/usr/include/deal.II/fe/fe_enriched.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 | // ---------------------------------------------------------------------
//
// Copyright (C) 2016 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__fe_enriched_h
#define dealii__fe_enriched_h
#include <deal.II/base/config.h>
// We require c++14 here even though we only need features that are part of
// c++11, but it turns out that gcc 4.6.x and 4.7.x don't support c++11
// features like delegating constructors.
#ifdef DEAL_II_WITH_CXX14
#include <deal.II/fe/fe.h>
#include <deal.II/fe/fe_system.h>
#include <deal.II/fe/fe_nothing.h>
#include <deal.II/fe/fe_update_flags.h>
#include <deal.II/base/function.h>
#include <deal.II/base/symmetric_tensor.h>
#include <deal.II/base/quadrature.h>
#include <vector>
#include <utility>
#include <numeric>
DEAL_II_NAMESPACE_OPEN
/**
* Implementation of a partition of unity finite element method (PUM) by
* Babuska and Melenk which enriches a standard
* finite element with an enrichment function multiplied with another (usually
* linear) finite element:
* \f[
* U(\mathbf x) = \sum_i N_i(\mathbf x) U_i + \sum_j N_j(\mathbf x) \sum_k F_k(\mathbf x) U_{jk}
* \f]
* where $ N_i(\mathbf x) $ and $ N_j(\mathbf x) $ are the underlying finite elements (including
* the mapping from the isoparametric element to the real element); $ F_k(\mathbf x) $
* are the scalar enrichment functions in real space (e.g. $ 1/r $, $ \exp(-r) $, etc);
* $ U_i $ and $ U_{jk} $ are the standard and enriched DoFs. This allows to
* include in the finite element space a priori knowledge about the partial
* differential equation being solved which in turn improves the local
* approximation properties of the spaces. This can be useful for highly oscillatory
* solutions, problems with domain corners or on unbounded domains or sudden
* changes of boundary conditions. PUM method uses finite element spaces which
* satisfy the partition of unity property (e.g. FE_Q). Among other properties
* this makes the resulting space to reproduce enrichment functions exactly.
*
* The simplest constructor of this class takes two finite element objects and an
* enrichment function to be used. For example
*
* @code
* FE_Enriched<dim> fe(FE_Q<dim>(2),
* FE_Q<dim>(1),
* function)
* @endcode
*
* In this case, standard DoFs are distributed by <code>FE_Q<dim>(2)</code>,
* whereas enriched DoFs are coming from a single finite element
* <code>FE_Q<dim>(1)</code> used with a single enrichment function
* <code>function</code>. In this case, the total number of DoFs on the
* enriched element is the sum of DoFs from <code>FE_Q<dim>(2)</code> and
* <code>FE_Q<dim>(1)</code>.
*
* As an example of an enrichment function, consider $ \exp(-x) $, which
* leads to the following shape functions on the unit element:
* <table>
* <tr>
* <td align="center">
* @image html fe_enriched_1d.png
* </td>
* <td align="center">
* @image html fe_enriched_h-refinement.png
* </td>
* </tr>
* <tr>
* <td align="center">
* 1d element, base and enriched shape functions.
* </td>
* <td align="center">
* enriched shape function corresponding to the central vertex.
* </td>
* </tr>
* </table>
*
* Note that evaluation of gradients (hessians) of the enriched shape functions
* or the finite element field requires evaluation of gradients (gradients and hessians)
* of the enrichment functions:
* @f{align*}{
* U(\mathbf x)
* &= \sum_i N_i(\mathbf x) U_i
* + \sum_{j,k} N_j(\mathbf x) F_k(\mathbf x) U_{jk} \\
* \mathbf \nabla U(\mathbf x)
* &= \sum_i \mathbf \nabla N_i(\mathbf x) U_i
* + \sum_{j,k} \left[\mathbf \nabla N_j(\mathbf x) F_k(\mathbf x) +
* N_j(\mathbf x) \mathbf \nabla F_k(\mathbf x) \right] U_{jk} \\
* \mathbf \nabla \mathbf \nabla U(\mathbf x)
* &= \sum_i \mathbf \nabla \mathbf \nabla N_i(\mathbf x) U_i
* + \sum_{j,k} \left[\mathbf \nabla \mathbf \nabla N_j(\mathbf x) F_k(\mathbf x) +
* \mathbf \nabla F_k(\mathbf x) \mathbf \nabla N_j(\mathbf x) +
* \mathbf \nabla N_j(\mathbf x) \mathbf \nabla F_k(\mathbf x) +
* N_j(\mathbf x) \mathbf \nabla \mathbf \nabla F_k(\mathbf x) \right] U_{jk}
* @f}
*
* <h3>Using enriched and non-enriched FEs together</h3>
*
* In most applications it is beneficial to introduce enrichments only in
* some part of the domain (e.g. around a crack tip) and use standard FE (e.g. FE_Q)
* elsewhere.
