/usr/include/deal.II/fe/fe_q.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 | // ---------------------------------------------------------------------
//
// Copyright (C) 2000 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__fe_q_h
#define dealii__fe_q_h
#include <deal.II/base/config.h>
#include <deal.II/base/tensor_product_polynomials.h>
#include <deal.II/fe/fe_q_base.h>
DEAL_II_NAMESPACE_OPEN
/*!@addtogroup fe */
/*@{*/
/**
* Implementation of a scalar Lagrange finite element @p Qp that yields the
* finite element space of continuous, piecewise polynomials of degree @p p in
* each coordinate direction. This class is realized using tensor product
* polynomials based on 1D Lagrange polynomials with equidistant (degree up to
* 2), Gauss-Lobatto (starting from degree 3), or given support points.
*
* The standard constructor of this class takes the degree @p p of this finite
* element. Alternatively, it can take a quadrature formula @p points defining
* the support points of the Lagrange interpolation in one coordinate
* direction.
*
* For more information about the <tt>spacedim</tt> template parameter check
* the documentation of FiniteElement or the one of Triangulation.
*
* <h3>Implementation</h3>
*
* The constructor creates a TensorProductPolynomials object that includes the
* tensor product of @p LagrangeEquidistant polynomials of degree @p p. This
* @p TensorProductPolynomials object provides all values and derivatives of
* the shape functions. In case a quadrature rule is given, the constructor
* creates a TensorProductPolynomials object that includes the tensor product
* of @p Lagrange polynomials with the support points from @p points.
*
* Furthermore the constructor fills the @p interface_constraints, the @p
* prolongation (embedding) and the @p restriction matrices. These are
* implemented only up to a certain degree and may not be available for very
* high polynomial degree.
*
* <h3>Unit support point distribution and conditioning of interpolation</h3>
*
* When constructing an FE_Q element at polynomial degrees one or two,
* equidistant support points at 0 and 1 (linear case) or 0, 0.5, and 1
* (quadratic case) are used. The unit support or nodal points
* <i>x<sub>i</sub></i> are those points where the <i>j</i>th Lagrange
* polynomial satisfies the $\delta_{ij}$ property, i.e., where one polynomial
* is one and all the others are zero. For higher polynomial degrees, the
* support points are non-equidistant by default, and chosen to be the support
* points of the <tt>(degree+1)</tt>-order Gauss-Lobatto quadrature rule. This
* point distribution yields well-conditioned Lagrange interpolation at
* arbitrary polynomial degrees. By contrast, polynomials based on equidistant
* points get increasingly ill-conditioned as the polynomial degree
* increases. In interpolation, this effect is known as the Runge
* phenomenon. For Galerkin methods, the Runge phenomenon is typically not
* visible in the solution quality but rather in the condition number of the
* associated system matrices. For example, the elemental mass matrix of
* equidistant points at degree 10 has condition number 2.6e6, whereas the
* condition number for Gauss-Lobatto points is around 400.
*
* The Gauss-Lobatto points in 1D include the end points 0 and +1 of the unit
* interval. The interior points are shifted towards the end points, which
* gives a denser point distribution close to the element boundary.
*
* If combined with Gauss-Lobatto quadrature, FE_Q based on the default
* support points gives diagonal mass matrices. This case is demonstrated in
* step-48. However, this element can be combined with arbitrary quadrature
* rules through the usual FEValues approach, including full Gauss
* quadrature. In the general case, the mass matrix is non-diagonal.
*
* <h3>Numbering of the degrees of freedom (DoFs)</h3>
*
* The original ordering of the shape functions represented by the
* TensorProductPolynomials is a tensor product numbering. However, the shape
* functions on a cell are renumbered beginning with the shape functions whose
* support points are at the vertices, then on the line, on the quads, and
* finally (for 3d) on the hexes. To be explicit, these numberings are listed
* in the following:
*
* <h4>Q1 elements</h4>
* <ul>
* <li> 1D case:
* @verbatim
* 0-------1
* @endverbatim
*
* <li> 2D case:
* @verbatim
* 2-------3
* | |
* | |
* | |
* 0-------1
* @endverbatim
*
* <li> 3D case:
* @verbatim
* 6-------7 6-------7
* /| | / /|
* / | | / / |
* / | | / / |
* 4 | | 4-------5 |
* | 2-------3 | | 3
* | / / | | /
* | / / | | /
* |/ / | |/
* 0-------1 0-------1
* @endverbatim
*
* The respective coordinate values of the support points of the shape
* functions are as follows:
* <ul>
* <li> Shape function 0: <tt>[0, 0, 0]</tt>;
* <li> Shape function 1: <tt>[1, 0, 0]</tt>;
* <li> Shape function 2: <tt>[0, 1, 0]</tt>;
* <li> Shape function 3: <tt>[1, 1, 0]</tt>;
* <li> Shape function 4: <tt>[0, 0, 1]</tt>;
* <li> Shape function 5: <tt>[1, 0, 1]</tt>;
* <li> Shape function 6: <tt>[0, 1, 1]</tt>;
* <li> Shape function 7: <tt>[1, 1, 1]</tt>;
* </ul>
* </ul>
*
* In 2d, these shape functions look as follows: <table> <tr> <td
* align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0001.png
* </td> </tr> <tr> <td align="center"> $Q_1$ element, shape function 0 </td>
*
