and @p dof2 need to be DoFHandlers based on
* the same triangulation.
*
* If the elements @p fe1 and @p fe2 are either both continuous or both
* discontinuous then this interpolation is the usual point interpolation.
* The same is true if @p fe1 is a continuous and @p fe2 is a discontinuous
* finite element. For the case that @p fe1 is a discontinuous and @p fe2 is
* a continuous finite element there is no point interpolation defined at
* the discontinuities. Therefore the mean value is taken at the DoF values
* on the discontinuities.
*
* Note that for continuous elements on grids with hanging nodes (i.e.
* locally refined grids) this function does not give the expected output.
* Indeed, the resulting output vector does not necessarily respect
* continuity requirements at hanging nodes: if, for example, you are
* interpolating a Q2 field to a Q1 field, then at hanging nodes the output
* field will have the function value of the input field, which however is
* not usually the mean value of the two adjacent nodes. It is thus not part
* of the Q1 function space on the whole triangulation, although it is of
* course Q1 on each cell.
*
* For this case (continuous elements on grids with hanging nodes), please
* use the @p interpolate() function with an additional ConstraintMatrix
* argument, see below, or make the field conforming yourself by calling the
* @p distribute function of your hanging node constraints object.
*/
template <int dim, int spacedim,
template <int, int> class DoFHandlerType1,
template <int, int> class DoFHandlerType2,
class InVector, class OutVector>
void
interpolate (const DoFHandlerType1<dim,spacedim> &dof1,
const InVector &u1,
const DoFHandlerType2<dim,spacedim> &dof2,
OutVector &u2);
/**
* Gives the interpolation of a the @p dof1-function @p u1 to a @p
* dof2-function @p u2. @p dof1 and @p dof2 need to be DoFHandlers (or
* hp::DoFHandlers) based on the same triangulation. @p constraints is a
* hanging node constraints object corresponding to @p dof2. This object is
* particular important when interpolating onto continuous elements on grids
* with hanging nodes (locally refined grids).
*
* If the elements @p fe1 and @p fe2 are either both continuous or both
* discontinuous then this interpolation is the usual point interpolation.
* The same is true if @p fe1 is a continuous and @p fe2 is a discontinuous
* finite element. For the case that @p fe1 is a discontinuous and @p fe2 is
* a continuous finite element there is no point interpolation defined at
* the discontinuities. Therefore the mean value is taken at the DoF values
* at the discontinuities.
*/
template <int dim, int spacedim,
template <int, int> class DoFHandlerType1,
template <int, int> class DoFHandlerType2,
class InVector, class OutVector>
void interpolate (const DoFHandlerType1<dim,spacedim> &dof1,
const InVector &u1,
const DoFHandlerType2<dim,spacedim> &dof2,
const ConstraintMatrix &constraints,
OutVector &u2);
/**
* Gives the interpolation of the @p fe1-function @p u1 to a @p
* fe2-function, and interpolates this to a second @p fe1-function named @p
* u1_interpolated.
*
* Note, that this function does not work on continuous elements at hanging
* nodes. For that case use the @p back_interpolate function, below, that
* takes an additional @p ConstraintMatrix object.
*
* @p dof1 might be a DoFHandler or a hp::DoFHandler onject.
*
* Furthermore note, that for the specific case when the finite element
* space corresponding to @p fe1 is a subset of the finite element space
* corresponding to @p fe2, this function is simply an identity mapping.
*/
template <int dim,
template <int,int> class DoFHandlerType,
class InVector, class OutVector, int spacedim>
void back_interpolate (const DoFHandlerType<dim,spacedim> &dof1,
const InVector &u1,
const FiniteElement<dim,spacedim> &fe2,
OutVector &u1_interpolated);
/**
* Gives the interpolation of the @p dof1-function @p u1 to a @p
* dof2-function, and interpolates this to a second @p dof1-function named
* @p u1_interpolated. @p constraints1 and @p constraints2 are the hanging
* node constraints corresponding to @p dof1 and @p dof2, respectively.
* These objects are particular important when continuous elements on grids
* with hanging nodes (locally refined grids) are involved.
*
* Furthermore note, that for the specific case when the finite element
* space corresponding to @p dof1 is a subset of the finite element space
* corresponding to @p dof2, this function is simply an identity mapping.
