/usr/include/deal.II/fe/fe_dgp.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 | // ---------------------------------------------------------------------
//
// Copyright (C) 2002 - 2016 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__fe_dgp_h
#define dealii__fe_dgp_h
#include <deal.II/base/config.h>
#include <deal.II/base/polynomial_space.h>
#include <deal.II/fe/fe_poly.h>
DEAL_II_NAMESPACE_OPEN
/*!@addtogroup fe */
/*@{*/
/**
* Discontinuous finite elements based on Legendre polynomials.
*
* This finite element implements complete polynomial spaces, that is, dim-
* dimensional polynomials of degree p. For example, in 2d the element
* FE_DGP(1) would represent the span of the functions $\{1,\hat x,\hat y\}$,
* which is in contrast to the element FE_DGQ(1) that is formed by the span of
* $\{1,\hat x,\hat y,\hat x\hat y\}$. Since the DGP space has only three
* unknowns for each quadrilateral, it is immediately clear that this element
* can not be continuous.
*
* The basis functions used in this element for the space described above are
* chosen to form a Legendre basis on the unit square, i.e., in particular
* they are $L_2$-orthogonal and normalized on the reference cell (but not
* necessarily on the real cell). As a consequence, the first basis function
* of this element is always the function that is constant and equal to one,
* regardless of the polynomial degree of the element. In addition, as a
* result of the orthogonality of the basis functions, the mass matrix is
* diagonal if the grid cells are parallelograms. Note that this is in
* contrast to the FE_DGPMonomial class that actually uses the monomial basis
* listed above as basis functions, without transformation from reference to
* real cell.
*
* The shape functions are defined in the class PolynomialSpace. The
* polynomials used inside PolynomialSpace are Polynomials::Legendre up to
* degree <tt>p</tt> given in FE_DGP. For the ordering of the basis functions,
* refer to PolynomialSpace, remembering that the Legendre polynomials are
* ordered by ascending degree.
*
* @note This element is not defined by finding shape functions within the
* given function space that interpolate a particular set of points.
* Consequently, there are no support points to which a given function could
* be interpolated; finding a finite element function that approximates a
* given function is therefore only possible through projection, rather than
* interpolation. Secondly, the shape functions of this element do not jointly
* add up to one. As a consequence of this, adding or subtracting a constant
* value -- such as one would do to make a function have mean value zero --
* can not be done by simply subtracting the constant value from each degree
* of freedom. Rather, one needs to use the fact that the first basis function
* is constant equal to one and simply subtract the constant from the value of
* the degree of freedom corresponding to this first shape function on each
* cell.
*
*
* @note This class is only partially implemented for the codimension one case
* (<tt>spacedim != dim </tt>), since no passage of information between meshes
* of different refinement level is possible because the embedding and
* projection matrices are not computed in the class constructor.
*
* <h3>Transformation properties</h3>
*
* It is worth noting that under a (bi-, tri-)linear mapping, the space
* described by this element does not contain $P(k)$, even if we use a basis
* of polynomials of degree $k$. Consequently, for example, on meshes with
* non-affine cells, a linear function can not be exactly represented by
* elements of type FE_DGP(1) or FE_DGPMonomial(1).
*
* This can be understood by the following 2-d example: consider the cell with
* vertices at $(0,0),(1,0),(0,1),(s,s)$:
* @image html dgp_doesnt_contain_p.png
*
* For this cell, a bilinear transformation $F$ produces the relations $x=\hat
* x+\hat x\hat y$ and $y=\hat y+\hat x\hat y$ that correlate reference
* coordinates $\hat x,\hat y$ and coordinates in real space $x,y$. Under this
* mapping, the constant function is clearly mapped onto itself, but the two
* other shape functions of the $P_1$ space, namely $\phi_1(\hat x,\hat
* y)=\hat x$ and $\phi_2(\hat x,\hat y)=\hat y$ are mapped onto
* $\phi_1(x,y)=\frac{x-t}{t(s-1)},\phi_2(x,y)=t$ where
* $t=\frac{y}{s-x+sx+y-sy}$.
*
* For the simple case that $s=1$, i.e. if the real cell is the unit square,
* the expressions can be simplified to $t=y$ and
* $\phi_1(x,y)=x,\phi_2(x,y)=y$. However, for all other cases, the functions
* $\phi_1(x,y),\phi_2(x,y)$ are not linear any more, and neither is any
* linear combination of them. Consequently, the linear functions are not
* within the range of the mapped $P_1$ polynomials.
*
* <h3>Visualization of shape functions</h3> In 2d, the shape functions of
* this element look as follows.
