This file is indexed.

/usr/include/deal.II/fe/fe_dgp.h is in libdeal.ii-dev 8.5.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
// ---------------------------------------------------------------------
//
// Copyright (C) 2002 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef dealii__fe_dgp_h
#define dealii__fe_dgp_h

#include <deal.II/base/config.h>
#include <deal.II/base/polynomial_space.h>
#include <deal.II/fe/fe_poly.h>

DEAL_II_NAMESPACE_OPEN

/*!@addtogroup fe */
/*@{*/

/**
 * Discontinuous finite elements based on Legendre polynomials.
 *
 * This finite element implements complete polynomial spaces, that is, dim-
 * dimensional polynomials of degree p. For example, in 2d the element
 * FE_DGP(1) would represent the span of the functions $\{1,\hat x,\hat y\}$,
 * which is in contrast to the element FE_DGQ(1) that is formed by the span of
 * $\{1,\hat x,\hat y,\hat x\hat y\}$. Since the DGP space has only three
 * unknowns for each quadrilateral, it is immediately clear that this element
 * can not be continuous.
 *
 * The basis functions used in this element for the space described above are
 * chosen to form a Legendre basis on the unit square, i.e., in particular
 * they are $L_2$-orthogonal and normalized on the reference cell (but not
 * necessarily on the real cell). As a consequence, the first basis function
 * of this element is always the function that is constant and equal to one,
 * regardless of the polynomial degree of the element. In addition, as a
 * result of the orthogonality of the basis functions, the mass matrix is
 * diagonal if the grid cells are parallelograms. Note that this is in
 * contrast to the FE_DGPMonomial class that actually uses the monomial basis
 * listed above as basis functions, without transformation from reference to
 * real cell.
 *
 * The shape functions are defined in the class PolynomialSpace. The
 * polynomials used inside PolynomialSpace are Polynomials::Legendre up to
 * degree <tt>p</tt> given in FE_DGP. For the ordering of the basis functions,
 * refer to PolynomialSpace, remembering that the Legendre polynomials are
 * ordered by ascending degree.
 *
 * @note This element is not defined by finding shape functions within the
 * given function space that interpolate a particular set of points.
 * Consequently, there are no support points to which a given function could
 * be interpolated; finding a finite element function that approximates a
 * given function is therefore only possible through projection, rather than
 * interpolation. Secondly, the shape functions of this element do not jointly
 * add up to one. As a consequence of this, adding or subtracting a constant
 * value -- such as one would do to make a function have mean value zero --
 * can not be done by simply subtracting the constant value from each degree
 * of freedom. Rather, one needs to use the fact that the first basis function
 * is constant equal to one and simply subtract the constant from the value of
 * the degree of freedom corresponding to this first shape function on each
 * cell.
 *
 *
 * @note This class is only partially implemented for the codimension one case
 * (<tt>spacedim != dim </tt>), since no passage of information between meshes
 * of different refinement level is possible because the embedding and
 * projection matrices are not computed in the class constructor.
 *
 * <h3>Transformation properties</h3>
 *
 * It is worth noting that under a (bi-, tri-)linear mapping, the space
 * described by this element does not contain $P(k)$, even if we use a basis
 * of polynomials of degree $k$. Consequently, for example, on meshes with
 * non-affine cells, a linear function can not be exactly represented by
 * elements of type FE_DGP(1) or FE_DGPMonomial(1).
 *
 * This can be understood by the following 2-d example: consider the cell with
 * vertices at $(0,0),(1,0),(0,1),(s,s)$:
 * @image html dgp_doesnt_contain_p.png
 *
 * For this cell, a bilinear transformation $F$ produces the relations $x=\hat
 * x+\hat x\hat y$ and $y=\hat y+\hat x\hat y$ that correlate reference
 * coordinates $\hat x,\hat y$ and coordinates in real space $x,y$. Under this
 * mapping, the constant function is clearly mapped onto itself, but the two
 * other shape functions of the $P_1$ space, namely $\phi_1(\hat x,\hat
 * y)=\hat x$ and $\phi_2(\hat x,\hat y)=\hat y$ are mapped onto
 * $\phi_1(x,y)=\frac{x-t}{t(s-1)},\phi_2(x,y)=t$ where
 * $t=\frac{y}{s-x+sx+y-sy}$.
 *
 * For the simple case that $s=1$, i.e. if the real cell is the unit square,
 * the expressions can be simplified to $t=y$ and
 * $\phi_1(x,y)=x,\phi_2(x,y)=y$. However, for all other cases, the functions
 * $\phi_1(x,y),\phi_2(x,y)$ are not linear any more, and neither is any
 * linear combination of them. Consequently, the linear functions are not
 * within the range of the mapped $P_1$ polynomials.
 *
 * <h3>Visualization of shape functions</h3> In 2d, the shape functions of
 * this element look as follows.
 *
 * <h4>$P_0$ element</h4>
 *
 * <table> <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0000.png
 * </td>
 *
 * <td align="center"> </td> </tr> <tr> <td align="center"> $P_0$ element,
 * shape function 0 </td>
 *
 * <td align="center"></tr> </table>
 *
 * <h4>$P_1$ element</h4>
 *
 * <table> <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0001.png
 * </td> </tr> <tr> <td align="center"> $P_1$ element, shape function 0 </td>
 *
 * <td align="center"> $P_1$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0002.png
 * </td>
 *
 * <td align="center"> </td> </tr> <tr> <td align="center"> $P_1$ element,
 * shape function 2 </td>
 *
 * <td align="center"></td> </tr> </table>
 *
 *
 * <h4>$P_2$ element</h4>
 *
 * <table> <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0001.png
 * </td> </tr> <tr> <td align="center"> $P_2$ element, shape function 0 </td>
 *
 * <td align="center"> $P_2$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0003.png
 * </td> </tr> <tr> <td align="center"> $P_2$ element, shape function 2 </td>
 *
 * <td align="center"> $P_2$ element, shape function 3 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0004.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0005.png
 * </td> </tr> <tr> <td align="center"> $P_2$ element, shape function 4 </td>
 *
 * <td align="center"> $P_2$ element, shape function 5 </td> </tr> </table>
 *
 *
 * <h4>$P_3$ element</h4>
 *
 * <table> <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0001.png
 * </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 0 </td>
 *
 * <td align="center"> $P_3$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0003.png
 * </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 2 </td>
 *
 * <td align="center"> $P_3$ element, shape function 3 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0004.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0005.png
 * </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 4 </td>
 *
 * <td align="center"> $P_3$ element, shape function 5 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0006.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0007.png
 * </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 6 </td>
 *
 * <td align="center"> $P_3$ element, shape function 7 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0008.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0009.png
 * </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 8 </td>
 *
 * <td align="center"> $P_3$ element, shape function 9 </td> </tr> </table>
 *
 *
 * <h4>$P_4$ element</h4> <table> <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0000.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0001.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 0 </td>
 *
 * <td align="center"> $P_4$ element, shape function 1 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0002.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0003.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 2 </td>
 *
 * <td align="center"> $P_4$ element, shape function 3 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0004.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0005.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 4 </td>
 *
 * <td align="center"> $P_4$ element, shape function 5 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0006.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0007.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 6 </td>
 *
 * <td align="center"> $P_4$ element, shape function 7 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0008.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0009.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 8 </td>
 *
 * <td align="center"> $P_4$ element, shape function 9 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0010.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0011.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 10 </td>
 *
 * <td align="center"> $P_4$ element, shape function 11 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0012.png
 * </td>
 *
 * <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0013.png
 * </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 12 </td>
 *
 * <td align="center"> $P_4$ element, shape function 13 </td> </tr>
 *
 * <tr> <td align="center">
 * @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0014.png
 * </td>
 *
 * <td align="center"> </td> </tr> <tr> <td align="center"> $P_4$ element,
 * shape function 14 </td>
 *
 * <td align="center"></td> </tr> </table>
 *
 * @author Guido Kanschat, 2001, 2002, Ralf Hartmann 2004
 */
template <int dim, int spacedim=dim>
class FE_DGP : public FE_Poly<PolynomialSpace<dim>,dim,spacedim>
{
public:
  /**
   * Constructor for tensor product polynomials of degree @p p.
   */
  FE_DGP (const unsigned int p);