* <td align="center"> $Q_1$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0003.png
* </td> </tr> <tr> <td align="center"> $Q_1$ element, shape function 2 </td>
*
* <td align="center"> $Q_1$ element, shape function 3 </td> </tr> </table>
*
*
* <h4>Q2 elements</h4>
* <ul>
* <li> 1D case:
* @verbatim
* 0---2---1
* @endverbatim
*
* <li> 2D case:
* @verbatim
* 2---7---3
* | |
* 4 8 5
* | |
* 0---6---1
* @endverbatim
*
* <li> 3D case:
* @verbatim
* 6--15---7 6--15---7
* /| | / /|
* 12 | 19 12 1319
* / 18 | / / |
* 4 | | 4---14--5 |
* | 2---11--3 | | 3
* | / / | 17 /
* 16 8 9 16 | 9
* |/ / | |/
* 0---10--1 0---10--1
*
* *-------* *-------*
* /| | / /|
* / | 23 | / 25 / |
* / | | / / |
* * | | *-------* |
* |20 *-------* | |21 *
* | / / | 22 | /
* | / 24 / | | /
* |/ / | |/
* *-------* *-------*
* @endverbatim
* The center vertex has number 26.
*
* The respective coordinate values of the support points of the shape
* functions are as follows:
* <ul>
* <li> Shape function 0: <tt>[0, 0, 0]</tt>;
* <li> Shape function 1: <tt>[1, 0, 0]</tt>;
* <li> Shape function 2: <tt>[0, 1, 0]</tt>;
* <li> Shape function 3: <tt>[1, 1, 0]</tt>;
* <li> Shape function 4: <tt>[0, 0, 1]</tt>;
* <li> Shape function 5: <tt>[1, 0, 1]</tt>;
* <li> Shape function 6: <tt>[0, 1, 1]</tt>;
* <li> Shape function 7: <tt>[1, 1, 1]</tt>;
* <li> Shape function 8: <tt>[0, 1/2, 0]</tt>;
* <li> Shape function 9: <tt>[1, 1/2, 0]</tt>;
* <li> Shape function 10: <tt>[1/2, 0, 0]</tt>;
* <li> Shape function 11: <tt>[1/2, 1, 0]</tt>;
* <li> Shape function 12: <tt>[0, 1/2, 1]</tt>;
* <li> Shape function 13: <tt>[1, 1/2, 1]</tt>;
* <li> Shape function 14: <tt>[1/2, 0, 1]</tt>;
* <li> Shape function 15: <tt>[1/2, 1, 1]</tt>;
* <li> Shape function 16: <tt>[0, 0, 1/2]</tt>;
* <li> Shape function 17: <tt>[1, 0, 1/2]</tt>;
* <li> Shape function 18: <tt>[0, 1, 1/2]</tt>;
* <li> Shape function 19: <tt>[1, 1, 1/2]</tt>;
* <li> Shape function 20: <tt>[0, 1/2, 1/2]</tt>;
* <li> Shape function 21: <tt>[1, 1/2, 1/2]</tt>;
* <li> Shape function 22: <tt>[1/2, 0, 1/2]</tt>;
* <li> Shape function 23: <tt>[1/2, 1, 1/2]</tt>;
* <li> Shape function 24: <tt>[1/2, 1/2, 0]</tt>;
* <li> Shape function 25: <tt>[1/2, 1/2, 1]</tt>;
* <li> Shape function 26: <tt>[1/2, 1/2, 1/2]</tt>;
* </ul>
* </ul>
*
*
* In 2d, these shape functions look as follows (the black plane corresponds
* to zero; negative shape function values may not be visible): <table> <tr>
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0001.png
* </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 0 </td>
*
* <td align="center"> $Q_2$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0003.png
* </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 2 </td>
*
* <td align="center"> $Q_2$ element, shape function 3 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0004.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0005.png
* </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 4 </td>
*
* <td align="center"> $Q_2$ element, shape function 5 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0006.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0007.png
* </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 6 </td>
*
* <td align="center"> $Q_2$ element, shape function 7 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0008.png
* </td>
*
* <td align="center"> </td> </tr> <tr> <td align="center"> $Q_2$ element,
* shape function 8 </td>
*
* <td align="center"> </td> </tr> </table>
*
*
* <h4>Q3 elements</h4>
* <ul>
* <li> 1D case:
* @verbatim
* 0--2--3--1
* @endverbatim
*
* <li> 2D case:
* @verbatim
* 2--10-11-3
* | |
* 5 14 15 7
* | |
* 4 12 13 6
* | |
* 0--8--9--1
* @endverbatim
* </ul>
*
* In 2d, these shape functions look as follows (the black plane corresponds
* to zero; negative shape function values may not be visible): <table> <tr>
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0001.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 0 </td>
*
* <td align="center"> $Q_3$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0003.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 2 </td>
*
* <td align="center"> $Q_3$ element, shape function 3 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0004.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0005.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 4 </td>
*
* <td align="center"> $Q_3$ element, shape function 5 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0006.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0007.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 6 </td>
*
* <td align="center"> $Q_3$ element, shape function 7 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0008.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0009.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 8 </td>
*
* <td align="center"> $Q_3$ element, shape function 9 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0010.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0011.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 10 </td>
*
* <td align="center"> $Q_3$ element, shape function 11 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0012.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0013.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 12 </td>
*
* <td align="center"> $Q_3$ element, shape function 13 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0014.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0015.png