*
* <h4>$P_0$ element</h4>
*
* <table> <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0000.png
* </td>
*
* <td align="center"> </td> </tr> <tr> <td align="center"> $P_0$ element,
* shape function 0 </td>
*
* <td align="center"></tr> </table>
*
* <h4>$P_1$ element</h4>
*
* <table> <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0001.png
* </td> </tr> <tr> <td align="center"> $P_1$ element, shape function 0 </td>
*
* <td align="center"> $P_1$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P1/P1_DGP_shape0002.png
* </td>
*
* <td align="center"> </td> </tr> <tr> <td align="center"> $P_1$ element,
* shape function 2 </td>
*
* <td align="center"></td> </tr> </table>
*
*
* <h4>$P_2$ element</h4>
*
* <table> <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0001.png
* </td> </tr> <tr> <td align="center"> $P_2$ element, shape function 0 </td>
*
* <td align="center"> $P_2$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0003.png
* </td> </tr> <tr> <td align="center"> $P_2$ element, shape function 2 </td>
*
* <td align="center"> $P_2$ element, shape function 3 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0004.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P2/P2_DGP_shape0005.png
* </td> </tr> <tr> <td align="center"> $P_2$ element, shape function 4 </td>
*
* <td align="center"> $P_2$ element, shape function 5 </td> </tr> </table>
*
*
* <h4>$P_3$ element</h4>
*
* <table> <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0001.png
* </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 0 </td>
*
* <td align="center"> $P_3$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0003.png
* </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 2 </td>
*
* <td align="center"> $P_3$ element, shape function 3 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0004.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0005.png
* </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 4 </td>
*
* <td align="center"> $P_3$ element, shape function 5 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0006.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0007.png
* </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 6 </td>
*
* <td align="center"> $P_3$ element, shape function 7 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0008.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P3/P3_DGP_shape0009.png
* </td> </tr> <tr> <td align="center"> $P_3$ element, shape function 8 </td>
*
* <td align="center"> $P_3$ element, shape function 9 </td> </tr> </table>
*
*
* <h4>$P_4$ element</h4> <table> <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0000.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0001.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 0 </td>
*
* <td align="center"> $P_4$ element, shape function 1 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0002.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0003.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 2 </td>
*
* <td align="center"> $P_4$ element, shape function 3 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0004.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0005.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 4 </td>
*
* <td align="center"> $P_4$ element, shape function 5 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0006.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0007.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 6 </td>
*
* <td align="center"> $P_4$ element, shape function 7 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0008.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0009.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 8 </td>
*
* <td align="center"> $P_4$ element, shape function 9 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0010.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0011.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 10 </td>
*
* <td align="center"> $P_4$ element, shape function 11 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0012.png
* </td>
*
* <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0013.png
* </td> </tr> <tr> <td align="center"> $P_4$ element, shape function 12 </td>
*
* <td align="center"> $P_4$ element, shape function 13 </td> </tr>
*
* <tr> <td align="center">
* @image html http://www.dealii.org/images/shape-functions/DGP/P4/P4_DGP_shape0014.png
* </td>
*
* <td align="center"> </td> </tr> <tr> <td align="center"> $P_4$ element,
* shape function 14 </td>
*
* <td align="center"></td> </tr> </table>
*
* @author Guido Kanschat, 2001, 2002, Ralf Hartmann 2004
*/
template <int dim, int spacedim=dim>
class FE_DGP : public FE_Poly<PolynomialSpace<dim>,dim,spacedim>
{
public:
/**
* Constructor for tensor product polynomials of degree @p p.
*/
FE_DGP (const unsigned int p);
/**
* Return a string that uniquely identifies a finite element. This class
* returns <tt>FE_DGP<dim>(degree)</tt>, with @p dim and @p degree replaced
* by appropriate values.
*/
virtual std::string get_name () const;
/**
* @name Functions to support hp
* @{
*/
/**
* If, on a vertex, several finite elements are active, the hp code first
* assigns the degrees of freedom of each of these FEs different global
* indices. It then calls this function to find out which of them should get
* identical values, and consequently can receive the same global DoF index.
* This function therefore returns a list of identities between DoFs of the
* present finite element object with the DoFs of @p fe_other, which is a
* reference to a finite element object representing one of the other finite
* elements active on this particular vertex. The function computes which of
* the degrees of freedom of the two finite element objects are equivalent,
* both numbered between zero and the corresponding value of dofs_per_vertex
* of the two finite elements. The first index of each pair denotes one of
* the vertex dofs of the present element, whereas the second is the
* corresponding index of the other finite element.
*
* This being a discontinuous element, the set of such constraints is of
* course empty.
*/
virtual
std::vector<std::pair<unsigned int, unsigned int> >
hp_vertex_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* Same as hp_vertex_dof_indices(), except that the function treats degrees
* of freedom on lines.
*
* This being a discontinuous element, the set of such constraints is of
* course empty.
*/
virtual
std::vector<std::pair<unsigned int, unsigned int> >
hp_line_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* Same as hp_vertex_dof_indices(), except that the function treats degrees
* of freedom on quads.
*
* This being a discontinuous element, the set of such constraints is of
* course empty.
*/
virtual
std::vector<std::pair<unsigned int, unsigned int> >
hp_quad_dof_identities (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* Return whether this element implements its hanging node constraints in
* the new way, which has to be used to make elements "hp compatible".