* This can be achieved by using the hp finite element framework in deal.II
* that allows for the use of different elements on different cells. To make
* the resulting space $C^0$ continuous, it is then necessary for the DoFHandler
* class and DoFTools::make_hanging_node_constraints() function to be able to
* figure out what to do at the interface between enriched and non-enriched
* cells. Specifically, we want the degrees of freedom corresponding to
* enriched shape functions to be zero at these interfaces. These classes and
* functions can not to do this automatically, but the effect can be achieved
* by using not just a regular FE_Q on cells without enrichment, but to wrap
* the FE_Q into an FE_Enriched object <i>without actually enriching it</i>.
* This can be done as follows:
* @code
* FE_Enriched<dim> fe_non_enriched(FE_Q<dim>(1));
* @endcode
* This constructor is equivalent to calling
* @code
* FE_Enriched<dim> fe_non_enriched(FE_Q<dim>(1),
* FE_Nothing<dim>(1,true),
* NULL);
* @endcode
* and will result in the correct constraints for enriched DoFs attributed to
* support points on the interface between the two regions.
*
* <h3>References</h3>
*
* When using this class, please cite
* @code{.bib}
* @Article{Davydov2016,
* Title = {On the h-adaptive PUM and hp-adaptive FEM approaches applied to PDEs in quantum mechanics.},
* Author = {Davydov, D and Gerasimov, T and Pelteret, J.-P. and Steinmann, P.},
* eprinttype = {arXiv},
* eprint = {1612.02305},
* eprintclass = {physics.comp-ph},
* Year = {2016},
* }
* @endcode
* The PUM was introduced in
* @code{.bib}
* @Article{Melenk1996,
* Title = {The partition of unity finite element method: Basic theory and applications },
* Author = {Melenk, J.M. and Babu\v{s}ka, I.},
* Journal = {Computer Methods in Applied Mechanics and Engineering},
* Year = {1996},
* Number = {1--4},
* Pages = {289 -- 314},
* Volume = {139},
* }
* @Article{Babuska1997,
* Title = {The partition of unity method},
* Author = {Babu\v{s}ka, I. and Melenk, J. M.},
* Journal = {International Journal for Numerical Methods in Engineering},
* Year = {1997},
* Number = {4},
* Pages = {727--758},
* Volume = {40},
* }
* @endcode
*
* <h3>Implementation</h3>
*
* The implementation of the class is based on FESystem which is aggregated as
* a private member. The simplest constructor <code> FE_Enriched<dim> fe(FE_Q<dim>(2), FE_Q<dim>(1),function)</code>
* will internally initialize FESystem as
*
* @code
* FESystem<dim> fe_system(FE_Q<dim>(2),1,
* FE_Q<dim>(1),1);
* @endcode
*
* Note that it would not be wise to have this class derived
* from FESystem as the latter concatenates the given elements into different
* components of a vector element, whereas the current class combines the given
* elements into the same components. For instance, if two scalar elements are
* given, the resulting element will be scalar rather than have two components
* when doing the same with an FESystem.
*
* The ordering of the shape function, @p interface_constrains, the @p prolongation (embedding)
* and the @p restriction matrices are taken from the FESystem class.
*
* @note This class is only available when deal.II is compiled with C++11.
