This file is indexed.

/usr/include/deal.II/fe/fe_q.h is in libdeal.ii-dev 8.5.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
// ---------------------------------------------------------------------
//
// Copyright (C) 2000 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__fe_q_h
#define dealii__fe_q_h

#include <deal.II/base/config.h>
#include <deal.II/base/tensor_product_polynomials.h>
#include <deal.II/fe/fe_q_base.h>

DEAL_II_NAMESPACE_OPEN


/*!@addtogroup fe */
/*@{*/

/**
 * Implementation of a scalar Lagrange finite element @p Qp that yields the
 * finite element space of continuous, piecewise polynomials of degree @p p in
 * each coordinate direction. This class is realized using tensor product
 * polynomials based on 1D Lagrange polynomials with equidistant (degree up to
 * 2), Gauss-Lobatto (starting from degree 3), or given support points.
 *
 * The standard constructor of this class takes the degree @p p of this finite
 * element. Alternatively, it can take a quadrature formula @p points defining
 * the support points of the Lagrange interpolation in one coordinate
 * direction.
 *
 * For more information about the <tt>spacedim</tt> template parameter check
 * the documentation of FiniteElement or the one of Triangulation.
 *
 * <h3>Implementation</h3>
 *
 * The constructor creates a TensorProductPolynomials object that includes the
 * tensor product of @p LagrangeEquidistant polynomials of degree @p p. This
 * @p TensorProductPolynomials object provides all values and derivatives of
 * the shape functions.  In case a quadrature rule is given, the constructor
 * creates a TensorProductPolynomials object that includes the tensor product
 * of @p Lagrange polynomials with the support points from @p points.
 *
 * Furthermore the constructor fills the @p interface_constraints, the @p
 * prolongation (embedding) and the @p restriction matrices. These are
 * implemented only up to a certain degree and may not be available for very
 * high polynomial degree.
 *
 * <h3>Unit support point distribution and conditioning of interpolation</h3>
 *
 * When constructing an FE_Q element at polynomial degrees one or two,
 * equidistant support points at 0 and 1 (linear case) or 0, 0.5, and 1
 * (quadratic case) are used. The unit support or nodal points
 * <i>x<sub>i</sub></i> are those points where the <i>j</i>th Lagrange
 * polynomial satisfies the $\delta_{ij}$ property, i.e., where one polynomial
 * is one and all the others are zero.  For higher polynomial degrees, the
 * support points are non-equidistant by default, and chosen to be the support
 * points of the <tt>(degree+1)</tt>-order Gauss-Lobatto quadrature rule. This
 * point distribution yields well-conditioned Lagrange interpolation at
 * arbitrary polynomial degrees. By contrast, polynomials based on equidistant
 * points get increasingly ill-conditioned as the polynomial degree
 * increases. In interpolation, this effect is known as the Runge
 * phenomenon. For Galerkin methods, the Runge phenomenon is typically not
 * visible in the solution quality but rather in the condition number of the
 * associated system matrices. For example, the elemental mass matrix of
 * equidistant points at degree 10 has condition number 2.6e6, whereas the
 * condition number for Gauss-Lobatto points is around 400.
 *
 * The Gauss-Lobatto points in 1D include the end points 0 and +1 of the unit
 * interval. The interior points are shifted towards the end points, which
 * gives a denser point distribution close to the element boundary.
 *
 * If combined with Gauss-Lobatto quadrature, FE_Q based on the default
 * support points gives diagonal mass matrices. This case is demonstrated in
 * step-48. However, this element can be combined with arbitrary quadrature
 * rules through the usual FEValues approach, including full Gauss
 * quadrature. In the general case, the mass matrix is non-diagonal.
 *
 * <h3>Numbering of the degrees of freedom (DoFs)</h3>
 *
 * The original ordering of the shape functions represented by the
 * TensorProductPolynomials is a tensor product numbering. However, the shape
 * functions on a cell are renumbered beginning with the shape functions whose
 * support points are at the vertices, then on the line, on the quads, and
 * finally (for 3d) on the hexes. To be explicit, these numberings are listed
 * in the following:
 *
 * <h4>Q1 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0-------1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2-------3
 *      |       |
 *      |       |
 *      |       |
 *      0-------1
 *   @endverbatim
 *
 * <li> 3D case:
 *   @verbatim
 *         6-------7        6-------7
 *        /|       |       /       /|
 *       / |       |      /       / |
 *      /  |       |     /       /  |
 *     4   |       |    4-------5   |
 *     |   2-------3    |       |   3
 *     |  /       /     |       |  /
 *     | /       /      |       | /
 *     |/       /       |       |/
 *     0-------1        0-------1
 *   @endverbatim
 *
 * The respective coordinate values of the support points of the shape
 * functions are as follows:
 * <ul>
 * <li> Shape function 0: <tt>[0, 0, 0]</tt>;
 * <li> Shape function 1: <tt>[1, 0, 0]</tt>;
 * <li> Shape function 2: <tt>[0, 1, 0]</tt>;
 * <li> Shape function 3: <tt>[1, 1, 0]</tt>;
 * <li> Shape function 4: <tt>[0, 0, 1]</tt>;
 * <li> Shape function 5: <tt>[1, 0, 1]</tt>;
 * <li> Shape function 6: <tt>[0, 1, 1]</tt>;
 * <li> Shape function 7: <tt>[1, 1, 1]</tt>;
 * </ul>
 * </ul>
 *
 * In 2d, these shape functions look as follows: <table> <tr> <td
 * align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0001.png
 * </td> </tr> <tr> <td align="center"> $Q_1$ element, shape function 0 </td>
 *
 * <td align="center"> $Q_1$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q1/Q1_shape0003.png
 * </td> </tr> <tr> <td align="center"> $Q_1$ element, shape function 2 </td>
 *
 * <td align="center"> $Q_1$ element, shape function 3 </td> </tr> </table>
 *
 *
 * <h4>Q2 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0---2---1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2---7---3
 *      |       |
 *      4   8   5
 *      |       |
 *      0---6---1
 *   @endverbatim
 *
 * <li> 3D case:
 *   @verbatim
 *         6--15---7        6--15---7
 *        /|       |       /       /|
 *      12 |       19     12      1319
 *      /  18      |     /       /  |
 *     4   |       |    4---14--5   |
 *     |   2---11--3    |       |   3
 *     |  /       /     |      17  /
 *    16 8       9     16       | 9
 *     |/       /       |       |/
 *     0---10--1        0---10--1
 *
 *         *-------*        *-------*
 *        /|       |       /       /|
 *       / |  23   |      /  25   / |
 *      /  |       |     /       /  |
 *     *   |       |    *-------*   |
 *     |20 *-------*    |       |21 *
 *     |  /       /     |   22  |  /
 *     | /  24   /      |       | /
 *     |/       /       |       |/
 *     *-------*        *-------*
 *   @endverbatim
 * The center vertex has number 26.
 *
 * The respective coordinate values of the support points of the shape
 * functions are as follows:
 * <ul>
 * <li> Shape function 0: <tt>[0, 0, 0]</tt>;
 * <li> Shape function 1: <tt>[1, 0, 0]</tt>;
 * <li> Shape function 2: <tt>[0, 1, 0]</tt>;
 * <li> Shape function 3: <tt>[1, 1, 0]</tt>;
 * <li> Shape function 4: <tt>[0, 0, 1]</tt>;
 * <li> Shape function 5: <tt>[1, 0, 1]</tt>;
 * <li> Shape function 6: <tt>[0, 1, 1]</tt>;
 * <li> Shape function 7: <tt>[1, 1, 1]</tt>;
 * <li> Shape function 8: <tt>[0, 1/2, 0]</tt>;
 * <li> Shape function 9: <tt>[1, 1/2, 0]</tt>;
 * <li> Shape function 10: <tt>[1/2, 0, 0]</tt>;
 * <li> Shape function 11: <tt>[1/2, 1, 0]</tt>;
 * <li> Shape function 12: <tt>[0, 1/2, 1]</tt>;
 * <li> Shape function 13: <tt>[1, 1/2, 1]</tt>;
 * <li> Shape function 14: <tt>[1/2, 0, 1]</tt>;
 * <li> Shape function 15: <tt>[1/2, 1, 1]</tt>;
