/usr/include/deal.II/fe/fe_series.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 | // ---------------------------------------------------------------------
//
// Copyright (C) 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__fe_series_H
#define dealii__fe_series_H
#include <deal.II/base/std_cxx11/shared_ptr.h>
#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/table.h>
#include <deal.II/base/table_indices.h>
#include <deal.II/base/tensor.h>
#include <deal.II/hp/fe_collection.h>
#include <deal.II/hp/q_collection.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/vector.h>
#include <deal.II/numerics/vector_tools.h>
#include <vector>
#include <string>
DEAL_II_NAMESPACE_OPEN
/*!@addtogroup feall */
/*@{*/
/**
* This namespace offers functions to calculate expansion series of the
* solution on the reference element. Coefficients of expansion are often used
* to estimate local smoothness of the underlying FiniteElement field to decide
* on h- or p-adaptive refinement strategy.
*
* @author Denis Davydov, 2016;
*/
namespace FESeries
{
/**
* A class to calculate expansion of a scalar FE field into Fourier series
* on a reference element. The exponential form of the Fourier series is
* based on completeness and Hermitian orthogonality of the set of exponential
* functions $ \phi_{\bf k}({\bf x}) = \exp(2 \pi i\, {\bf k} \cdot {\bf x})$.
* For example in 1D the L2-orthogonality condition reads
* @f[
* \int_0^1 \phi_k(x) \phi_l^\ast(x) dx=\delta_{kl}.
* @f]
* Note that $ \phi_{\bf k} = \phi_{-\bf k}^\ast $.
*
* The arbitrary scalar FE field on the reference element can be expanded in
* the complete orthogonal exponential basis as
* @f[
* u({\bf x})
* = \sum_{\bf k} c_{\bf k} \phi_{\bf k}({\bf x}).
* @f]
* From the orthogonality property of the basis, it follows that
* @f[
* c_{\bf k} =
* \int_{[0,1]^d} u({\bf x}) \phi_{\bf k}^\ast ({\bf x}) d{\bf x}\,.
* @f]
* It is this complex-valued expansion coefficients, that are calculated by
* this class. Note that $ u({\bf x}) = \sum_i u_i N_i({\bf x})$,
* where $ N_i({\bf x}) $ are real-valued FiniteElement shape functions.
* Consequently $ c_{\bf k} \equiv c_{-\bf k}^\ast $ and
* we only need to compute $ c_{\bf k} $ for positive indices
* $ \bf k $ .
*
* @author Denis Davydov, 2016.
*/
template <int dim>
class Fourier : public Subscriptor
{
public:
/**
* A non-default constructor. The @p size_in_each_direction defines the number
* of modes in each direction, @p fe_collection is the hp::FECollection
* for which expansion will be used and @p q_collection is the hp::QCollection
* used to integrate the expansion for each FiniteElement
* in @p fe_collection.
*/
Fourier(const unsigned int size_in_each_direction,
const hp::FECollection<dim> &fe_collection,
const hp::QCollection<dim> &q_collection);
/**
* Calculate @p fourier_coefficients of the cell vector field given by
* @p local_dof_values corresponding to FiniteElement with
* @p cell_active_fe_index .
*/
void calculate(const dealii::Vector<double> &local_dof_values,
const unsigned int cell_active_fe_index,
Table<dim,std::complex<double> > &fourier_coefficients);
private:
/**
* hp::FECollection for which transformation matrices will be calculated.
*/
SmartPointer<const hp::FECollection<dim> > fe_collection;
/**
* hp::QCollection used in calculation of transformation matrices.
*/
SmartPointer<const hp::QCollection<dim> > q_collection;
/**
* Ensure that the transformation matrix for FiniteElement index
* @p fe_index is calculated. If not, calculate it.
*/
void ensure_existence(const unsigned int fe_index);
/**
* Angular frequencies $ 2 \pi {\bf k} $ .
*/
Table<dim, Tensor<1,dim> > k_vectors;
/**
* Transformation matrices for each FiniteElement.
*/
std::vector<FullMatrix<std::complex<double> > > fourier_transform_matrices;
/**
* Auxiliary vector to store unrolled coefficients.
*/
std::vector<std::complex<double> > unrolled_coefficients;
};
/**
* A class to calculate expansion of a scalar FE field into series of Legendre
* functions on a reference element.
*
* Legendre functions are solutions to Legendre's differential equation
* @f[
* \frac{d}{dx}\left([1-x^2] \frac{d}{dx} P_n(x)\right) +
* n[n+1] P_n(x) = 0
* @f]
* and can be expressed using Rodrigues' formula
* @f[
* P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n}[x^2-1]^n.
* @f]
* These polynomials are orthogonal with respect to the $ L^2 $ inner
* product on the interval $ [-1;1] $
* @f[
* \int_{-1}^1 P_m(x) P_n(x) = \frac{2}{2n + 1} \delta_{mn}
* @f]
* and are complete.
* A family of $ L^2 $-orthogonal polynomials on $ [0;1] $ can be
* constructed via
* @f[
* \widetilde P_m = \sqrt{2} P_m(2x-1).
* @f]
*
*
* An arbitrary scalar FE field on the reference element $ [0;1] $ can be
* expanded in the complete orthogonal basis as
* @f[
* u(x)
* = \sum_{m} c_m \widetilde P_{m}(x).
* @f]
* From the orthogonality property of the basis, it follows that
* @f[
* c_m = \frac{2m+1}{2}
* \int_0^1 u(x) \widetilde P_m(x) dx .
* @f]
* This class calculates coefficients $ c_{\bf k} $ using
* $ dim $-dimensional Legendre polynomials constructed from
* $ \widetilde P_m(x) $ using tensor product rule.
*
* @author Denis Davydov, 2016.
*/
template <int dim>
class Legendre : public Subscriptor
{
public:
/**
* A non-default constructor. The @p size_in_each_direction defines the number
* of coefficients in each direction, @p fe_collection is the hp::FECollection
* for which expansion will be used and @p q_collection is the hp::QCollection
* used to integrate the expansion for each FiniteElement
* in @p fe_collection.
*/
Legendre(const unsigned int size_in_each_direction,
const hp::FECollection<dim> &fe_collection,
const hp::QCollection<dim> &q_collection);
/**
* Calculate @p legendre_coefficients of the cell vector field given by
* @p local_dof_values corresponding to FiniteElement with
* @p cell_active_fe_index .
*/
void calculate(const dealii::Vector<double> &local_dof_values,
const unsigned int cell_active_fe_index,
Table<dim,double> &legendre_coefficients);
private:
/**
* Number of coefficients in each direction
*/
const unsigned int N;
/**
* hp::FECollection for which transformation matrices will be calculated.
*/
SmartPointer<const hp::FECollection<dim> > fe_collection;
/**
* hp::QCollection used in calculation of transformation matrices.
*/
SmartPointer<const hp::QCollection<dim> > q_collection;
/**
* Ensure that the transformation matrix for FiniteElement index
* @p fe_index is calculated. If not, calculate it.
*/
void ensure_existence(const unsigned int fe_index);
/**
* Transformation matrices for each FiniteElement.
*/
std::vector<FullMatrix<double> > legendre_transform_matrices;
/**
* Auxiliary vector to store unrolled coefficients.
*/
std::vector<double> unrolled_coefficients;
};
/**
* Calculate the @p norm of subsets of @p coefficients defined by
* @p predicate being constant. Return the pair of vectors of predicate values
* and the vector of calculated subset norms.
*
* @p predicate should return a pair of <code>bool</code> and <code>unsigned int</code>.
* The former is a flag whether a given TableIndices should be used in
* calculation, whereas the latter is the unrolled value of indices according
* to which the subsets of coefficients will be formed.
*
* @note Only the following values of @p norm are implemented and make sense
* in this case: mean, L1_norm, L2_norm, Linfty_norm. The mean norm can only
* be applied to real valued coefficients.
*/
template <int dim, typename T>
std::pair<std::vector<unsigned int>,std::vector<double> >
process_coefficients(const Table<dim,T> &coefficients,
const std_cxx11::function<std::pair<bool,unsigned int>(const TableIndices<dim> &)> &predicate,
const VectorTools::NormType norm);
/**
* Linear regression least-square fit of $y = k \, x + b$.
* The size of the input vectors should be equal and more than 1.
* The returned pair will contain $k$ (first) and $b$ (second).
*/
std::pair<double,double> linear_regression(const std::vector<double> &x,
const std::vector<double> &y);
}
/*@}*/
#ifndef DOXYGEN
// ------------------- inline and template functions ----------------
namespace
{
template <int dim,typename T>
void fill_map_index(const Table<dim,T> &coefficients,
const TableIndices<dim> &ind,
const std_cxx11::function<std::pair<bool,unsigned int>(const TableIndices<dim> &)> &predicate,
std::map<unsigned int, std::vector<T> > &pred_to_values)
{
const std::pair<bool,unsigned int> pred_pair = predicate(ind);
// don't add a value if predicate is false
if (pred_pair.first == false)
return;
const unsigned int &pred_value = pred_pair.second;
const T &coeff_value = coefficients(ind);
// If pred_value is not in the pred_to_values map, the element will be created.
// Otherwise a reference to the existing element is returned.
pred_to_values[pred_value].push_back(coeff_value);
}
template <typename T>
void fill_map(const Table<1,T> &coefficients,
const std_cxx11::function<std::pair<bool,unsigned int>(const TableIndices<1> &)> &predicate,
std::map<unsigned int, std::vector<T> > &pred_to_values)
{
for (unsigned int i = 0; i < coefficients.size(0); i++)
{
const TableIndices<1> ind(i);
fill_map_index(coefficients,ind,predicate,pred_to_values);
}
}
template <typename T>
void fill_map(const Table<2,T> &coefficients,
const std_cxx11::function<std::pair<bool,unsigned int>(const TableIndices<2> &)> &predicate,
std::map<unsigned int, std::vector<T> > &pred_to_values)
{
for (unsigned int i = 0; i < coefficients.size(0); i++)
for (unsigned int j = 0; j < coefficients.size(1); j++)
{
const TableIndices<2> ind(i,j);
fill_map_index(coefficients,ind,predicate,pred_to_values);
}
}
template <typename T>
void fill_map(const Table<3,T> &coefficients,
const std_cxx11::function<std::pair<bool,unsigned int>(const TableIndices<3> &)> &predicate,
std::map<unsigned int, std::vector<T> > &pred_to_values)
{
for (unsigned int i = 0; i < coefficients.size(0); i++)
for (unsigned int j = 0; j < coefficients.size(1); j++)
for (unsigned int k = 0; k < coefficients.size(2); k++)
{
const TableIndices<3> ind(i,j,k);
fill_map_index(coefficients,ind,predicate,pred_to_values);
}
}
template <typename T>
double complex_mean_value(const T &value)
{
return value;
}
template <typename T>
double complex_mean_value(const std::complex<T> &value)
{
AssertThrow(false, ExcMessage("FESeries::process_coefficients() can not be used with"
"complex-valued coefficients and VectorTools::mean norm."));
return std::abs(value);
}
}
template <int dim, typename T>
std::pair<std::vector<unsigned int>,std::vector<double> >
FESeries::process_coefficients(const Table<dim,T> &coefficients,
const std_cxx11::function<std::pair<bool,unsigned int>(const TableIndices<dim> &)> &predicate,
const VectorTools::NormType norm)
{
std::vector<unsigned int> predicate_values;
std::vector<double> norm_values;
// first, parse all table elements into a map of predicate values and coefficients.
// We could have stored (predicate values ->TableIndicies) map, but its
// processing would have been much harder later on.
std::map<unsigned int, std::vector<T> > pred_to_values;
fill_map(coefficients,predicate,pred_to_values);
// now go through the map and populate the @p norm_values based on @p norm:
for (typename std::map<unsigned int, std::vector<T> >::const_iterator it = pred_to_values.begin();
it != pred_to_values.end(); ++it)
{
predicate_values.push_back(it->first);
Vector<T> values(it->second.begin(),
it->second.end());
switch (norm)
{
case VectorTools::L2_norm:
{
norm_values.push_back(values.l2_norm());
break;
}
case VectorTools::L1_norm:
{
norm_values.push_back(values.l1_norm());
break;
}
case VectorTools::Linfty_norm:
{
norm_values.push_back(values.linfty_norm());
break;
}
case VectorTools::mean:
{
norm_values.push_back(complex_mean_value(values.mean_value()));
break;
}
default:
AssertThrow(false, ExcNotImplemented());
break;
}
}
return std::make_pair(predicate_values,norm_values);
}
#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE
#endif // dealii__fe_series_H
|