*/
template <int dim, class InVector, class OutVector, int spacedim>
void back_interpolate (const DoFHandler<dim,spacedim> &dof1,
const ConstraintMatrix &constraints1,
const InVector &u1,
const DoFHandler<dim,spacedim> &dof2,
const ConstraintMatrix &constraints2,
OutVector &u1_interpolated);
/**
* Gives $(Id-I_h)z_1$ for a given @p dof1-function $z_1$, where $I_h$ is
* the interpolation from @p fe1 to @p fe2. The result $(Id-I_h)z_1$ is
* written into @p z1_difference.
*
* Note, that this function does not work for continuous elements at hanging
* nodes. For that case use the @p interpolation_difference function, below,
* that takes an additional @p ConstraintMatrix object.
*/
template <int dim, class InVector, class OutVector, int spacedim>
void interpolation_difference(const DoFHandler<dim,spacedim> &dof1,
const InVector &z1,
const FiniteElement<dim,spacedim> &fe2,
OutVector &z1_difference);
/**
* Gives $(Id-I_h)z_1$ for a given @p dof1-function $z_1$, where $I_h$ is
* the interpolation from @p fe1 to @p fe2. The result $(Id-I_h)z_1$ is
* written into @p z1_difference. @p constraints1 and @p constraints2 are
* the hanging node constraints corresponding to @p dof1 and @p dof2,
* respectively. These objects are particular important when continuous
* elements on grids with hanging nodes (locally refined grids) are
* involved.
*
* For parallel computations with PETSc, supply @p z1 with ghost elements
* and @p z1_difference without ghost elements.
*/
template <int dim, class InVector, class OutVector, int spacedim>
void interpolation_difference(const DoFHandler<dim,spacedim> &dof1,
const ConstraintMatrix &constraints1,
const InVector &z1,
const DoFHandler<dim,spacedim> &dof2,
const ConstraintMatrix &constraints2,
OutVector &z1_difference);
/**
* $L^2$ projection for discontinuous elements. Operates the same direction
* as interpolate.
*
* The global projection can be computed by local matrices if the finite
* element spaces are discontinuous. With continuous elements, this is
* impossible, since a global mass matrix must be inverted.
*/
template <int dim, class InVector, class OutVector, int spacedim>
void project_dg (const DoFHandler<dim,spacedim> &dof1,
const InVector &u1,
const DoFHandler<dim,spacedim> &dof2,
OutVector &u2);
/**
* Gives the patchwise extrapolation of a @p dof1 function @p z1 to a @p
* dof2 function @p z2. @p dof1 and @p dof2 need to be DoFHandler objects
* based on the same triangulation. This function is used, for example, for
* extrapolating patchwise a piecewise linear solution to a piecewise
* quadratic solution.
*
* The function's name is historical and probably not particularly well
* chosen. The function performs the following operations, one after the
* other:
*
* - It interpolates directly from every cell of @p dof1 to the
* corresponding cell of `dof2` using the interpolation matrix of the finite
* element spaces used on these cells and provided by the finite element
* objects involved. This step is done using the FETools::interpolate()
* function.
* - It then performs a loop over all non-active cells of `dof2`.
* If such a non-active cell has at least one active child, then we call the
* children of this cell a "patch". We then interpolate from the children of
* this patch to the patch, using the finite element space associated with
* `dof2` and immediately interpolate back to the children. In essence, this
* information throws away all information in the solution vector that lives
* on a scale smaller than the patch cell.
* - Since we traverse non-active cells from the coarsest to the finest
* levels, we may find patches that correspond to child cells of previously
* treated patches if the mesh had been refined adaptively (this cannot
* happen if the mesh has been refined globally because there the children
* of a patch are all active). We also perform the operation described above
* on these patches, but it is easy to see that on patches that are children
* of previously treated patches, the operation is now the identity operation
* (since it interpolates from the children of the current patch a function
* that had previously been interpolated to these children from an even coarser
* patch). Consequently, this does not alter the solution vector any more.