*
* For the FE_DGP class the result is always true (independent of the degree
* of the element), as it has no hanging nodes (being a discontinuous
* element).
*/
virtual bool hp_constraints_are_implemented () const;
/**
* Return whether this element dominates the one given as argument when they
* meet at a common face, whether it is the other way around, whether
* neither dominates, or if either could dominate.
*
* For a definition of domination, see FiniteElementDomination::Domination
* and in particular the
* @ref hp_paper "hp paper".
*/
virtual
FiniteElementDomination::Domination
compare_for_face_domination (const FiniteElement<dim,spacedim> &fe_other) const;
/**
* @}
*/
/**
* Return the matrix interpolating from a face of of one element to the face
* of the neighboring element. The size of the matrix is then
* <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
*
* Derived elements will have to implement this function. They may only
* provide interpolation matrices for certain source finite elements, for
* example those from the same family. If they don't implement interpolation
* from a given element, then they must throw an exception of type
* FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented.
*/
virtual void
get_face_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
FullMatrix<double> &matrix) const;
/**
* Return the matrix interpolating from a face of of one element to the face
* of the neighboring element. The size of the matrix is then
* <tt>source.dofs_per_face</tt> times <tt>this->dofs_per_face</tt>.
*
* Derived elements will have to implement this function. They may only
* provide interpolation matrices for certain source finite elements, for
* example those from the same family. If they don't implement interpolation
* from a given element, then they must throw an exception of type
* FiniteElement<dim,spacedim>::ExcInterpolationNotImplemented.
*/
virtual void
get_subface_interpolation_matrix (const FiniteElement<dim,spacedim> &source,
const unsigned int subface,
FullMatrix<double> &matrix) const;
/**
* This function returns @p true, if the shape function @p shape_index has
* non-zero function values somewhere on the face @p face_index.
*/
virtual bool has_support_on_face (const unsigned int shape_index,
const unsigned int face_index) const;
/**
* Determine an estimate for the memory consumption (in bytes) of this
* object.
*
* This function is made virtual, since finite element objects are usually
* accessed through pointers to their base class, rather than the class
* itself.
*/
virtual std::size_t memory_consumption () const;
/**
* Declare a nested class which will hold static definitions of various
* matrices such as constraint and embedding matrices. The definition of the
* various static fields are in the files <tt>fe_dgp_[123]d.cc</tt> in the
* source directory.
*/
struct Matrices
{
/**
* As @p embedding but for projection matrices.
*/
static const double *const projection_matrices[][GeometryInfo<dim>::max_children_per_cell];
/**
* As @p n_embedding_matrices but for projection matrices.
*/
static const unsigned int n_projection_matrices;
};
/**
* Return a list of constant modes of the element. For this element, the
* first entry is true, all other are false.
*/
virtual std::pair<Table<2,bool>, std::vector<unsigned int> >
get_constant_modes () const;
protected:
/**
* @p clone function instead of a copy constructor.
*
* This function is needed by the constructors of @p FESystem.
*/
virtual FiniteElement<dim,spacedim> *clone() const;
private:
/**
* Only for internal use. Its full name is @p get_dofs_per_object_vector
* function and it creates the @p dofs_per_object vector that is needed
* within the constructor to be passed to the constructor of @p
* FiniteElementData.
*/
static std::vector<unsigned int> get_dpo_vector (const unsigned int degree);
};
/* @} */
#ifndef DOXYGEN
// declaration of explicit specializations of member variables, if the
// compiler allows us to do that (the standard says we must)
#ifndef DEAL_II_MEMBER_VAR_SPECIALIZATION_BUG
template <>
const double *const FE_DGP<1>::Matrices::projection_matrices[][GeometryInfo<1>::max_children_per_cell];
template <>
const unsigned int FE_DGP<1>::Matrices::n_projection_matrices;
template <>
const double *const FE_DGP<2>::Matrices::projection_matrices[][GeometryInfo<2>::max_children_per_cell];
template <>
const unsigned int FE_DGP<2>::Matrices::n_projection_matrices;
template <>
const double *const FE_DGP<3>::Matrices::projection_matrices[][GeometryInfo<3>::max_children_per_cell];
template <>
const unsigned int FE_DGP<3>::Matrices::n_projection_matrices;
//codimension 1
template <>
const double *const FE_DGP<1,2>::Matrices::projection_matrices[][GeometryInfo<1>::max_children_per_cell];
template <>
const unsigned int FE_DGP<1,2>::Matrices::n_projection_matrices;
template <>
const double *const FE_DGP<2,3>::Matrices::projection_matrices[][GeometryInfo<2>::max_children_per_cell];
template <>
const unsigned int FE_DGP<2,3>::Matrices::n_projection_matrices;
#endif
#endif // DOXYGEN
DEAL_II_NAMESPACE_CLOSE
#endif
|