* </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 14 </td>
*
* <td align="center"> $Q_3$ element, shape function 15 </td> </tr> </table>
*
*
* <h4>Q4 elements</h4>
* <ul>
* <li> 1D case:
* @verbatim
* 0--2--3--4--1
* @endverbatim
*
* <li> 2D case:
* @verbatim
* 2--13-14-15-3
* | |
* 6 22 23 24 9
* | |
* 5 19 20 21 8
* | |
* 4 16 17 18 7
* | |
* 0--10-11-12-1
* @endverbatim
* </ul>
*
* In 2d, these shape functions look as follows (the black plane corresponds
* to zero; negative shape function values may not be visible): <table> <tr>
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0001.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 0 </td>
*
* <td align="center"> $Q_4$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0003.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 2 </td>
*
* <td align="center"> $Q_4$ element, shape function 3 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0004.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0005.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 4 </td>
*
* <td align="center"> $Q_4$ element, shape function 5 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0006.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0007.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 6 </td>
*
* <td align="center"> $Q_4$ element, shape function 7 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0008.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0009.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 8 </td>
*
* <td align="center"> $Q_4$ element, shape function 9 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0010.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0011.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 10 </td>
*
* <td align="center"> $Q_4$ element, shape function 11 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0012.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0013.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 12 </td>
*
* <td align="center"> $Q_4$ element, shape function 13 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0014.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0015.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 14 </td>
*
* <td align="center"> $Q_4$ element, shape function 15 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0016.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0017.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 16 </td>
*
* <td align="center"> $Q_4$ element, shape function 17 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0018.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0019.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 18 </td>
*
* <td align="center"> $Q_4$ element, shape function 19 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0020.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0021.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 20 </td>
*
* <td align="center"> $Q_4$ element, shape function 21 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0022.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0023.png
* </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 22 </td>
*
* <td align="center"> $Q_4$ element, shape function 23 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0024.png
* </td>
*
* <td align="center"> </td> </tr> <tr> <td align="center"> $Q_4$ element,
* shape function 24 </td>
*
* <td align="center"> </td> </tr> </table>
*
*
*
* @author Wolfgang Bangerth, 1998, 2003; Guido Kanschat, 2001; Ralf Hartmann,
* 2001, 2004, 2005; Oliver Kayser-Herold, 2004; Katharina Kormann, 2008;
* Martin Kronbichler, 2008
*/
template <int dim, int spacedim=dim>
class FE_Q : public FE_Q_Base<TensorProductPolynomials<dim>,dim,spacedim>
{
public:
/**
* Constructor for tensor product polynomials of degree @p p based on
* Gauss-Lobatto support (node) points. For polynomial degrees of one and
* two, these are the usual equidistant points.
*/
FE_Q (const unsigned int p);
/**
* Constructor for tensor product polynomials with support points @p points
* based on a one-dimensional quadrature formula. The degree of the finite
* element is <tt>points.size()-1</tt>. Note that the first point has to be
* 0 and the last one 1. Constructing
* <tt>FE_Q<dim>(QGaussLobatto<1>(fe_degree+1))</tt> is equivalent to the
* constructor that specifies the polynomial degree only. For selecting
* equidistant nodes at <tt>fe_degree > 2</tt>, construct
* <tt>FE_Q<dim>(QIterated<1>(QTrapez<1>(),fe_degree))</tt>.
*/
FE_Q (const Quadrature<1> &points);
/**
* Construct a FE_Q_isoQ1 element. That element shares large parts of code
* with FE_Q so most of the construction work is done in this routine,
* whereas the public constructor is in the class FE_Q_isoQ1.
*/
FE_Q(const unsigned int subdivisions_per_dimension,
const unsigned int base_degree);
/**
* Return a string that uniquely identifies a finite element. This class
* returns <tt>FE_Q<dim>(degree)</tt>, with @p dim and @p degree replaced by
* appropriate values.
*/
virtual std::string get_name () const;
protected:
/**
* @p clone function instead of a copy constructor.
*
* This function is needed by the constructors of @p FESystem.
*/
virtual FiniteElement<dim,spacedim> *clone() const;
};
/*@}*/
DEAL_II_NAMESPACE_CLOSE
#endif
|