*
* The name of the function originates from the fact that it can be used to
* construct a representation of a function of higher polynomial degree on a
* once coarser mesh. For example, if you imagine that you start with a
* $Q_1$ function on a globally refined mesh, and that @p dof2 is associated
* with a $Q_2$ element, then this function computes the equivalent of the
* operator $I_{2h}^{(2)}$ interpolating the original piecewise linear
* function onto a quadratic function on a once coarser mesh with mesh size
* $2h$ (but representing this function on the original mesh with size $h$).
* If the exact solution is sufficiently smooth, then
* $u^\ast=I_{2h}^{(2)}u_h$ is typically a better approximation to the exact
* solution $u$ of the PDE than $u_h$ is. In other words, this function
* provides a postprocessing step that improves the solution in a similar
* way one often obtains by extrapolating a sequence of solutions,
* explaining the origin of the function's name.
*
* @note The resulting field does not satisfy continuity requirements of the
* given finite elements if the algorithm outlined above is used. When you
* use continuous elements on grids with hanging nodes, please use the @p
* extrapolate function with an additional ConstraintMatrix argument, see
* below.
*
* @note Since this function operates on patches of cells, it requires that
* the underlying grid is refined at least once for every coarse grid cell.
* If this is not the case, an exception will be raised.
*/
template <int dim, class InVector, class OutVector, int spacedim>
void extrapolate (const DoFHandler<dim,spacedim> &dof1,
const InVector &z1,
const DoFHandler<dim,spacedim> &dof2,
OutVector &z2);
/**
* Gives the patchwise extrapolation of a @p dof1 function @p z1 to a @p
* dof2 function @p z2. @p dof1 and @p dof2 need to be DoFHandler objects
* based on the same triangulation. @p constraints is a hanging node
* constraints object corresponding to @p dof2. This object is necessary
* when interpolating onto continuous elements on grids with hanging nodes
* (locally refined grids).
*
* Otherwise, the function does the same as the other @p extrapolate
* function above (for which the documentation provides an extensive
* description of its operation).
*/
template <int dim, class InVector, class OutVector, int spacedim>
void extrapolate (const DoFHandler<dim,spacedim> &dof1,
const InVector &z1,
const DoFHandler<dim,spacedim> &dof2,
const ConstraintMatrix &constraints,
OutVector &z2);
//@}
/**
* The numbering of the degrees of freedom in continuous finite elements is
* hierarchic, i.e. in such a way that we first number the vertex dofs, in
* the order of the vertices as defined by the triangulation, then the line
* dofs in the order and respecting the direction of the lines, then the
* dofs on quads, etc. However, we could have, as well, numbered them in a
* lexicographic way, i.e. with indices first running in x-direction, then
* in y-direction and finally in z-direction. Discontinuous elements of
* class FE_DGQ() are numbered in this way, for example.
*
* This function constructs a table which lexicographic index each degree of
* freedom in the hierarchic numbering would have. It operates on the
* continuous finite element given as first argument, and outputs the
* lexicographic indices in the second.
*
* Note that since this function uses specifics of the continuous finite
* elements, it can only operate on FiniteElementData<dim> objects inherent
* in FE_Q(). However, this function does not take a FE_Q object as it is
* also invoked by the FE_Q() constructor.
*
* It is assumed that the size of the output argument already matches the
* correct size, which is equal to the number of degrees of freedom in the
* finite element.
*/
template <int dim>
void
hierarchic_to_lexicographic_numbering (unsigned int degree,
std::vector<unsigned int> &h2l);
template <int dim>
void
hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe_data,
std::vector<unsigned int> &h2l);
/**
* Like the previous function but instead of returning its result through
* the last argument return it as a value.
*/
template <int dim>
std::vector<unsigned int>
hierarchic_to_lexicographic_numbering (const FiniteElementData<dim> &fe_data);
/**
* This is the reverse function to the above one, generating the map from
* the lexicographic to the hierarchical numbering. All the remarks made
* about the above function are also valid here.
*/
template <int dim>
void
lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe_data,
std::vector<unsigned int> &l2h);
/**
* Like the previous function but instead of returning its result through
* the last argument return it as a value.
*/
template <int dim>
std::vector<unsigned int>
lexicographic_to_hierarchic_numbering (const FiniteElementData<dim> &fe_data);
/**
* A namespace that contains functions that help setting up internal
* data structures when implementing FiniteElement which are build
* from simpler ("base") elements, for example FESystem. The things
* computed by these functions typically serve as constructor
* arguments to the FiniteElement base class of the derived finite
* element object being constructed.
*
* There are generally two ways in which one can build more complex
* elements, and this is reflected by several of the functions in
* this namespace having arguments called
* <code>do_tensor_product</code>:
*
* <ol>
* <li> Tensor product construction (<code>do_tensor_product=true</code>):
* The tensor product construction, in the simplest case, builds a
* vector-valued element from scalar elements (see
* @ref vector_valued "this documentation module" and
* @ref GlossComponent "this glossary entry" for more information).
* To give an example, consider creating a vector-valued element with
* two vector components, where the first should have linear shape
* functions and the second quadratic shape functions. In 1d, the
* shape functions (on the reference cell) of the base elements are then
* @f{align*}{
* Q_1 &= \{ 1-x, x \},
* \\ Q_2 &= \{ 2(\frac 12 - x)(1-x), 2(x - \frac 12)x, 4x(1-x) \},
* @f}
* where shape functions are ordered in the usual way (first on the
* first vertex, then on the second vertex, then in the interior of
* the cell). The tensor product construction will create an element with
* the following shape functions:
* @f{align*}{
* Q_1 \times Q_2 &=
* \left\{
* \begin{pmatrix} 1-x \\ 0 \end{pmatrix},
* \begin{pmatrix} 0 \\ 2(\frac 12 - x)(1-x) \end{pmatrix},
* \begin{pmatrix} x \\ 0 \end{pmatrix},
* \begin{pmatrix} 0 \\ 2(x - \frac 12)x \end{pmatrix},
* \begin{pmatrix} 0 \\ 4x(1-x) \end{pmatrix}
* \right\}.
* @f}
* The list here is again in standard order.
*
* Of course, the procedure also works if the base elements are
* already vector valued themselves: in that case, the composed
* element simply has as many vector components as the base elements
* taken together.
*
* <li> Combining shape functions
* (<code>do_tensor_product=false</code>): In contrast to the
* previous strategy, combining shape functions simply takes
* <i>all</i> of the shape functions together. In the case above,
* this would yield the following element:
* @f{align*}{
* Q_1 + Q_2 &= \{ 1-x, 2(\frac 12 - x)(1-x),
* x, 2(x - \frac 12)x, 4x(1-x) \}.
* @f}
* In other words, if the base elements are scalar, the resulting
* element will also be. In general, the base elements all will
* have to have the same number of vector components.
*
* The element constructed above of course no longer has a linearly
* independent set of shape functions. As a consequence, any matrix
* one creates by treating all shape functions of the composed
* element in the same way will be singular. In practice, this
* strategy is therefore typically used in situations where one
* explicitly makes sure that certain shape functions are treated
* differently (e.g., by multiplying them with weight functions), or
* in cases where the shape functions one combines are not linearly
* dependent.
*
* </ol>
*/
namespace Compositing
{
/**
* Take vectors of finite elements and multiplicities and multiply out
* how many degrees of freedom the composed element has per vertex,
* line, etc.
*
* If @p do_tensor_product is true, the number of components
* returned in the FiniteElementData object is the sum over the
* product of the number of components in each of the finite
* elements times the corresponding multiplicity. Otherwise the
* number of components is taken from the first finite element with
* non-zero multiplicity, and all other elements with non-zero
* multiplicities need to have the same number of vector components.
*
* See the documentation of namespace FETools::Compositing for more
* information about the @p do_tensor_product argument.
*/
template <int dim, int spacedim>
FiniteElementData<dim>
multiply_dof_numbers (const std::vector<const FiniteElement<dim,spacedim>*> &fes,
const std::vector<unsigned int> &multiplicities,
const bool do_tensor_product = true);
/**
* Same as above but for a specific number of sub-elements.
