/usr/include/bullet/Bullet3Common/b3Quaternion.h is in libbullet-dev 2.87+dfsg-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 | /*
Copyright (c) 2003-2013 Gino van den Bergen / Erwin Coumans http://bulletphysics.org
This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B3_SIMD__QUATERNION_H_
#define B3_SIMD__QUATERNION_H_
#include "b3Vector3.h"
#include "b3QuadWord.h"
#ifdef B3_USE_SSE
const __m128 B3_ATTRIBUTE_ALIGNED16(b3vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
#endif
#if defined(B3_USE_SSE) || defined(B3_USE_NEON)
const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
#endif
/**@brief The b3Quaternion implements quaternion to perform linear algebra rotations in combination with b3Matrix3x3, b3Vector3 and b3Transform. */
class b3Quaternion : public b3QuadWord {
public:
/**@brief No initialization constructor */
b3Quaternion() {}
#if (defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE))|| defined(B3_USE_NEON)
// Set Vector
B3_FORCE_INLINE b3Quaternion(const b3SimdFloat4 vec)
{
mVec128 = vec;
}
// Copy constructor
B3_FORCE_INLINE b3Quaternion(const b3Quaternion& rhs)
{
mVec128 = rhs.mVec128;
}
// Assignment Operator
B3_FORCE_INLINE b3Quaternion&
operator=(const b3Quaternion& v)
{
mVec128 = v.mVec128;
return *this;
}
#endif
// template <typename b3Scalar>
// explicit Quaternion(const b3Scalar *v) : Tuple4<b3Scalar>(v) {}
/**@brief Constructor from scalars */
b3Quaternion(const b3Scalar& _x, const b3Scalar& _y, const b3Scalar& _z, const b3Scalar& _w)
: b3QuadWord(_x, _y, _z, _w)
{
//b3Assert(!((_x==1.f) && (_y==0.f) && (_z==0.f) && (_w==0.f)));
}
/**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
b3Quaternion(const b3Vector3& _axis, const b3Scalar& _angle)
{
setRotation(_axis, _angle);
}
/**@brief Constructor from Euler angles
* @param yaw Angle around Y unless B3_EULER_DEFAULT_ZYX defined then Z
* @param pitch Angle around X unless B3_EULER_DEFAULT_ZYX defined then Y
* @param roll Angle around Z unless B3_EULER_DEFAULT_ZYX defined then X */
b3Quaternion(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll)
{
#ifndef B3_EULER_DEFAULT_ZYX
setEuler(yaw, pitch, roll);
#else
setEulerZYX(yaw, pitch, roll);
#endif
}
/**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const b3Vector3& axis, const b3Scalar& _angle)
{
b3Scalar d = axis.length();
b3Assert(d != b3Scalar(0.0));
b3Scalar s = b3Sin(_angle * b3Scalar(0.5)) / d;
setValue(axis.getX() * s, axis.getY() * s, axis.getZ() * s,
b3Cos(_angle * b3Scalar(0.5)));
}
/**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
* @param pitch Angle around X
* @param roll Angle around Z */
void setEuler(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll)
{
b3Scalar halfYaw = b3Scalar(yaw) * b3Scalar(0.5);
b3Scalar halfPitch = b3Scalar(pitch) * b3Scalar(0.5);
b3Scalar halfRoll = b3Scalar(roll) * b3Scalar(0.5);
b3Scalar cosYaw = b3Cos(halfYaw);
b3Scalar sinYaw = b3Sin(halfYaw);
b3Scalar cosPitch = b3Cos(halfPitch);
b3Scalar sinPitch = b3Sin(halfPitch);
b3Scalar cosRoll = b3Cos(halfRoll);
b3Scalar sinRoll = b3Sin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
/**@brief Set the quaternion using euler angles
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void setEulerZYX(const b3Scalar& yawZ, const b3Scalar& pitchY, const b3Scalar& rollX)
{
b3Scalar halfYaw = b3Scalar(yawZ) * b3Scalar(0.5);
b3Scalar halfPitch = b3Scalar(pitchY) * b3Scalar(0.5);
b3Scalar halfRoll = b3Scalar(rollX) * b3Scalar(0.5);
b3Scalar cosYaw = b3Cos(halfYaw);
b3Scalar sinYaw = b3Sin(halfYaw);
b3Scalar cosPitch = b3Cos(halfPitch);
b3Scalar sinPitch = b3Sin(halfPitch);
b3Scalar cosRoll = b3Cos(halfRoll);
b3Scalar sinRoll = b3Sin(halfRoll);
setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
normalize();
}
/**@brief Get the euler angles from this quaternion
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void getEulerZYX(b3Scalar& yawZ, b3Scalar& pitchY, b3Scalar& rollX) const
{
b3Scalar squ;
b3Scalar sqx;
b3Scalar sqy;
b3Scalar sqz;
b3Scalar sarg;
sqx = m_floats[0] * m_floats[0];
sqy = m_floats[1] * m_floats[1];