  /**
   * Return a string that uniquely identifies a finite element. This class
   * returns <tt>FE_DGP<dim>(degree)</tt>, with @p dim and @p degree replaced
   * by appropriate values.
   */
  virtual std::string get_name () const;

  /**
   * @name Functions to support hp
   * @{
   */

  /**
   * If, on a vertex, several finite elements are active, the hp code first
   * assigns the degrees of freedom of each of these FEs different global
   * indices. It then calls this function to find out which of them should get
   * identical values, and consequently can receive the same global DoF index.
   * This function therefore returns a list of identities between DoFs of the
   * present finite element object with the DoFs of @p fe_other, which is a
   * reference to a finite element object representing one of the other finite
   * elements active on this particular vertex. The function computes which of
   * the degrees of freedom of the two finite element objects are equivalent,
   * both numbered between zero and the corresponding value of dofs_per_vertex
   * of the two finite elements. The first index of each pair denotes one of
   * the vertex dofs of the present element, whereas the second is the
   * corresponding index of the other finite element.
   *
   * This being a discontinuous element, the set of such constraints is of
   * course empty.
   */
  virtual
  std::vector<std::pair<unsigned int, unsigned int> >
  hp_vertex_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

  /**
   * Same as hp_vertex_dof_indices(), except that the function treats degrees
   * of freedom on lines.
   *
   * This being a discontinuous element, the set of such constraints is of
   * course empty.
   */
  virtual
  std::vector<std::pair<unsigned int, unsigned int> >
  hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

