This file is indexed.

/usr/include/bullet/Bullet3Collision/NarrowPhaseCollision/shared/b3ContactConvexConvexSAT.h is in libbullet-dev 2.87+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
#ifndef B3_CONTACT_CONVEX_CONVEX_SAT_H
#define B3_CONTACT_CONVEX_CONVEX_SAT_H


#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3FindSeparatingAxis.h"
#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ReduceContacts.h"

#define B3_MAX_VERTS 1024



inline b3Float4 b3Lerp3(const b3Float4& a,const b3Float4& b, float  t)
{
	return b3MakeVector3(	a.x + (b.x - a.x) * t,
						a.y + (b.y - a.y) * t,
						a.z + (b.z - a.z) * t,
						0.f);
}


// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut
inline int b3ClipFace(const b3Float4* pVtxIn, int numVertsIn, b3Float4& planeNormalWS,float planeEqWS, b3Float4* ppVtxOut)
{
	
	int ve;
	float ds, de;
	int numVertsOut = 0;
	if (numVertsIn < 2)
		return 0;

	b3Float4 firstVertex=pVtxIn[numVertsIn-1];
	b3Float4 endVertex = pVtxIn[0];
	
	ds = b3Dot3F4(planeNormalWS,firstVertex)+planeEqWS;

	for (ve = 0; ve < numVertsIn; ve++)
	{
		endVertex=pVtxIn[ve];

		de = b3Dot3F4(planeNormalWS,endVertex)+planeEqWS;

		if (ds<0)
		{
			if (de<0)
			{
				// Start < 0, end < 0, so output endVertex
				ppVtxOut[numVertsOut++] = endVertex;
			}
			else
			{
				// Start < 0, end >= 0, so output intersection
				ppVtxOut[numVertsOut++] = b3Lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
			}
		}
		else
		{
			if (de<0)
			{
				// Start >= 0, end < 0 so output intersection and end
				ppVtxOut[numVertsOut++] = b3Lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );
				ppVtxOut[numVertsOut++] = endVertex;
			}
		}
		firstVertex = endVertex;
		ds = de;
	}
	return numVertsOut;
}


inline int b3ClipFaceAgainstHull(const b3Float4& separatingNormal, const b3ConvexPolyhedronData* hullA,  
	const b3Float4& posA, const b3Quaternion& ornA, b3Float4* worldVertsB1, int numWorldVertsB1,
	b3Float4* worldVertsB2, int capacityWorldVertsB2,
	const float minDist, float maxDist,
	const b3AlignedObjectArray<b3Float4>& verticesA,	const b3AlignedObjectArray<b3GpuFace>& facesA,	const b3AlignedObjectArray<int>& indicesA,
	//const b3Float4* verticesB,	const b3GpuFace* facesB,	const int* indicesB,
	b3Float4* contactsOut,
	int contactCapacity)
{
	int numContactsOut = 0;

	b3Float4* pVtxIn = worldVertsB1;
	b3Float4* pVtxOut = worldVertsB2;
	
	int numVertsIn = numWorldVertsB1;
	int numVertsOut = 0;

	int closestFaceA=-1;
	{
		float dmin = FLT_MAX;
		for(int face=0;face<hullA->m_numFaces;face++)
		{
			const b3Float4 Normal = b3MakeVector3(
				facesA[hullA->m_faceOffset+face].m_plane.x, 
				facesA[hullA->m_faceOffset+face].m_plane.y, 
				facesA[hullA->m_faceOffset+face].m_plane.z,0.f);
			const b3Float4 faceANormalWS = b3QuatRotate(ornA,Normal);
		
			float d = b3Dot3F4(faceANormalWS,separatingNormal);
			if (d < dmin)
			{
				dmin = d;
				closestFaceA = face;
			}
		}
	}
	if (closestFaceA<0)
		return numContactsOut;

	b3GpuFace polyA = facesA[hullA->m_faceOffset+closestFaceA];

	// clip polygon to back of planes of all faces of hull A that are adjacent to witness face
	//int numContacts = numWorldVertsB1;
	int numVerticesA = polyA.m_numIndices;
	for(int e0=0;e0<numVerticesA;e0++)
	{
		const b3Float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]];
		const b3Float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]];
		const b3Float4 edge0 = a - b;
		const b3Float4 WorldEdge0 = b3QuatRotate(ornA,edge0);
		b3Float4 planeNormalA = b3MakeFloat4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
		b3Float4 worldPlaneAnormal1 = b3QuatRotate(ornA,planeNormalA);

		b3Float4 planeNormalWS1 = -b3Cross3(WorldEdge0,worldPlaneAnormal1);
		b3Float4 worldA1 = b3TransformPoint(a,posA,ornA);
		float planeEqWS1 = -b3Dot3F4(worldA1,planeNormalWS1);
		
		b3Float4 planeNormalWS = planeNormalWS1;
		float planeEqWS=planeEqWS1;
		