*/
template <int dim, int spacedim>
FiniteElementData<dim>
multiply_dof_numbers (const FiniteElement<dim,spacedim> *fe1,
const unsigned int N1,
const FiniteElement<dim,spacedim> *fe2=NULL,
const unsigned int N2=0,
const FiniteElement<dim,spacedim> *fe3=NULL,
const unsigned int N3=0,
const FiniteElement<dim,spacedim> *fe4=NULL,
const unsigned int N4=0,
const FiniteElement<dim,spacedim> *fe5=NULL,
const unsigned int N5=0);
/**
* Compute the "restriction is additive" flags (see the
* documentation of the FiniteElement class) for a list of finite
* elements with multiplicities given in the second argument.
*
* The "restriction is additive" flags are properties of
* individual shape functions that do not depend on whether the
* composed element uses the tensor product or combination
* strategy outlined in the documentation of the
* FETools::Composition namespace. Consequently, this function
* does not have a @p do_tensor_product argument.
*/
template <int dim, int spacedim>
std::vector<bool>
compute_restriction_is_additive_flags (const std::vector<const FiniteElement<dim,spacedim>*> &fes,
const std::vector<unsigned int> &multiplicities);
/**
* Take a @p FiniteElement object and return a boolean vector
* describing the @p restriction_is_additive_flags (see the
* documentation of the FiniteElement class) for each shape function
* of the mixed element consisting of @p N1, @p N2, ... copies of
* the sub-elements @p fe1, @p fe2, ...
*
* The "restriction is additive" flags are properties of
* individual shape functions that do not depend on whether the
* composed element uses the tensor product or combination
* strategy outlined in the documentation of the
* FETools::Composition namespace. Consequently, this function
* does not have a @p do_tensor_product argument.
*/
template <int dim, int spacedim>
std::vector<bool>
compute_restriction_is_additive_flags (const FiniteElement<dim,spacedim> *fe1,
const unsigned int N1,
const FiniteElement<dim,spacedim> *fe2=NULL,
const unsigned int N2=0,
const FiniteElement<dim,spacedim> *fe3=NULL,
const unsigned int N3=0,
const FiniteElement<dim,spacedim> *fe4=NULL,
const unsigned int N4=0,
const FiniteElement<dim,spacedim> *fe5=NULL,
const unsigned int N5=0);
/**
* Compute the nonzero components for each shape function of a
* composed finite element described by a list of finite elements
* with multiplicities given in the second argument.
*
* If @p do_tensor_product is true, the number of components (and
* thus the size of the ComponentMask objects) is the sum over the
* product of the number of components in each of the finite
* elements times the corresponding multiplicity. Otherwise the
* number of components is taken from the first finite element with
* non-zero multiplicity, and all other elements with non-zero
* multiplicities need to have the same number of vector components.
*
* See the documentation of namespace FETools::Compositing for more
* information about the @p do_tensor_product argument.
*/
template <int dim, int spacedim>
std::vector<ComponentMask>
compute_nonzero_components (const std::vector<const FiniteElement<dim,spacedim>*> &fes,
const std::vector<unsigned int> &multiplicities,
const bool do_tensor_product = true);
/**
* Compute the non-zero vector components of a composed finite
* element. This function is similar to the previous one, except
* that the pointers indicate the elements to be composed, and the
* arguments @p N1, @p N2, ... the multiplicities. Null pointers
* indicate that an argument is to be skipped.
*
* If @p do_tensor_product is true, the number of components (and
* thus the size of the ComponentMask objects) is the sum over the
* product of the number of components in each of the finite
* elements times the corresponding multiplicity. Otherwise the
* number of components is taken from the first finite element with
* non-zero multiplicity, and all other elements with non-zero
* multiplicities need to have the same number of vector components.
*
* See the documentation of namespace FETools::Compositing for more
* information about the @p do_tensor_product argument.
*/
template <int dim, int spacedim>
std::vector<ComponentMask>
compute_nonzero_components (const FiniteElement<dim,spacedim> *fe1,
const unsigned int N1,
const FiniteElement<dim,spacedim> *fe2=NULL,
const unsigned int N2=0,
const FiniteElement<dim,spacedim> *fe3=NULL,
const unsigned int N3=0,
const FiniteElement<dim,spacedim> *fe4=NULL,
const unsigned int N4=0,
const FiniteElement<dim,spacedim> *fe5=NULL,
const unsigned int N5=0,
const bool do_tensor_product = true);
/**
* For a given (composite) @p finite_element build @p
* system_to_component_table, @p system_to_base_table and @p
* component_to_base_table.