sqz = m_floats[2] * m_floats[2];
squ = m_floats[3] * m_floats[3];
rollX = b3Atan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
sarg = b3Scalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
pitchY = sarg <= b3Scalar(-1.0) ? b3Scalar(-0.5) * B3_PI: (sarg >= b3Scalar(1.0) ? b3Scalar(0.5) * B3_PI : b3Asin(sarg));
yawZ = b3Atan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
}
/**@brief Add two quaternions
* @param q The quaternion to add to this one */
B3_FORCE_INLINE b3Quaternion& operator+=(const b3Quaternion& q)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(B3_USE_NEON)
mVec128 = vaddq_f32(mVec128, q.mVec128);
#else
m_floats[0] += q.getX();
m_floats[1] += q.getY();
m_floats[2] += q.getZ();
m_floats[3] += q.m_floats[3];
#endif
return *this;
}
/**@brief Subtract out a quaternion
* @param q The quaternion to subtract from this one */
b3Quaternion& operator-=(const b3Quaternion& q)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(B3_USE_NEON)
mVec128 = vsubq_f32(mVec128, q.mVec128);
#else
m_floats[0] -= q.getX();
m_floats[1] -= q.getY();
m_floats[2] -= q.getZ();
m_floats[3] -= q.m_floats[3];
#endif
return *this;
}
/**@brief Scale this quaternion
* @param s The scalar to scale by */
b3Quaternion& operator*=(const b3Scalar& s)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = b3_pshufd_ps(vs, 0); // (S S S S)
mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(B3_USE_NEON)
mVec128 = vmulq_n_f32(mVec128, s);
#else
m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
m_floats[3] *= s;
#endif
return *this;
}
/**@brief Multiply this quaternion by q on the right
* @param q The other quaternion
* Equivilant to this = this * q */
b3Quaternion& operator*=(const b3Quaternion& q)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vQ2 = q.get128();
__m128 A1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(0,1,2,0));
__m128 B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3,3,3,0));
A1 = A1 * B1;
__m128 A2 = b3_pshufd_ps(mVec128, B3_SHUFFLE(1,2,0,1));
__m128 B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1));
A2 = A2 * B2;
B1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(2,0,1,2));
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2));
B1 = B1 * B2; // A3 *= B3
mVec128 = b3_splat_ps(mVec128, 3); // A0
mVec128 = mVec128 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
mVec128 = mVec128+ A1; // AB03 + AB12
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = mVec128;
float32x4_t vQ2 = q.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
mVec128 = A0;
#else
setValue(
m_floats[3] * q.getX() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.getZ() - m_floats[2] * q.getY(),
m_floats[3] * q.getY() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.getX() - m_floats[0] * q.getZ(),
m_floats[3] * q.getZ() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.getY() - m_floats[1] * q.getX(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.getX() - m_floats[1] * q.getY() - m_floats[2] * q.getZ());
#endif
return *this;
}
/**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
b3Scalar dot(const b3Quaternion& q) const
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, q.mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
return _mm_cvtss_f32(vd);
#elif defined(B3_USE_NEON)
float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
x = vpadd_f32(x, x);
return vget_lane_f32(x, 0);
#else
return m_floats[0] * q.getX() +
m_floats[1] * q.getY() +
m_floats[2] * q.getZ() +
m_floats[3] * q.m_floats[3];
#endif
}
/**@brief Return the length squared of the quaternion */
b3Scalar length2() const
{
return dot(*this);
}
/**@brief Return the length of the quaternion */
b3Scalar length() const
{
return b3Sqrt(length2());
}
/**@brief Normalize the quaternion
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
b3Quaternion& normalize()
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vd;
vd = _mm_mul_ps(mVec128, mVec128);
__m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
vd = _mm_sqrt_ss(vd);
