This file is indexed.

/usr/lib/gcc-cross/powerpc-linux-gnu/6/plugin/include/hash-table.h is in gcc-6-plugin-dev-powerpc-linux-gnu 6.4.0-17ubuntu1cross1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
/* A type-safe hash table template.
   Copyright (C) 2012-2016 Free Software Foundation, Inc.
   Contributed by Lawrence Crowl <crowl@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* This file implements a typed hash table.
   The implementation borrows from libiberty's htab_t in hashtab.h.


   INTRODUCTION TO TYPES

   Users of the hash table generally need to be aware of three types.

      1. The type being placed into the hash table.  This type is called
      the value type.

      2. The type used to describe how to handle the value type within
      the hash table.  This descriptor type provides the hash table with
      several things.

         - A typedef named 'value_type' to the value type (from above).

         - A static member function named 'hash' that takes a value_type
         (or 'const value_type &') and returns a hashval_t value.

         - A typedef named 'compare_type' that is used to test when a value
         is found.  This type is the comparison type.  Usually, it will be the
         same as value_type.  If it is not the same type, you must generally
         explicitly compute hash values and pass them to the hash table.

         - A static member function named 'equal' that takes a value_type
         and a compare_type, and returns a bool.  Both arguments can be
         const references.

         - A static function named 'remove' that takes an value_type pointer
         and frees the memory allocated by it.  This function is used when
         individual elements of the table need to be disposed of (e.g.,
         when deleting a hash table, removing elements from the table, etc).

	 - An optional static function named 'keep_cache_entry'.  This
	 function is provided only for garbage-collected elements that
	 are not marked by the normal gc mark pass.  It describes what
	 what should happen to the element at the end of the gc mark phase.
	 The return value should be:
	   - 0 if the element should be deleted
	   - 1 if the element should be kept and needs to be marked
	   - -1 if the element should be kept and is already marked.
	 Returning -1 rather than 1 is purely an optimization.

      3. The type of the hash table itself.  (More later.)

   In very special circumstances, users may need to know about a fourth type.

      4. The template type used to describe how hash table memory
      is allocated.  This type is called the allocator type.  It is
      parameterized on the value type.  It provides two functions:

         - A static member function named 'data_alloc'.  This function
         allocates the data elements in the table.

         - A static member function named 'data_free'.  This function
         deallocates the data elements in the table.

   Hash table are instantiated with two type arguments.

      * The descriptor type, (2) above.

      * The allocator type, (4) above.  In general, you will not need to
      provide your own allocator type.  By default, hash tables will use
      the class template xcallocator, which uses malloc/free for allocation.


   DEFINING A DESCRIPTOR TYPE

   The first task in using the hash table is to describe the element type.
   We compose this into a few steps.

      1. Decide on a removal policy for values stored in the table.
         hash-traits.h provides class templates for the four most common
         policies:

         * typed_free_remove implements the static 'remove' member function
         by calling free().

         * typed_noop_remove implements the static 'remove' member function
         by doing nothing.

         * ggc_remove implements the static 'remove' member by doing nothing,
         but instead provides routines for gc marking and for PCH streaming.
         Use this for garbage-collected data that needs to be preserved across
         collections.

         * ggc_cache_remove is like ggc_remove, except that it does not
         mark the entries during the normal gc mark phase.  Instead it
         uses 'keep_cache_entry' (described above) to keep elements that
         were not collected and delete those that were.  Use this for
         garbage-collected caches that should not in themselves stop
         the data from being collected.

         You can use these policies by simply deriving the descriptor type
         from one of those class template, with the appropriate argument.

         Otherwise, you need to write the static 'remove' member function
         in the descriptor class.

      2. Choose a hash function.  Write the static 'hash' member function.

      3. Decide whether the lookup function should take as input an object
	 of type value_type or something more restricted.  Define compare_type
	 accordingly.

      4. Choose an equality testing function 'equal' that compares a value_type
	 and a compare_type.

   If your elements are pointers, it is usually easiest to start with one
   of the generic pointer descriptors described below and override the bits
   you need to change.