*
* If @p do_tensor_product is true, the number of components
* used for the composite element is the sum over the
* product of the number of components in each of the finite
* elements times the corresponding multiplicity. Otherwise the
* number of components is taken from the first finite element with
* non-zero multiplicity, and all other elements with non-zero
* multiplicities need to have the same number of vector components.
*
* See the documentation of namespace FETools::Compositing for more
* information about the @p do_tensor_product argument.
*/
template <int dim, int spacedim>
void
build_cell_tables(std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > &system_to_base_table,
std::vector< std::pair< unsigned int, unsigned int > > &system_to_component_table,
std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > &component_to_base_table,
const FiniteElement<dim,spacedim> &finite_element,
const bool do_tensor_product = true);
/**
* For a given (composite) @p finite_element build @p face_system_to_base_table,
* and @p face_system_to_component_table.
*
* If @p do_tensor_product is true, the number of components
* used for the composite element is the sum over the
* product of the number of components in each of the finite
* elements times the corresponding multiplicity. Otherwise the
* number of components is taken from the first finite element with
* non-zero multiplicity, and all other elements with non-zero
* multiplicities need to have the same number of vector components.
*
* See the documentation of namespace FETools::Compositing for more
* information about the @p do_tensor_product argument.
*/
template <int dim, int spacedim>
void
build_face_tables(std::vector< std::pair< std::pair< unsigned int, unsigned int >, unsigned int > > &face_system_to_base_table,
std::vector< std::pair< unsigned int, unsigned int > > &face_system_to_component_table,
const FiniteElement<dim,spacedim> &finite_element,
const bool do_tensor_product = true);
}
/**
* Parse the name of a finite element and generate a finite element object
* accordingly. The parser ignores space characters between words (things
* matching the regular expression [A-Za-z0-9_]).
*
* The name must be in the form which is returned by the
* FiniteElement::get_name function, where dimension template parameters
* <2> etc. can be omitted. Alternatively, the explicit number can be
* replaced by <tt>dim</tt> or <tt>d</tt>. If a number is given, it
* <b>must</b> match the template parameter of this function.
*
* The names of FESystem elements follow the pattern
* <code>FESystem[FE_Base1^p1-FE_Base2^p2]</code> The powers <code>p1</code>
* etc. may either be numbers or can be replaced by <tt>dim</tt> or
* <tt>d</tt>.
*
*
* If no finite element can be reconstructed from this string, an exception
* of type @p FETools::ExcInvalidFEName is thrown.
*
* The function returns a pointer to a newly create finite element. It is in
* the caller's responsibility to destroy the object pointed to at an
* appropriate later time.
*
* Since the value of the template argument can't be deduced from the
* (string) argument given to this function, you have to explicitly specify
* it when you call this function.
*
* This function knows about all the standard elements defined in the
* library. However, it doesn't by default know about elements that you may
* have defined in your program. To make your own elements known to this
* function, use the add_fe_name() function. This function does not work if
* one wants to get a codimension 1 finite element.
*/
template <int dim, int spacedim
#ifdef DEAL_II_WITH_CXX11
=dim
#endif
>
FiniteElement<dim, spacedim> *
get_fe_by_name (const std::string &name);
/**
* @deprecated Use get_fe_by_name() with two template parameters instead
*/
template <int dim>
FiniteElement<dim,dim> *
get_fe_from_name (const std::string &name) DEAL_II_DEPRECATED;
/**
* Extend the list of finite elements that can be generated by
* get_fe_by_name() by the one given as @p name. If get_fe_by_name() is
* later called with this name, it will use the object given as second
* argument to create a finite element object.
*
* The format of the @p name parameter should include the name of a finite
* element. However, it is safe to use either the class name alone or to use
* the result of FiniteElement::get_name (which includes the space dimension
* as well as the polynomial degree), since everything after the first non-
* name character will be ignored.
*
* The FEFactory object should be an object newly created with <tt>new</tt>.
* FETools will take ownership of this object and delete it once it is not
* used anymore.