 * <li> Shape function 16: <tt>[0, 0, 1/2]</tt>;
 * <li> Shape function 17: <tt>[1, 0, 1/2]</tt>;
 * <li> Shape function 18: <tt>[0, 1, 1/2]</tt>;
 * <li> Shape function 19: <tt>[1, 1, 1/2]</tt>;
 * <li> Shape function 20: <tt>[0, 1/2, 1/2]</tt>;
 * <li> Shape function 21: <tt>[1, 1/2, 1/2]</tt>;
 * <li> Shape function 22: <tt>[1/2, 0, 1/2]</tt>;
 * <li> Shape function 23: <tt>[1/2, 1, 1/2]</tt>;
 * <li> Shape function 24: <tt>[1/2, 1/2, 0]</tt>;
 * <li> Shape function 25: <tt>[1/2, 1/2, 1]</tt>;
 * <li> Shape function 26: <tt>[1/2, 1/2, 1/2]</tt>;
 * </ul>
 * </ul>
 *
 *
 * In 2d, these shape functions look as follows (the black plane corresponds
 * to zero; negative shape function values may not be visible): <table> <tr>
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0001.png
 * </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 0 </td>
 *
 * <td align="center"> $Q_2$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0003.png
 * </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 2 </td>
 *
 * <td align="center"> $Q_2$ element, shape function 3 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0004.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0005.png
 * </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 4 </td>
 *
 * <td align="center"> $Q_2$ element, shape function 5 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0006.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0007.png
 * </td> </tr> <tr> <td align="center"> $Q_2$ element, shape function 6 </td>
 *
 * <td align="center"> $Q_2$ element, shape function 7 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q2/Q2_shape0008.png
 * </td>
 *
 * <td align="center"> </td> </tr> <tr> <td align="center"> $Q_2$ element,
 * shape function 8 </td>
 *
 * <td align="center"> </td> </tr> </table>
 *
 *
 * <h4>Q3 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0--2--3--1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2--10-11-3
 *      |        |
 *      5  14 15 7
 *      |        |
 *      4  12 13 6
 *      |        |
 *      0--8--9--1
 *   @endverbatim
 * </ul>
 *
 * In 2d, these shape functions look as follows (the black plane corresponds
 * to zero; negative shape function values may not be visible): <table> <tr>
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0001.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 0 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0003.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 2 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 3 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0004.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0005.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 4 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 5 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0006.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0007.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 6 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 7 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0008.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0009.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 8 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 9 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0010.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0011.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 10 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 11 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0012.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0013.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 12 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 13 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0014.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q3/Q3_shape0015.png
 * </td> </tr> <tr> <td align="center"> $Q_3$ element, shape function 14 </td>
 *
 * <td align="center"> $Q_3$ element, shape function 15 </td> </tr> </table>
 *
 *
 * <h4>Q4 elements</h4>
 * <ul>
 * <li> 1D case:
 *   @verbatim
 *      0--2--3--4--1
 *   @endverbatim
 *
 * <li> 2D case:
 *   @verbatim
 *      2--13-14-15-3
 *      |           |
 *      6  22 23 24 9
 *      |           |
 *      5  19 20 21 8
 *      |           |
 *      4  16 17 18 7
 *      |           |
 *      0--10-11-12-1
 *   @endverbatim
 * </ul>
 *
 * In 2d, these shape functions look as follows (the black plane corresponds
 * to zero; negative shape function values may not be visible): <table> <tr>
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0001.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 0 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0003.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 2 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 3 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0004.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0005.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 4 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 5 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0006.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0007.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 6 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 7 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0008.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0009.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 8 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 9 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0010.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0011.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 10 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 11 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0012.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0013.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 12 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 13 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0014.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0015.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 14 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 15 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0016.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0017.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 16 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 17 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0018.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0019.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 18 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 19 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0020.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0021.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 20 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 21 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0022.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0023.png
 * </td> </tr> <tr> <td align="center"> $Q_4$ element, shape function 22 </td>
 *
 * <td align="center"> $Q_4$ element, shape function 23 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/lagrange/Q4/Q4_shape0024.png
 * </td>
 *
 * <td align="center"> </td> </tr> <tr> <td align="center"> $Q_4$ element,
 * shape function 24 </td>
 *
 * <td align="center"> </td> </tr> </table>
 *
 *
 *
 * @author Wolfgang Bangerth, 1998, 2003; Guido Kanschat, 2001; Ralf Hartmann,
 * 2001, 2004, 2005; Oliver Kayser-Herold, 2004; Katharina Kormann, 2008;
 * Martin Kronbichler, 2008
 */
template <int dim, int spacedim=dim>
class FE_Q : public FE_Q_Base<TensorProductPolynomials<dim>,dim,spacedim>
{
public:
  /**
   * Constructor for tensor product polynomials of degree @p p based on
   * Gauss-Lobatto support (node) points. For polynomial degrees of one and
   * two, these are the usual equidistant points.
   */
  FE_Q (const unsigned int p);