*
* @ingroup fe
*
* @author Denis Davydov, 2016.
*/
template <int dim, int spacedim=dim>
class FE_Enriched : public FiniteElement<dim, spacedim>
{
public:
/**
* Constructor which takes base FiniteElement @p fe_base and the enrichment
* FiniteElement @p fe_enriched which will be multiplied by the @p enrichment_function.
*
* In case @p fe_enriched is other than FE_Nothing, the lifetime of the
* @p enrichment_function must be at least as long as the FE_Enriched object.
*/
FE_Enriched (const FiniteElement<dim,spacedim> &fe_base,
const FiniteElement<dim,spacedim> &fe_enriched,
const Function<spacedim> *enrichment_function);
/**
* Constructor which only wraps the base FE @p fe_base.
* As for the enriched finite element space, FE_Nothing is used.
* Continuity constraints will be automatically generated when
* this non-enriched element is used in conjunction with enriched finite element
* within the hp::DoFHandler.
*
* See the discussion in the class documentation on how to use this element
* in the context of hp finite element methods.
*/
FE_Enriched (const FiniteElement<dim,spacedim> &fe_base);
/**
* Constructor which takes pointer to the base FiniteElement @p fe_base and
* a vector of enriched FiniteElement's @p fe_enriched . @p fe_enriched[i]
* finite element will be enriched with functions in @p functions[i].
*
* This is the most general public constructor which also allows to have
* different enrichment functions in different disjoint parts of the domain.
* To that end the last argument provides an association of cell iterator
* to a Function. This is done to simplify the usage of this class when the
* number of disjoint domains with different functions is more than a few.
* Otherwise one would have to use different instance of this class for each
* disjoint enriched domain.
*
* If you don't plan to use this feature, you can utilize C++11 lambdas to
* define dummy functions. Below is an example which uses two functions with
* the first element to be enriched and a single function with the second one.
* @code
* FE_Enriched<dim> fe
* (&fe_base,
* {&fe_1, &fe_2},
* {{[=] (const typename Triangulation<dim>::cell_iterator &) -> const Function<dim> * {return &fe_1_function1;},
* [=] (const typename Triangulation<dim>::cell_iterator &) -> const Function<dim> * {return &fe_1_function2;}},
* {[=] (const typename Triangulation<dim>::cell_iterator &) -> const Function<dim> * {return &fe_2_function;}}});
* @endcode
*
* @note When using the same finite element for enrichment with N
* different functions, it is advised to have the second argument of size 1
* and the last argument of size 1 x N. The same can be achieved by providing
* N equivalent enrichment elements while keeping the last argument of size
* N x 1. However this will be much more computationally expensive.
*
* @note When using different enrichment functions on disjoint domains, no
* checks are done by this class that the domains are actually disjoint.
*/
FE_Enriched (const FiniteElement<dim,spacedim> *fe_base,
const std::vector<const FiniteElement<dim,spacedim> * > &fe_enriched,
const std::vector<std::vector<std::function<const Function<spacedim> *(const typename Triangulation<dim, spacedim>::cell_iterator &) > > > &functions);
private:
/**
* The most general private constructor. The first two input parameters are
* consistent with those in FESystem. It is used internally only with
* <code>multiplicities[0]=1</code>, which is a logical requirement for this finite element.
*/
FE_Enriched (const std::vector< const FiniteElement< dim, spacedim > * > &fes,
const std::vector< unsigned int > &multiplicities,
const std::vector<std::vector<std::function<const Function<spacedim> *(const typename Triangulation<dim, spacedim>::cell_iterator &) > > > &functions);
public:
/**
* @p clone function instead of a copy constructor.
*
* This function is needed by the constructors of @p FESystem.
*/
virtual FiniteElement<dim,spacedim> *clone() const;
virtual
UpdateFlags
requires_update_flags (const UpdateFlags update_flags) const;
/**
* Return a string that identifies a finite element.
*/
virtual std::string get_name () const;
/**
* Access to a composing element. The index needs to be smaller than the
* number of base elements. In the context of this class, the number of
* base elements is always more than one: a non-enriched element plus an
* element to be enriched, which could be FE_Nothing.