   AN EXAMPLE DESCRIPTOR TYPE

   Suppose you want to put some_type into the hash table.  You could define
   the descriptor type as follows.

      struct some_type_hasher : nofree_ptr_hash <some_type>
      // Deriving from nofree_ptr_hash means that we get a 'remove' that does
      // nothing.  This choice is good for raw values.
      {
        static inline hashval_t hash (const value_type *);
        static inline bool equal (const value_type *, const compare_type *);
      };

      inline hashval_t
      some_type_hasher::hash (const value_type *e)
      { ... compute and return a hash value for E ... }

      inline bool
      some_type_hasher::equal (const value_type *p1, const compare_type *p2)
      { ... compare P1 vs P2.  Return true if they are the 'same' ... }


   AN EXAMPLE HASH_TABLE DECLARATION

   To instantiate a hash table for some_type:

      hash_table <some_type_hasher> some_type_hash_table;

   There is no need to mention some_type directly, as the hash table will
   obtain it using some_type_hasher::value_type.

   You can then use any of the functions in hash_table's public interface.
   See hash_table for details.  The interface is very similar to libiberty's
   htab_t.


   EASY DESCRIPTORS FOR POINTERS

   There are four descriptors for pointer elements, one for each of
   the removal policies above:

   * nofree_ptr_hash (based on typed_noop_remove)
   * free_ptr_hash (based on typed_free_remove)
   * ggc_ptr_hash (based on ggc_remove)
   * ggc_cache_ptr_hash (based on ggc_cache_remove)

   These descriptors hash and compare elements by their pointer value,
   rather than what they point to.  So, to instantiate a hash table over
   pointers to whatever_type, without freeing the whatever_types, use:

      hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;


   HASH TABLE ITERATORS

   The hash table provides standard C++ iterators.  For example, consider a
   hash table of some_info.  We wish to consume each element of the table:

      extern void consume (some_info *);

   We define a convenience typedef and the hash table:

      typedef hash_table <some_info_hasher> info_table_type;
      info_table_type info_table;

   Then we write the loop in typical C++ style:

      for (info_table_type::iterator iter = info_table.begin ();
           iter != info_table.end ();
           ++iter)
        if ((*iter).status == INFO_READY)
          consume (&*iter);

   Or with common sub-expression elimination:

      for (info_table_type::iterator iter = info_table.begin ();
           iter != info_table.end ();
           ++iter)
        {
          some_info &elem = *iter;
          if (elem.status == INFO_READY)
            consume (&elem);
        }

   One can also use a more typical GCC style:

      typedef some_info *some_info_p;
      some_info *elem_ptr;
      info_table_type::iterator iter;
      FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
        if (elem_ptr->status == INFO_READY)
          consume (elem_ptr);

*/


#ifndef TYPED_HASHTAB_H
#define TYPED_HASHTAB_H

#include "statistics.h"
#include "ggc.h"
#include "vec.h"
#include "hashtab.h"
#include "inchash.h"
#include "mem-stats-traits.h"
#include "hash-traits.h"
#include "hash-map-traits.h"

template<typename, typename, typename> class hash_map;
template<typename, typename> class hash_set;

/* The ordinary memory allocator.  */
/* FIXME (crowl): This allocator may be extracted for wider sharing later.  */

template <typename Type>
struct xcallocator
{
  static Type *data_alloc (size_t count);
  static void data_free (Type *memory);
};


/* Allocate memory for COUNT data blocks.  */

template <typename Type>
inline Type *
xcallocator <Type>::data_alloc (size_t count)
{
  return static_cast <Type *> (xcalloc (count, sizeof (Type)));
}


/* Free memory for data blocks.  */

template <typename Type>
inline void
xcallocator <Type>::data_free (Type *memory)
{
  return ::free (memory);
}


/* Table of primes and their inversion information.  */

struct prime_ent
{
  hashval_t prime;
  hashval_t inv;
  hashval_t inv_m2;     /* inverse of prime-2 */
  hashval_t shift;
};

extern struct prime_ent const prime_tab[];


/* Functions for computing hash table indexes.  */

extern unsigned int hash_table_higher_prime_index (unsigned long n)
   ATTRIBUTE_PURE;

/* Return X % Y using multiplicative inverse values INV and SHIFT.