		//clip face
		//clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);
		numVertsOut = b3ClipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);

		//btSwap(pVtxIn,pVtxOut);
		b3Float4* tmp = pVtxOut;
		pVtxOut = pVtxIn;
		pVtxIn = tmp;
		numVertsIn = numVertsOut;
		numVertsOut = 0;
	}

	
	// only keep points that are behind the witness face
	{
		b3Float4 localPlaneNormal  = b3MakeFloat4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);
		float localPlaneEq = polyA.m_plane.w;
		b3Float4 planeNormalWS = b3QuatRotate(ornA,localPlaneNormal);
		float planeEqWS=localPlaneEq-b3Dot3F4(planeNormalWS,posA);
		for (int i=0;i<numVertsIn;i++)
		{
			float depth = b3Dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;
			if (depth <=minDist)
			{
				depth = minDist;
			}
			if (numContactsOut<contactCapacity)
			{
				if (depth <=maxDist)
				{
					b3Float4 pointInWorld = pVtxIn[i];
					//resultOut.addContactPoint(separatingNormal,point,depth);
					contactsOut[numContactsOut++] = b3MakeVector3(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);
					//printf("depth=%f\n",depth);
				}
			} else
			{
				b3Error("exceeding contact capacity (%d,%df)\n", numContactsOut,contactCapacity);
			}
		}
	}

	return numContactsOut;
}



inline int	b3ClipHullAgainstHull(const b3Float4& separatingNormal, 
	const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, 
	const b3Float4& posA, const b3Quaternion& ornA,const b3Float4& posB, const b3Quaternion& ornB, 
	b3Float4* worldVertsB1, b3Float4* worldVertsB2, int capacityWorldVerts,
	const float minDist, float maxDist,
	const b3AlignedObjectArray<b3Float4>& verticesA,	const b3AlignedObjectArray<b3GpuFace>& facesA,	const b3AlignedObjectArray<int>& indicesA,
	const b3AlignedObjectArray<b3Float4>& verticesB,	const b3AlignedObjectArray<b3GpuFace>& facesB,	const b3AlignedObjectArray<int>& indicesB,

	b3Float4*	contactsOut,
	int contactCapacity)
{
	int numContactsOut = 0;
	int numWorldVertsB1= 0;
	
	B3_PROFILE("clipHullAgainstHull");

	//float curMaxDist=maxDist;
	int closestFaceB=-1;
	float dmax = -FLT_MAX;

	{
		//B3_PROFILE("closestFaceB");
		if (hullB.m_numFaces!=1)
		{
			//printf("wtf\n");
		}
		static bool once = true;
		//printf("separatingNormal=%f,%f,%f\n",separatingNormal.x,separatingNormal.y,separatingNormal.z);
		
		for(int face=0;face<hullB.m_numFaces;face++)
		{
#ifdef BT_DEBUG_SAT_FACE
			if (once)
				printf("face %d\n",face);
			const b3GpuFace* faceB = &facesB[hullB.m_faceOffset+face];
			if (once)
			{
				for (int i=0;i<faceB->m_numIndices;i++)
				{
					b3Float4 vert = verticesB[hullB.m_vertexOffset+indicesB[faceB->m_indexOffset+i]];
					printf("vert[%d] = %f,%f,%f\n",i,vert.x,vert.y,vert.z);
				}
			}
#endif //BT_DEBUG_SAT_FACE
			//if (facesB[hullB.m_faceOffset+face].m_numIndices>2)
			{
				const b3Float4 Normal = b3MakeVector3(facesB[hullB.m_faceOffset+face].m_plane.x, 
					facesB[hullB.m_faceOffset+face].m_plane.y, facesB[hullB.m_faceOffset+face].m_plane.z,0.f);
				const b3Float4 WorldNormal = b3QuatRotate(ornB, Normal);
#ifdef BT_DEBUG_SAT_FACE
				if (once)
					printf("faceNormal = %f,%f,%f\n",Normal.x,Normal.y,Normal.z);
#endif
				float d = b3Dot3F4(WorldNormal,separatingNormal);
				if (d > dmax)
				{
					dmax = d;
					closestFaceB = face;
				}
			}
		}
		once = false;
	}

	
	b3Assert(closestFaceB>=0);
	{
		//B3_PROFILE("worldVertsB1");
		const b3GpuFace& polyB = facesB[hullB.m_faceOffset+closestFaceB];
		const int numVertices = polyB.m_numIndices;
		for(int e0=0;e0<numVertices;e0++)
		{
			const b3Float4& b = verticesB[hullB.m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];
			worldVertsB1[numWorldVertsB1++] = b3TransformPoint(b,posB,ornB);
		}
	}