*/
virtual const FiniteElement<dim,spacedim> &
base_element (const unsigned int index) const;
/**
* Return the value of the @p ith shape function at the point @p p. @p p is a
* point on the reference element.
*
* This function returns meaningful values only for non-enriched element as
* real-space enrichment requires evaluation of the function at the point in
* real-space.
*/
virtual double shape_value(const unsigned int i,
const Point< dim > &p) const;
/**
* @name Transfer matrices
* @{
*/
/**
* Projection from a fine grid space onto a coarse grid space.
*
* This function only makes sense when all child elements are also enriched
* using the same function(s) as the parent element.
*/
virtual const FullMatrix<double> &
get_restriction_matrix (const unsigned int child,
const RefinementCase<dim> &refinement_case=RefinementCase<dim>::isotropic_refinement) const;
/**
* Embedding matrix between grids.
*
* This function only makes sense when all child elements are also enriched
* using the same function(s) as the parent element.
*/
virtual const FullMatrix<double> &
get_prolongation_matrix (const unsigned int child,
const RefinementCase<dim> &refinement_case=RefinementCase<dim>::isotropic_refinement) const;
//@}
/**
* @name Functions to support hp
* @{
*/
/**
* Return whether this element implements hp constraints.
*
* This function returns @p true if and only if all its base elements return @p true
* for this function.
*/
virtual bool hp_constraints_are_implemented () const;
/**
* Return the matrix interpolating from a face of of one element to the face
* of the neighboring element. The size of the matrix is then
* <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
*
* Base elements of this element will have to implement this function. They
* may only provide interpolation matrices for certain source finite
* elements, for example those from the same family. If they don't implement
* interpolation from a given element, then they must throw an exception of
* type FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented, which
* will get propagated out from this element.
*/
virtual void
get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
FullMatrix<double> &matrix) const;
/**
* Return the matrix interpolating from a face of of one element to the
* subface of the neighboring element. The size of the matrix is then
* <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
*
* Base elements of this element will have to implement this function. They
* may only provide interpolation matrices for certain source finite
* elements, for example those from the same family. If they don't implement
* interpolation from a given element, then they must throw an exception of
* type FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented, which
* will get propagated out from this element.
*/
virtual void
get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
const unsigned int subface,
FullMatrix<double> &matrix) const;
/**
* If, on a vertex, several finite elements are active, the hp code first
* assigns the degrees of freedom of each of these FEs different global
* indices. It then calls this function to find out which of them should get
* identical values, and consequently can receive the same global DoF index.
* This function therefore returns a list of identities between DoFs of the
* present finite element object with the DoFs of @p fe_other, which is a
* reference to a finite element object representing one of the other finite
* elements active on this particular vertex. The function computes which of
* the degrees of freedom of the two finite element objects are equivalent,
* both numbered between zero and the corresponding value of dofs_per_vertex
* of the two finite elements. The first index of each pair denotes one of
* the vertex dofs of the present element, whereas the second is the
* corresponding index of the other finite element.
*/
virtual
std::vector<std::pair<unsigned int, unsigned int> >
hp_vertex_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* Same as hp_vertex_dof_indices(), except that the function treats degrees
* of freedom on lines.
*/
virtual
std::vector<std::pair<unsigned int, unsigned int> >
hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* Same as hp_vertex_dof_indices(), except that the function treats degrees
* of freedom on quads.
*/
virtual
std::vector<std::pair<unsigned int, unsigned int> >
hp_quad_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* Return whether this element dominates the one given as argument when they
* meet at a common face, whether it is the other way around, whether
* neither dominates, or if either could dominate.
*
* For a definition of domination, see FiniteElementBase::Domination and in
* particular the
* @ref hp_paper "hp paper".
*/
virtual
FiniteElementDomination::Domination
compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const;
//@}
/**
* Return enrichment functions
*/
const std::vector<std::vector<std::function<const Function<spacedim> *(const typename Triangulation<dim, spacedim>::cell_iterator &) > > >
get_enrichments() const;
/**
* Return the underlying FESystem object.