vd = _mm_div_ss(b3vOnes, vd);
vd = b3_pshufd_ps(vd, 0); // splat
mVec128 = _mm_mul_ps(mVec128, vd);
return *this;
#else
return *this /= length();
#endif
}
/**@brief Return a scaled version of this quaternion
* @param s The scale factor */
B3_FORCE_INLINE b3Quaternion
operator*(const b3Scalar& s) const
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
vs = b3_pshufd_ps(vs, 0x00); // (S S S S)
return b3Quaternion(_mm_mul_ps(mVec128, vs));
#elif defined(B3_USE_NEON)
return b3Quaternion(vmulq_n_f32(mVec128, s));
#else
return b3Quaternion(getX() * s, getY() * s, getZ() * s, m_floats[3] * s);
#endif
}
/**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
b3Quaternion operator/(const b3Scalar& s) const
{
b3Assert(s != b3Scalar(0.0));
return *this * (b3Scalar(1.0) / s);
}
/**@brief Inversely scale this quaternion
* @param s The scale factor */
b3Quaternion& operator/=(const b3Scalar& s)
{
b3Assert(s != b3Scalar(0.0));
return *this *= b3Scalar(1.0) / s;
}
/**@brief Return a normalized version of this quaternion */
b3Quaternion normalized() const
{
return *this / length();
}
/**@brief Return the angle between this quaternion and the other
* @param q The other quaternion */
b3Scalar angle(const b3Quaternion& q) const
{
b3Scalar s = b3Sqrt(length2() * q.length2());
b3Assert(s != b3Scalar(0.0));
return b3Acos(dot(q) / s);
}
/**@brief Return the angle of rotation represented by this quaternion */
b3Scalar getAngle() const
{
b3Scalar s = b3Scalar(2.) * b3Acos(m_floats[3]);
return s;
}
/**@brief Return the axis of the rotation represented by this quaternion */
b3Vector3 getAxis() const
{
b3Scalar s_squared = 1.f-m_floats[3]*m_floats[3];
if (s_squared < b3Scalar(10.) * B3_EPSILON) //Check for divide by zero
return b3MakeVector3(1.0, 0.0, 0.0); // Arbitrary
b3Scalar s = 1.f/b3Sqrt(s_squared);
return b3MakeVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
}
/**@brief Return the inverse of this quaternion */
b3Quaternion inverse() const
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
return b3Quaternion(_mm_xor_ps(mVec128, b3vQInv));
#elif defined(B3_USE_NEON)
return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vQInv));
#else
return b3Quaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
}
/**@brief Return the sum of this quaternion and the other
* @param q2 The other quaternion */
B3_FORCE_INLINE b3Quaternion
operator+(const b3Quaternion& q2) const
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
return b3Quaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(B3_USE_NEON)
return b3Quaternion(vaddq_f32(mVec128, q2.mVec128));
#else
const b3Quaternion& q1 = *this;
return b3Quaternion(q1.getX() + q2.getX(), q1.getY() + q2.getY(), q1.getZ() + q2.getZ(), q1.m_floats[3] + q2.m_floats[3]);
#endif
}
/**@brief Return the difference between this quaternion and the other
* @param q2 The other quaternion */
B3_FORCE_INLINE b3Quaternion
operator-(const b3Quaternion& q2) const
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
return b3Quaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(B3_USE_NEON)
return b3Quaternion(vsubq_f32(mVec128, q2.mVec128));
#else
const b3Quaternion& q1 = *this;
return b3Quaternion(q1.getX() - q2.getX(), q1.getY() - q2.getY(), q1.getZ() - q2.getZ(), q1.m_floats[3] - q2.m_floats[3]);
#endif
}
/**@brief Return the negative of this quaternion
* This simply negates each element */
B3_FORCE_INLINE b3Quaternion operator-() const
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
return b3Quaternion(_mm_xor_ps(mVec128, b3vMzeroMask));
#elif defined(B3_USE_NEON)
return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vMzeroMask) );
#else
const b3Quaternion& q2 = *this;
return b3Quaternion( - q2.getX(), - q2.getY(), - q2.getZ(), - q2.m_floats[3]);
#endif
}
/**@todo document this and it's use */
B3_FORCE_INLINE b3Quaternion farthest( const b3Quaternion& qd) const
{
b3Quaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) > sum.dot(sum) )
return qd;
return (-qd);
}
/**@todo document this and it's use */
B3_FORCE_INLINE b3Quaternion nearest( const b3Quaternion& qd) const
{
b3Quaternion diff,sum;
diff = *this - qd;
sum = *this + qd;
if( diff.dot(diff) < sum.dot(sum) )
return qd;
return (-qd);
}
/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
* @param q The other quaternion to interpolate with
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
* Slerp interpolates assuming constant velocity. */
b3Quaternion slerp(const b3Quaternion& q, const b3Scalar& t) const
{
b3Scalar magnitude = b3Sqrt(length2() * q.length2());
b3Assert(magnitude > b3Scalar(0));
b3Scalar product = dot(q) / magnitude;
if (b3Fabs(product) < b3Scalar(1))
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const b3Scalar sign = (product < 0) ? b3Scalar(-1) : b3Scalar(1);
const b3Scalar theta = b3Acos(sign * product);
const b3Scalar s1 = b3Sin(sign * t * theta);
const b3Scalar d = b3Scalar(1.0) / b3Sin(theta);
const b3Scalar s0 = b3Sin((b3Scalar(1.0) - t) * theta);
return b3Quaternion(
(m_floats[0] * s0 + q.getX() * s1) * d,
(m_floats[1] * s0 + q.getY() * s1) * d,
(m_floats[2] * s0 + q.getZ() * s1) * d,
(m_floats[3] * s0 + q.m_floats[3] * s1) * d);
}
else
{
return *this;
}
}
static const b3Quaternion& getIdentity()
{
static const b3Quaternion identityQuat(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.),b3Scalar(1.));
return identityQuat;
}
B3_FORCE_INLINE const b3Scalar& getW() const { return m_floats[3]; }
};
/**@brief Return the product of two quaternions */
B3_FORCE_INLINE b3Quaternion
operator*(const b3Quaternion& q1, const b3Quaternion& q2)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vQ1 = q1.get128();
__m128 vQ2 = q2.get128();
__m128 A0, A1, B1, A2, B2;
A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0,1,2,0)); // X Y z x // vtrn
B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3,3,3,0)); // W W W X // vdup vext
A1 = A1 * B1;
A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1,2,0,1)); // Y Z X Y // vext
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup
A2 = A2 * B2;
B1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn
B1 = B1 * B2; // A3 *= B3
A0 = b3_splat_ps(vQ1, 3); // A0
A0 = A0 * vQ2; // A0 * B0
A1 = A1 + A2; // AB12
A0 = A0 - B1; // AB03 = AB0 - AB3
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
A0 = A0 + A1; // AB03 + AB12
return b3Quaternion(A0);
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = q1.get128();
float32x4_t vQ2 = q2.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A0 = vaddq_f32(A0, A1); // AB03 + AB12
return b3Quaternion(A0);
#else
return b3Quaternion(
q1.getW() * q2.getX() + q1.getX() * q2.getW() + q1.getY() * q2.getZ() - q1.getZ() * q2.getY(),
q1.getW() * q2.getY() + q1.getY() * q2.getW() + q1.getZ() * q2.getX() - q1.getX() * q2.getZ(),
q1.getW() * q2.getZ() + q1.getZ() * q2.getW() + q1.getX() * q2.getY() - q1.getY() * q2.getX(),
q1.getW() * q2.getW() - q1.getX() * q2.getX() - q1.getY() * q2.getY() - q1.getZ() * q2.getZ());
#endif
}
B3_FORCE_INLINE b3Quaternion
operator*(const b3Quaternion& q, const b3Vector3& w)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vQ1 = q.get128();
__m128 vQ2 = w.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(3,3,3,0));
B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(0,1,2,0));
A1 = A1 * B1;
A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1,2,0,1));
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1));
A2 = A2 * B2;
A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2,0,1,2));
B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return b3Quaternion(A1);
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = q.get128();
float32x4_t vQ2 = w.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
}
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return b3Quaternion(A1);
#else
return b3Quaternion(
q.getW() * w.getX() + q.getY() * w.getZ() - q.getZ() * w.getY(),
q.getW() * w.getY() + q.getZ() * w.getX() - q.getX() * w.getZ(),
q.getW() * w.getZ() + q.getX() * w.getY() - q.getY() * w.getX(),
-q.getX() * w.getX() - q.getY() * w.getY() - q.getZ() * w.getZ());
#endif
}
B3_FORCE_INLINE b3Quaternion
operator*(const b3Vector3& w, const b3Quaternion& q)
{
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
__m128 vQ1 = w.get128();
__m128 vQ2 = q.get128();
__m128 A1, B1, A2, B2, A3, B3;
A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0,1,2,0)); // X Y z x
B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3,3,3,0)); // W W W X
A1 = A1 * B1;
A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1,2,0,1));
B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1));
A2 = A2 *B2;
A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2,0,1,2));
B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2));
A3 = A3 * B3; // A3 *= B3
A1 = A1 + A2; // AB12
A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element
A1 = A1 - A3; // AB123 = AB12 - AB3
return b3Quaternion(A1);
#elif defined(B3_USE_NEON)
float32x4_t vQ1 = w.get128();
float32x4_t vQ2 = q.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
{
float32x2x2_t tmp;
tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
vQ1zx = tmp.val[0];
tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
vQ2zx = tmp.val[0];
}
vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
A3 = vmulq_f32(A3, B3); // A3 *= B3
A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
// change the sign of the last element
A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM);
A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
return b3Quaternion(A1);
#else
return b3Quaternion(
+w.getX() * q.getW() + w.getY() * q.getZ() - w.getZ() * q.getY(),
+w.getY() * q.getW() + w.getZ() * q.getX() - w.getX() * q.getZ(),
+w.getZ() * q.getW() + w.getX() * q.getY() - w.getY() * q.getX(),
-w.getX() * q.getX() - w.getY() * q.getY() - w.getZ() * q.getZ());
#endif
}
/**@brief Calculate the dot product between two quaternions */
B3_FORCE_INLINE b3Scalar
b3Dot(const b3Quaternion& q1, const b3Quaternion& q2)
{
return q1.dot(q2);
}
/**@brief Return the length of a quaternion */
B3_FORCE_INLINE b3Scalar
b3Length(const b3Quaternion& q)
{
return q.length();
}
/**@brief Return the angle between two quaternions*/
B3_FORCE_INLINE b3Scalar
b3Angle(const b3Quaternion& q1, const b3Quaternion& q2)
{
return q1.angle(q2);
}
/**@brief Return the inverse of a quaternion*/
B3_FORCE_INLINE b3Quaternion
b3Inverse(const b3Quaternion& q)
{
return q.inverse();
}
/**@brief Return the result of spherical linear interpolation betwen two quaternions
* @param q1 The first quaternion
* @param q2 The second quaternion
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
* Slerp assumes constant velocity between positions. */
B3_FORCE_INLINE b3Quaternion
b3Slerp(const b3Quaternion& q1, const b3Quaternion& q2, const b3Scalar& t)
{
return q1.slerp(q2, t);
}
B3_FORCE_INLINE b3Quaternion
b3QuatMul(const b3Quaternion& rot0, const b3Quaternion& rot1)
{
return rot0*rot1;
}
B3_FORCE_INLINE b3Quaternion
b3QuatNormalized(const b3Quaternion& orn)
{
return orn.normalized();
}
B3_FORCE_INLINE b3Vector3
b3QuatRotate(const b3Quaternion& rotation, const b3Vector3& v)
{
b3Quaternion q = rotation * v;
q *= rotation.inverse();
#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE)
return b3MakeVector3(_mm_and_ps(q.get128(), b3vFFF0fMask));
#elif defined(B3_USE_NEON)
return b3MakeVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), b3vFFF0Mask));
#else
return b3MakeVector3(q.getX(),q.getY(),q.getZ());
#endif
}
B3_FORCE_INLINE b3Quaternion
b3ShortestArcQuat(const b3Vector3& v0, const b3Vector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
b3Vector3 c = v0.cross(v1);
b3Scalar d = v0.dot(v1);
if (d < -1.0 + B3_EPSILON)
{
b3Vector3 n,unused;
b3PlaneSpace1(v0,n,unused);
return b3Quaternion(n.getX(),n.getY(),n.getZ(),0.0f); // just pick any vector that is orthogonal to v0
}
b3Scalar s = b3Sqrt((1.0f + d) * 2.0f);
b3Scalar rs = 1.0f / s;
return b3Quaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
}
B3_FORCE_INLINE b3Quaternion
b3ShortestArcQuatNormalize2(b3Vector3& v0,b3Vector3& v1)
{
v0.normalize();
v1.normalize();
return b3ShortestArcQuat(v0,v1);
}
#endif //B3_SIMD__QUATERNION_H_
|