	if (closestFaceB>=0)
	{
		//B3_PROFILE("clipFaceAgainstHull");
		numContactsOut = b3ClipFaceAgainstHull((b3Float4&)separatingNormal, &hullA, 
				posA,ornA,
				worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,
				verticesA,				facesA,				indicesA,
				contactsOut,contactCapacity);
	}

	return numContactsOut;
}




inline int b3ClipHullHullSingle(
			int bodyIndexA, int bodyIndexB,
										 const b3Float4& posA,
										 const b3Quaternion& ornA,
										 const b3Float4& posB,
										 const b3Quaternion& ornB,

			int collidableIndexA, int collidableIndexB,

			const b3AlignedObjectArray<b3RigidBodyData>* bodyBuf, 
			b3AlignedObjectArray<b3Contact4Data>* globalContactOut, 
			int& nContacts,
			
			const b3AlignedObjectArray<b3ConvexPolyhedronData>& hostConvexDataA,
			const b3AlignedObjectArray<b3ConvexPolyhedronData>& hostConvexDataB,
	
			const b3AlignedObjectArray<b3Vector3>& verticesA, 
			const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA, 
			const b3AlignedObjectArray<b3GpuFace>& facesA,
			const b3AlignedObjectArray<int>& indicesA,
	
			const b3AlignedObjectArray<b3Vector3>& verticesB,
			const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB,
			const b3AlignedObjectArray<b3GpuFace>& facesB,
			const b3AlignedObjectArray<int>& indicesB,

			const b3AlignedObjectArray<b3Collidable>& hostCollidablesA,
			const b3AlignedObjectArray<b3Collidable>& hostCollidablesB,
			const b3Vector3& sepNormalWorldSpace,
			int maxContactCapacity			)
{
	int contactIndex = -1;
	b3ConvexPolyhedronData hullA, hullB;
    
    b3Collidable colA = hostCollidablesA[collidableIndexA];
    hullA = hostConvexDataA[colA.m_shapeIndex];
    //printf("numvertsA = %d\n",hullA.m_numVertices);
    
    
    b3Collidable colB = hostCollidablesB[collidableIndexB];
    hullB = hostConvexDataB[colB.m_shapeIndex];
    //printf("numvertsB = %d\n",hullB.m_numVertices);
    
	
	b3Float4 contactsOut[B3_MAX_VERTS];
	int localContactCapacity = B3_MAX_VERTS;

#ifdef _WIN32
	b3Assert(_finite(bodyBuf->at(bodyIndexA).m_pos.x));
	b3Assert(_finite(bodyBuf->at(bodyIndexB).m_pos.x));
#endif
	
	
	{
		
		b3Float4 worldVertsB1[B3_MAX_VERTS];
		b3Float4 worldVertsB2[B3_MAX_VERTS];
		int capacityWorldVerts = B3_MAX_VERTS;

		b3Float4 hostNormal = b3MakeFloat4(sepNormalWorldSpace.x,sepNormalWorldSpace.y,sepNormalWorldSpace.z,0.f);
		int shapeA = hostCollidablesA[collidableIndexA].m_shapeIndex;
		int shapeB = hostCollidablesB[collidableIndexB].m_shapeIndex;

		b3Scalar minDist = -1;
		b3Scalar maxDist = 0.;

		        

		b3Transform trA,trB;
		{
		//B3_PROFILE("b3TransformPoint computation");
		//trA.setIdentity();
		trA.setOrigin(b3MakeVector3(posA.x,posA.y,posA.z));
		trA.setRotation(b3Quaternion(ornA.x,ornA.y,ornA.z,ornA.w));
				
		//trB.setIdentity();
		trB.setOrigin(b3MakeVector3(posB.x,posB.y,posB.z));
		trB.setRotation(b3Quaternion(ornB.x,ornB.y,ornB.z,ornB.w));
		}

		b3Quaternion trAorn = trA.getRotation();
        b3Quaternion trBorn = trB.getRotation();
        
		int numContactsOut = b3ClipHullAgainstHull(hostNormal, 
						hostConvexDataA.at(shapeA), 
						hostConvexDataB.at(shapeB),
								(b3Float4&)trA.getOrigin(), (b3Quaternion&)trAorn,
								(b3Float4&)trB.getOrigin(), (b3Quaternion&)trBorn,
								worldVertsB1,worldVertsB2,capacityWorldVerts,
								minDist, maxDist,
								verticesA,	facesA,indicesA,
								verticesB,	facesB,indicesB,
								
								contactsOut,localContactCapacity);

		if (numContactsOut>0)
		{
			B3_PROFILE("overlap");

			b3Float4 normalOnSurfaceB = (b3Float4&)hostNormal;
//			b3Float4 centerOut;
			
			b3Int4 contactIdx;
			contactIdx.x = 0;
			contactIdx.y = 1;
			contactIdx.z = 2;
			contactIdx.w = 3;
			
			int numPoints = 0;
					