  /**
   * Constructor for tensor product polynomials with support points @p points
   * based on a one-dimensional quadrature formula. The degree of the finite
   * element is <tt>points.size()-1</tt>. Note that the first point has to be
   * 0 and the last one 1. Constructing
   * <tt>FE_Q<dim>(QGaussLobatto<1>(fe_degree+1))</tt> is equivalent to the
   * constructor that specifies the polynomial degree only. For selecting
   * equidistant nodes at <tt>fe_degree > 2</tt>, construct
   * <tt>FE_Q<dim>(QIterated<1>(QTrapez<1>(),fe_degree))</tt>.
   */
  FE_Q (const Quadrature<1> &points);

  /**
   * Construct a FE_Q_isoQ1 element. That element shares large parts of code
   * with FE_Q so most of the construction work is done in this routine,
   * whereas the public constructor is in the class FE_Q_isoQ1.
   */
  FE_Q(const unsigned int subdivisions_per_dimension,
       const unsigned int base_degree);

  /**
   * Return a string that uniquely identifies a finite element. This class
   * returns <tt>FE_Q<dim>(degree)</tt>, with @p dim and @p degree replaced by
   * appropriate values.
   */
  virtual std::string get_name () const;

protected:

  /**
   * @p clone function instead of a copy constructor.
   *
   * This function is needed by the constructors of @p FESystem.
   */
  virtual FiniteElement<dim,spacedim> *clone() const;
};



/*@}*/

DEAL_II_NAMESPACE_CLOSE

#endif