   The multiplicative inverses computed above are for 32-bit types,
   and requires that we be able to compute a highpart multiply.

   FIX: I am not at all convinced that
     3 loads, 2 multiplications, 3 shifts, and 3 additions
   will be faster than
     1 load and 1 modulus
   on modern systems running a compiler.  */

inline hashval_t
mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
{
   hashval_t t1, t2, t3, t4, q, r;

   t1 = ((uint64_t)x * inv) >> 32;
   t2 = x - t1;
   t3 = t2 >> 1;
   t4 = t1 + t3;
   q  = t4 >> shift;
   r  = x - (q * y);

   return r;
}

/* Compute the primary table index for HASH given current prime index.  */

inline hashval_t
hash_table_mod1 (hashval_t hash, unsigned int index)
{
  const struct prime_ent *p = &prime_tab[index];
  gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
    return mul_mod (hash, p->prime, p->inv, p->shift);
}

/* Compute the secondary table index for HASH given current prime index.  */

inline hashval_t
hash_table_mod2 (hashval_t hash, unsigned int index)
{
  const struct prime_ent *p = &prime_tab[index];
  gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
  return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
}

class mem_usage;

/* User-facing hash table type.

   The table stores elements of type Descriptor::value_type and uses
   the static descriptor functions described at the top of the file
   to hash, compare and remove elements.

   Specify the template Allocator to allocate and free memory.
     The default is xcallocator.

     Storage is an implementation detail and should not be used outside the
     hash table code.

*/
template <typename Descriptor,
	 template<typename Type> class Allocator = xcallocator>
class hash_table
{
  typedef typename Descriptor::value_type value_type;
  typedef typename Descriptor::compare_type compare_type;

public:
  explicit hash_table (size_t, bool ggc = false,
		       bool gather_mem_stats = GATHER_STATISTICS,
		       mem_alloc_origin origin = HASH_TABLE_ORIGIN
		       CXX_MEM_STAT_INFO);
  explicit hash_table (const hash_table &, bool ggc = false,
		       bool gather_mem_stats = GATHER_STATISTICS,
		       mem_alloc_origin origin = HASH_TABLE_ORIGIN
		       CXX_MEM_STAT_INFO);
  ~hash_table ();

  /* Create a hash_table in gc memory.  */
  static hash_table *
  create_ggc (size_t n CXX_MEM_STAT_INFO)
  {
    hash_table *table = ggc_alloc<hash_table> ();
    new (table) hash_table (n, true, GATHER_STATISTICS,
			    HASH_TABLE_ORIGIN PASS_MEM_STAT);
    return table;
  }

  /* Current size (in entries) of the hash table.  */
  size_t size () const { return m_size; }

  /* Return the current number of elements in this hash table. */
  size_t elements () const { return m_n_elements - m_n_deleted; }

  /* Return the current number of elements in this hash table. */
  size_t elements_with_deleted () const { return m_n_elements; }

  /* This function clears all entries in this hash table.  */
  void empty () { if (elements ()) empty_slow (); }

  /* This function clears a specified SLOT in a hash table.  It is
     useful when you've already done the lookup and don't want to do it
     again. */
  void clear_slot (value_type *);

  /* This function searches for a hash table entry equal to the given
     COMPARABLE element starting with the given HASH value.  It cannot
     be used to insert or delete an element. */
  value_type &find_with_hash (const compare_type &, hashval_t);

  /* Like find_slot_with_hash, but compute the hash value from the element.  */
  value_type &find (const value_type &value)
    {
      return find_with_hash (value, Descriptor::hash (value));
    }

  value_type *find_slot (const value_type &value, insert_option insert)
    {
      return find_slot_with_hash (value, Descriptor::hash (value), insert);
    }

  /* This function searches for a hash table slot containing an entry
     equal to the given COMPARABLE element and starting with the given
     HASH.  To delete an entry, call this with insert=NO_INSERT, then
     call clear_slot on the slot returned (possibly after doing some
     checks).  To insert an entry, call this with insert=INSERT, then
     write the value you want into the returned slot.  When inserting an
     entry, NULL may be returned if memory allocation fails. */
  value_type *find_slot_with_hash (const compare_type &comparable,
				    hashval_t hash, enum insert_option insert);