			{
				B3_PROFILE("extractManifold");
				numPoints = b3ReduceContacts(contactsOut, numContactsOut, normalOnSurfaceB,  &contactIdx);
			}
					
			b3Assert(numPoints);
					
			if (nContacts<maxContactCapacity)
			{
				contactIndex = nContacts;
				globalContactOut->expand();
				b3Contact4Data& contact = globalContactOut->at(nContacts);
				contact.m_batchIdx = 0;//i;
				contact.m_bodyAPtrAndSignBit = (bodyBuf->at(bodyIndexA).m_invMass==0)? -bodyIndexA:bodyIndexA;
				contact.m_bodyBPtrAndSignBit = (bodyBuf->at(bodyIndexB).m_invMass==0)? -bodyIndexB:bodyIndexB;

				contact.m_frictionCoeffCmp = 45874;
				contact.m_restituitionCoeffCmp = 0;
					
			//	float distance = 0.f;
				for (int p=0;p<numPoints;p++)
				{
					contact.m_worldPosB[p] = contactsOut[contactIdx.s[p]];//check if it is actually on B
					contact.m_worldNormalOnB = normalOnSurfaceB; 
				}
				//printf("bodyIndexA %d,bodyIndexB %d,normal=%f,%f,%f numPoints %d\n",bodyIndexA,bodyIndexB,normalOnSurfaceB.x,normalOnSurfaceB.y,normalOnSurfaceB.z,numPoints);
				contact.m_worldNormalOnB.w = (b3Scalar)numPoints;
				nContacts++;
			} else
			{
				b3Error("Error: exceeding contact capacity (%d/%d)\n", nContacts,maxContactCapacity);
			}
		}
	}
	return contactIndex;
}

	



inline int b3ContactConvexConvexSAT(
																int pairIndex,
																int bodyIndexA, int bodyIndexB, 
																int collidableIndexA, int collidableIndexB, 
																const b3AlignedObjectArray<b3RigidBodyData>& rigidBodies, 
																const b3AlignedObjectArray<b3Collidable>& collidables,
																const b3AlignedObjectArray<b3ConvexPolyhedronData>& convexShapes,
																const b3AlignedObjectArray<b3Float4>& convexVertices,
																const b3AlignedObjectArray<b3Float4>& uniqueEdges,
																const b3AlignedObjectArray<int>& convexIndices,
																const b3AlignedObjectArray<b3GpuFace>& faces,
																b3AlignedObjectArray<b3Contact4Data>& globalContactsOut,
																int& nGlobalContactsOut,
																int maxContactCapacity)
{
	int contactIndex = -1;


	b3Float4 posA = rigidBodies[bodyIndexA].m_pos;
	b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat;
	b3Float4 posB = rigidBodies[bodyIndexB].m_pos;
	b3Quaternion ornB = rigidBodies[bodyIndexB].m_quat;
	

	b3ConvexPolyhedronData hullA, hullB;
    
	b3Float4 sepNormalWorldSpace;

	

    b3Collidable colA = collidables[collidableIndexA];
    hullA = convexShapes[colA.m_shapeIndex];
    //printf("numvertsA = %d\n",hullA.m_numVertices);
    
    
    b3Collidable colB = collidables[collidableIndexB];
    hullB = convexShapes[colB.m_shapeIndex];
    //printf("numvertsB = %d\n",hullB.m_numVertices);
    
	


#ifdef _WIN32
	b3Assert(_finite(rigidBodies[bodyIndexA].m_pos.x));
	b3Assert(_finite(rigidBodies[bodyIndexB].m_pos.x));
#endif
	
		bool foundSepAxis = b3FindSeparatingAxis(hullA,hullB,
							posA,
							ornA,
							posB,
							ornB,

							convexVertices,uniqueEdges,faces,convexIndices,
							convexVertices,uniqueEdges,faces,convexIndices,
							
							sepNormalWorldSpace
							);

	
	if (foundSepAxis)
	{
		
		
		contactIndex = b3ClipHullHullSingle(
			bodyIndexA, bodyIndexB,
						   posA,ornA,
						   posB,ornB,
			collidableIndexA, collidableIndexB,
			&rigidBodies, 
			&globalContactsOut,
			nGlobalContactsOut,
			
			convexShapes,
			convexShapes,
	
			convexVertices, 
			uniqueEdges, 
			faces,
			convexIndices,
	
			convexVertices,
			uniqueEdges,
			faces,
			convexIndices,

			collidables,
			collidables,
			sepNormalWorldSpace,
			maxContactCapacity);
			
	}

	return contactIndex;
}

#endif //B3_CONTACT_CONVEX_CONVEX_SAT_H