*
* In most cases, if you want objects of type <code>MyFE</code> be created
* whenever the name <code>my_fe</code> is given to get_fe_by_name, you
* will want the second argument to this function be of type
* FEFactory@<MyFE@>, but you can of course create your custom finite
* element factory class.
*
* This function takes over ownership of the object given as second
* argument, i.e. you should never attempt to destroy it later on. The
* object will be deleted at the end of the program's lifetime.
*
* If the name of the element is already in use, an exception is thrown.
* Thus, functionality of get_fe_by_name() can only be added, not changed.
*
* @note This function manipulates a global table (one table for each space
* dimension). It is thread safe in the sense that every access to this
* table is secured by a lock. Nevertheless, since each name can be added
* only once, user code has to make sure that only one thread adds a new
* element.
*
* Note also that this table exists once for each space dimension. If you
* have a program that works with finite elements in different space
* dimensions (for example,
* @ref step_4 "step-4"
* does something like this), then you should call this function for each
* space dimension for which you want your finite element added to the map.
*/
template <int dim, int spacedim>
void add_fe_name (const std::string &name,
const FEFactoryBase<dim,spacedim> *factory);
/**
* The string used for get_fe_by_name() cannot be translated to a finite
* element.
*
* Either the string is badly formatted or you are using a custom element
* that must be added using add_fe_name() first.
*
* @ingroup Exceptions
*/
DeclException1 (ExcInvalidFEName,
std::string,
<< "Can't re-generate a finite element from the string '"
<< arg1 << "'.");
/**
* The string used for get_fe_by_name() cannot be translated to a finite
* element.
*
* Dimension arguments in finite element names should be avoided. If they
* are there, the dimension should be <tt>dim</tt> or <tt>d</tt>. Here, you
* gave a numeric dimension argument, which does not match the template
* dimension of the finite element class.
*
* @ingroup Exceptions
*/
DeclException2 (ExcInvalidFEDimension,
char, int,
<< "The dimension " << arg1
<< " in the finite element string must match "
<< "the space dimension "
<< arg2 << ".");
/**
* Exception
*
* @ingroup Exceptions
*/
DeclException0 (ExcInvalidFE);
/**
* The finite element must be
* @ref GlossPrimitive "primitive".
*
* @ingroup Exceptions
*/
DeclException0 (ExcFENotPrimitive);
/**
* Exception
*
* @ingroup Exceptions
*/
DeclException0 (ExcTriangulationMismatch);
/**
* A continuous element is used on a mesh with hanging nodes, but the
* constraint matrices are missing.
*
* @ingroup Exceptions
*/
DeclException1 (ExcHangingNodesNotAllowed,
int,
<< "You are using continuous elements on a grid with "
<< "hanging nodes but without providing hanging node "
<< "constraints. Use the respective function with "
<< "additional ConstraintMatrix argument(s), instead."
<< (arg1?"":""));
/**
* You need at least two grid levels.
*
* @ingroup Exceptions
*/
DeclException0 (ExcGridNotRefinedAtLeastOnce);
/**
* The dimensions of the matrix used did not match the expected dimensions.
*
* @ingroup Exceptions
*/
DeclException4 (ExcMatrixDimensionMismatch,
int, int, int, int,
<< "This is a " << arg1 << "x" << arg2 << " matrix, "
<< "but should be a " << arg3 << "x" << arg4 << " matrix.");
/**
* Exception thrown if an embedding matrix was computed inaccurately.
*
* @ingroup Exceptions
*/
DeclException1(ExcLeastSquaresError, double,
<< "Least squares fit leaves a gap of " << arg1);
/**
* Exception thrown if one variable may not be greater than another.
*
* @ingroup Exceptions
*/
DeclException2 (ExcNotGreaterThan,
int, int,
<< arg1 << " must be greater than " << arg2);
}
#ifndef DOXYGEN
namespace FETools
{
template <class FE>
FiniteElement<FE::dimension, FE::space_dimension> *
FEFactory<FE>::get (const unsigned int degree) const
{
return new FE(degree);
}
}
#endif
/*@}*/
DEAL_II_NAMESPACE_CLOSE
/*---------------------------- fe_tools.h ---------------------------*/
/* end of #ifndef dealii__fe_tools_H */
#endif
/*---------------------------- fe_tools.h ---------------------------*/
|