  /* This function deletes an element with the given COMPARABLE value
     from hash table starting with the given HASH.  If there is no
     matching element in the hash table, this function does nothing. */
  void remove_elt_with_hash (const compare_type &, hashval_t);

  /* Like remove_elt_with_hash, but compute the hash value from the
     element.  */
  void remove_elt (const value_type &value)
    {
      remove_elt_with_hash (value, Descriptor::hash (value));
    }

  /* This function scans over the entire hash table calling CALLBACK for
     each live entry.  If CALLBACK returns false, the iteration stops.
     ARGUMENT is passed as CALLBACK's second argument. */
  template <typename Argument,
	    int (*Callback) (value_type *slot, Argument argument)>
  void traverse_noresize (Argument argument);

  /* Like traverse_noresize, but does resize the table when it is too empty
     to improve effectivity of subsequent calls.  */
  template <typename Argument,
	    int (*Callback) (value_type *slot, Argument argument)>
  void traverse (Argument argument);

  class iterator
  {
  public:
    iterator () : m_slot (NULL), m_limit (NULL) {}

    iterator (value_type *slot, value_type *limit) :
      m_slot (slot), m_limit (limit) {}

    inline value_type &operator * () { return *m_slot; }
    void slide ();
    inline iterator &operator ++ ();
    bool operator != (const iterator &other) const
      {
	return m_slot != other.m_slot || m_limit != other.m_limit;
      }

  private:
    value_type *m_slot;
    value_type *m_limit;
  };

  iterator begin () const
    {
      iterator iter (m_entries, m_entries + m_size);
      iter.slide ();
      return iter;
    }

  iterator end () const { return iterator (); }

  double collisions () const
    {
      return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
    }

private:
  template<typename T> friend void gt_ggc_mx (hash_table<T> *);
  template<typename T> friend void gt_pch_nx (hash_table<T> *);
  template<typename T> friend void
    hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
  template<typename T, typename U, typename V> friend void
  gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
  template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
							  gt_pointer_operator,
							  void *);
  template<typename T> friend void gt_pch_nx (hash_table<T> *,
					      gt_pointer_operator, void *);

  template<typename T> friend void gt_cleare_cache (hash_table<T> *);

  void empty_slow ();

  value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
  value_type *find_empty_slot_for_expand (hashval_t);
  void expand ();
  static bool is_deleted (value_type &v)
  {
    return Descriptor::is_deleted (v);
  }

  static bool is_empty (value_type &v)
  {
    return Descriptor::is_empty (v);
  }

  static void mark_deleted (value_type &v)
  {
    Descriptor::mark_deleted (v);
  }

  static void mark_empty (value_type &v)
  {
    Descriptor::mark_empty (v);
  }

  /* Table itself.  */
  typename Descriptor::value_type *m_entries;

  size_t m_size;

  /* Current number of elements including also deleted elements.  */
  size_t m_n_elements;

  /* Current number of deleted elements in the table.  */
  size_t m_n_deleted;

  /* The following member is used for debugging. Its value is number
     of all calls of `htab_find_slot' for the hash table. */
  unsigned int m_searches;

  /* The following member is used for debugging.  Its value is number
     of collisions fixed for time of work with the hash table. */
  unsigned int m_collisions;

  /* Current size (in entries) of the hash table, as an index into the
     table of primes.  */
  unsigned int m_size_prime_index;

  /* if m_entries is stored in ggc memory.  */
  bool m_ggc;

  /* If we should gather memory statistics for the table.  */
  bool m_gather_mem_stats;
};

/* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
   mem-stats.h after hash_table declaration.  */

#include "mem-stats.h"
#include "hash-map.h"

extern mem_alloc_description<mem_usage> hash_table_usage;

/* Support function for statistics.  */
extern void dump_hash_table_loc_statistics (void);