  /**
   * Same as hp_vertex_dof_indices(), except that the function treats degrees
   * of freedom on quads.
   *
   * This being a discontinuous element, the set of such constraints is of
   * course empty.
   */
  virtual
  std::vector<std::pair<unsigned int, unsigned int> >
  hp_quad_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;

  /**
   * Return whether this element implements its hanging node constraints in
   * the new way, which has to be used to make elements "hp compatible".
   *
   * For the FE_DGP class the result is always true (independent of the degree
   * of the element), as it has no hanging nodes (being a discontinuous
   * element).
   */
  virtual bool hp_constraints_are_implemented () const;

  /**
   * Return whether this element dominates the one given as argument when they
   * meet at a common face, whether it is the other way around, whether
   * neither dominates, or if either could dominate.
   *
   * For a definition of domination, see FiniteElementDomination::Domination
   * and in particular the
   * @ref hp_paper "hp paper".
   */
  virtual
  FiniteElementDomination::Domination
  compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const;

  /**
   * @}
   */

  /**
   * Return the matrix interpolating from a face of of one element to the face
   * of the neighboring element. The size of the matrix is then
   * <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
   *
   * Derived elements will have to implement this function. They may only
   * provide interpolation matrices for certain source finite elements, for
   * example those from the same family. If they don't implement interpolation
   * from a given element, then they must throw an exception of type
   * FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented.
   */
  virtual void
  get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
                                 FullMatrix<double>       &matrix) const;

  /**
   * Return the matrix interpolating from a face of of one element to the face
   * of the neighboring element. The size of the matrix is then
   * <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
   *
   * Derived elements will have to implement this function. They may only
   * provide interpolation matrices for certain source finite elements, for
   * example those from the same family. If they don't implement interpolation
   * from a given element, then they must throw an exception of type
   * FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented.
   */
  virtual void
  get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
                                    const unsigned int        subface,
                                    FullMatrix<double>       &matrix) const;

  /**
   * This function returns @p true, if the shape function @p shape_index has
   * non-zero function values somewhere on the face @p face_index.
   */
  virtual bool has_support_on_face (const unsigned int shape_index,
                                    const unsigned int face_index) const;

  /**
   * Determine an estimate for the memory consumption (in bytes) of this
   * object.
   *
   * This function is made virtual, since finite element objects are usually
   * accessed through pointers to their base class, rather than the class
   * itself.
   */
  virtual std::size_t memory_consumption () const;


  /**
   * Declare a nested class which will hold static definitions of various
   * matrices such as constraint and embedding matrices. The definition of the
   * various static fields are in the files <tt>fe_dgp_[123]d.cc</tt> in the
   * source directory.
   */
  struct Matrices
  {
    /**
     * As @p embedding but for projection matrices.
     */
    static const double *const projection_matrices[][GeometryInfo<dim>::max_children_per_cell];

    /**
     * As @p n_embedding_matrices but for projection matrices.
     */
    static const unsigned int n_projection_matrices;
  };

  /**
   * Return a list of constant modes of the element. For this element, the
   * first entry is true, all other are false.
   */
  virtual std::pair<Table<2,bool>, std::vector<unsigned int> >
  get_constant_modes () const;

protected:

  /**
   * @p clone function instead of a copy constructor.
   *
   * This function is needed by the constructors of @p FESystem.
   */
  virtual FiniteElement<dim,spacedim> *clone() const;

private:

  /**
   * Only for internal use. Its full name is @p get_dofs_per_object_vector
   * function and it creates the @p dofs_per_object vector that is needed
   * within the constructor to be passed to the constructor of @p
   * FiniteElementData.
   */
  static std::vector<unsigned int> get_dpo_vector (const unsigned int degree);
};

/* @} */
#ifndef DOXYGEN


// declaration of explicit specializations of member variables, if the
// compiler allows us to do that (the standard says we must)
#ifndef DEAL_II_MEMBER_VAR_SPECIALIZATION_BUG
template <>
const double *const FE_DGP<1>::Matrices::projection_matrices[][GeometryInfo<1>::max_children_per_cell];

template <>
const unsigned int FE_DGP<1>::Matrices::n_projection_matrices;

template <>
const double *const FE_DGP<2>::Matrices::projection_matrices[][GeometryInfo<2>::max_children_per_cell];

template <>
const unsigned int FE_DGP<2>::Matrices::n_projection_matrices;

template <>
const double *const FE_DGP<3>::Matrices::projection_matrices[][GeometryInfo<3>::max_children_per_cell];

template <>
const unsigned int FE_DGP<3>::Matrices::n_projection_matrices;

//codimension 1
template <>
const double *const FE_DGP<1,2>::Matrices::projection_matrices[][GeometryInfo<1>::max_children_per_cell];

template <>
const unsigned int FE_DGP<1,2>::Matrices::n_projection_matrices;

template <>
const double *const FE_DGP<2,3>::Matrices::projection_matrices[][GeometryInfo<2>::max_children_per_cell];

template <>
const unsigned int FE_DGP<2,3>::Matrices::n_projection_matrices;

#endif

#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif