/usr/include/deal.II/base/geometric_utilities.h is in libdeal.ii-dev 8.5.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | // ---------------------------------------------------------------------
//
// Copyright (C) 2016 - 2017 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef dealii__geometric_utilities_h
#define dealii__geometric_utilities_h
#include <deal.II/base/config.h>
#include <deal.II/base/point.h>
#include <deal.II/base/std_cxx11/array.h>
DEAL_II_NAMESPACE_OPEN
/**
* A namespace for geometric utility functions that are not particularly specific
* to finite element computing or numerical programs, but nevertheless are needed
* in various contexts when writing applications.
*
* @ingroup utilities
* @author Denis Davydov, 2016
*/
namespace GeometricUtilities
{
/**
* A namespace for coordinate transformations.
*/
namespace Coordinates
{
/**
* Return spherical coordinates of a Cartesian point @p point.
* The returned array is filled with radius, azimuth angle $\in [0,2 \pi)$
* and polar/inclination angle $ \in [0,\pi]$ (ommited in 2D).
*
* In 3D the transformation is given by
* @f{align*}{
* r &= \sqrt{x^2+y^2+z^2} \\
* \theta &= {\rm atan}(y/x) \\
* \phi &= {\rm acos} (z/r)
* @f}
*/
template <int dim>
std_cxx11::array<double,dim>
to_spherical(const Point<dim> &point);
/**
* Return the Cartesian coordinates of a spherical point defined by @p scoord
* which is filled with radius $r \in [0,\infty)$, azimuth angle
* $\theta \in [0,2 \pi)$ and polar/inclination angle $\phi \in [0,\pi]$
* (ommited in 2D).
*
* In 3D the transformation is given by
* @f{align*}{
* x &= r\, \cos(\theta) \, \sin(\phi) \\
* y &= r\, \sin(\theta) \, \sin(\phi) \\
* z &= r\, \cos(\phi)
* @f}
*/
template <std::size_t dim>
Point<dim>
from_spherical(const std_cxx11::array<double,dim> &scoord);
}
}
DEAL_II_NAMESPACE_CLOSE
#endif
|