*/
const FESystem<dim,spacedim> &
get_fe_system() const;
protected:
/**
* A class to hold internal data needed for evaluation of this FE at quadrature points.
*/
class InternalData : public FiniteElement<dim,spacedim>::InternalDataBase
{
public:
/**
* For each Finite Element (base number) and each enrichment function (base_index)
* this struct will contain values, gradients and hessians of the enrichment functions.
*/
struct EnrichmentValues
{
std::vector<double> values;
std::vector<Tensor<1,spacedim> > gradients;
std::vector<SymmetricTensor<2, spacedim> > hessians;
};
/**
* Constructor. Is used inside setup_data to wrap FESystem's internal
* data object. The former is called from get_data, get_subface_data and
* get_face_data which FE_Enriched has to implement.
*
* Since FESystem::get_data(), FESystem::get_face_data() and FESystem::get_subface_data()
* just create an object and return a pointer to it (i.e. they don't retain
* ownership), we store the cast result in a std::unique_ptr to indicate
* that InternalData owns the object.
*/
InternalData ( std::unique_ptr<typename FESystem<dim,spacedim>::InternalData> fesystem_data);
/**
* Gives read-access to the pointer to a @p InternalData of the @p
* <code>base_no</code>th base element of FESystem's data.
*/
typename FiniteElement<dim,spacedim>::InternalDataBase &
get_fe_data (const unsigned int base_no) const;
/**
* Gives read-access to the pointer to an object into which the
* <code>base_no</code>th base element will write its output when calling
* FiniteElement::fill_fe_values() and similar functions.
*/
internal::FEValues::FiniteElementRelatedData<dim,spacedim> &
get_fe_output_object (const unsigned int base_no) const;
/**
* Aggregate FESystem's internal data. It is used every time
* we call FESystem's fill_fe_values() and alike.
*/
std::unique_ptr<typename FESystem<dim,spacedim>::InternalData> fesystem_data;
/**
* For each FE used in enrichment (base number <code>i</code>) and each enrichment function
* (base multiplicity <code>j</code>), <code>enrichment_values[i][j]</code> will be used to store
* possibly requested values, gradients and hessians of enrichment function <code>j</code>.
*
* The variable is made mutable as InternalData's provided to fill_fe_values and alike
* are const.
*
* @note We do not want to store this information in the finite element object itself,
* because this would mean that (i) only one FEValues object could use a finite element object at a time,
* and (ii) that these objects could not be used in a multithreaded context.
*/
mutable std::vector<std::vector<EnrichmentValues> > enrichment;
};
/**
* For each finite element @p i used in enrichment and each enrichment function
* @p j associated with it (essentially its multiplicity),
* @p base_no_mult_local_enriched_dofs[i][j] contains the associated local DoFs
* on the FE_Enriched finite element.
*/
std::vector<std::vector<std::vector<unsigned int> > > base_no_mult_local_enriched_dofs;
/**
* Enrichment functions.
* The size of the first vector is the same as the number of FiniteElement spaces used
* with enrichment. Whereas the size of the inner vector corresponds to the number
* of enrichment functions associated with a single FiniteElement.
*/
const std::vector<std::vector<std::function<const Function<spacedim> *(const typename Triangulation<dim, spacedim>::cell_iterator &) > > > enrichments;
/**
* Auxiliary variable used to distinguish between the case when we do enrichment
* and when the class simply wraps another FiniteElement.
*
* This variable is initialized in the constructor by looping over a vector of
* enrichment elements and checking if all of them are FE_Nothing. If this is
* the case, then the value is set to <code>false</code>, otherwise it is
* <code>true</code>.
*/
const bool is_enriched;
/**
* Auxiliary function called from get_data, get_face_data and
* get_subface_data. It take internal data of FESystem object in @p fes_data
* and the quadrature rule @p qudrature.
*
* This function essentially take the internal data from an instance of
* FESystem class and wraps it into our own InternalData class which
* additionally has objects to hold values/gradients/hessians of
* enrichment functions at each quadrature point depending on @p flags.
*/
template <int dim_1>
typename FiniteElement<dim,spacedim>::InternalDataBase *
setup_data (std::unique_ptr<typename FiniteElement<dim,spacedim>::InternalDataBase> fes_data,
const UpdateFlags flags,
const Quadrature<dim_1> &quadrature) const;
/**
* Prepare internal data structures and fill in values independent of the
* cell. Returns a pointer to an object of which the caller of this function
* (FEValues) then has to assume ownership (which includes destruction when it is no
* more needed).
*/
virtual typename FiniteElement<dim,spacedim>::InternalDataBase *
get_data (const UpdateFlags flags,
const Mapping<dim,spacedim> &mapping,
const Quadrature<dim> &quadrature,
dealii::internal::FEValues::FiniteElementRelatedData< dim, spacedim > &output_data) const;
virtual typename FiniteElement<dim,spacedim>::InternalDataBase *
get_face_data (const UpdateFlags update_flags,
const Mapping<dim,spacedim> &mapping,
const Quadrature<dim-1> &quadrature,
dealii::internal::FEValues::FiniteElementRelatedData< dim, spacedim > &output_data) const;
virtual typename FiniteElement<dim,spacedim>::InternalDataBase *
get_subface_data (const UpdateFlags update_flags,
const Mapping<dim,spacedim> &mapping,
const Quadrature<dim-1> &quadrature,
dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data) const;
virtual
void fill_fe_values (const typename Triangulation<dim, spacedim>::cell_iterator &cell,
const CellSimilarity::Similarity cell_similarity,
const Quadrature<dim> &quadrature,
const Mapping<dim, spacedim> &mapping,
const typename Mapping<dim, spacedim>::InternalDataBase &mapping_internal,
const dealii::internal::FEValues::MappingRelatedData<dim, spacedim> &mapping_data,
const typename FiniteElement<dim,spacedim>::InternalDataBase &fe_internal,
dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data
) const;
virtual
void
fill_fe_face_values ( const typename Triangulation<dim, spacedim>::cell_iterator &cell,
const unsigned int face_no,
const Quadrature<dim-1> &quadrature,
const Mapping<dim, spacedim> &mapping,
const typename Mapping<dim, spacedim>::InternalDataBase &mapping_internal,
const dealii::internal::FEValues::MappingRelatedData<dim, spacedim> &mapping_data,
const typename FiniteElement<dim,spacedim>::InternalDataBase &fe_internal,
dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data
) const;
virtual
void
fill_fe_subface_values (const typename Triangulation< dim, spacedim >::cell_iterator &cell,
const unsigned int face_no,
const unsigned int sub_no,
const Quadrature<dim-1> &quadrature,
const Mapping<dim, spacedim> &mapping,
const typename Mapping< dim, spacedim >::InternalDataBase &mapping_internal,
const dealii::internal::FEValues::MappingRelatedData<dim, spacedim> &mapping_data,
const typename FiniteElement<dim,spacedim>::InternalDataBase &fe_internal,
dealii::internal::FEValues::FiniteElementRelatedData<dim, spacedim> &output_data
) const;
private:
/**
* This function sets up the index table for the system as well as @p
* restriction and @p prolongation matrices.
*/
void initialize (const std::vector<const FiniteElement<dim,spacedim>*> &fes,
const std::vector<unsigned int> &multiplicities);
/**
* The underlying FESystem object.
*/
FESystem<dim,spacedim> fe_system;
/**
* After calling fill_fe_(face/subface_)values this function
* implements the chain rule to multiply stored shape values/gradient/hessians
* by those of enrichment function evaluated at quadrature points.
*/
template <int dim_1>
void
multiply_by_enrichment (const Quadrature<dim_1> &quadrature,
const InternalData &fe_data,
const internal::FEValues::MappingRelatedData<dim,spacedim> &mapping_data,
const typename Triangulation< dim, spacedim >::cell_iterator &cell,
internal::FEValues::FiniteElementRelatedData<dim,spacedim> &output_data) const;
};
//}
DEAL_II_NAMESPACE_CLOSE
#endif // CXX14
#endif // dealii__fe_enriched_h
|