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator>::hash_table (size_t size, bool ggc, bool
					       gather_mem_stats,
					       mem_alloc_origin origin
					       MEM_STAT_DECL) :
  m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
  m_ggc (ggc), m_gather_mem_stats (gather_mem_stats)
{
  unsigned int size_prime_index;

  size_prime_index = hash_table_higher_prime_index (size);
  size = prime_tab[size_prime_index].prime;

  if (m_gather_mem_stats)
    hash_table_usage.register_descriptor (this, origin, ggc
					  FINAL_PASS_MEM_STAT);

  m_entries = alloc_entries (size PASS_MEM_STAT);
  m_size = size;
  m_size_prime_index = size_prime_index;
}

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator>::hash_table (const hash_table &h, bool ggc,
					       bool gather_mem_stats,
					       mem_alloc_origin origin
					       MEM_STAT_DECL) :
  m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
  m_searches (0), m_collisions (0), m_ggc (ggc),
  m_gather_mem_stats (gather_mem_stats)
{
  size_t size = h.m_size;

  if (m_gather_mem_stats)
    hash_table_usage.register_descriptor (this, origin, ggc
					  FINAL_PASS_MEM_STAT);

  value_type *nentries = alloc_entries (size PASS_MEM_STAT);
  for (size_t i = 0; i < size; ++i)
    {
      value_type &entry = h.m_entries[i];
      if (is_deleted (entry))
	mark_deleted (nentries[i]);
      else if (!is_empty (entry))
	nentries[i] = entry;
    }
  m_entries = nentries;
  m_size = size;
  m_size_prime_index = h.m_size_prime_index;
}

template<typename Descriptor, template<typename Type> class Allocator>
hash_table<Descriptor, Allocator>::~hash_table ()
{
  for (size_t i = m_size - 1; i < m_size; i--)
    if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
      Descriptor::remove (m_entries[i]);

  if (!m_ggc)
    Allocator <value_type> ::data_free (m_entries);
  else
    ggc_free (m_entries);

  if (m_gather_mem_stats)
    hash_table_usage.release_instance_overhead (this,
						sizeof (value_type) * m_size,
						true);
}

/* This function returns an array of empty hash table elements.  */

template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator>::value_type *
hash_table<Descriptor, Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
{
  value_type *nentries;

  if (m_gather_mem_stats)
    hash_table_usage.register_instance_overhead (sizeof (value_type) * n, this);

  if (!m_ggc)
    nentries = Allocator <value_type> ::data_alloc (n);
  else
    nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);

  gcc_assert (nentries != NULL);
  for (size_t i = 0; i < n; i++)
    mark_empty (nentries[i]);

  return nentries;
}

/* Similar to find_slot, but without several unwanted side effects:
    - Does not call equal when it finds an existing entry.
    - Does not change the count of elements/searches/collisions in the
      hash table.
   This function also assumes there are no deleted entries in the table.
   HASH is the hash value for the element to be inserted.  */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator>::value_type *
hash_table<Descriptor, Allocator>::find_empty_slot_for_expand (hashval_t hash)
{
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  size_t size = m_size;
  value_type *slot = m_entries + index;
  hashval_t hash2;

  if (is_empty (*slot))
    return slot;
  gcc_checking_assert (!is_deleted (*slot));

  hash2 = hash_table_mod2 (hash, m_size_prime_index);
  for (;;)
    {
      index += hash2;
      if (index >= size)
        index -= size;

      slot = m_entries + index;
      if (is_empty (*slot))
        return slot;
      gcc_checking_assert (!is_deleted (*slot));
    }
}

/* The following function changes size of memory allocated for the
   entries and repeatedly inserts the table elements.  The occupancy
   of the table after the call will be about 50%.  Naturally the hash
   table must already exist.  Remember also that the place of the
   table entries is changed.  If memory allocation fails, this function
   will abort.  */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator>::expand ()
{
  value_type *oentries = m_entries;
  unsigned int oindex = m_size_prime_index;
  size_t osize = size ();
  value_type *olimit = oentries + osize;
  size_t elts = elements ();

  /* Resize only when table after removal of unused elements is either
     too full or too empty.  */
  unsigned int nindex;
  size_t nsize;
  if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
    {
      nindex = hash_table_higher_prime_index (elts * 2);
      nsize = prime_tab[nindex].prime;
    }
  else
    {
      nindex = oindex;
      nsize = osize;
    }

  value_type *nentries = alloc_entries (nsize);

  if (m_gather_mem_stats)
    hash_table_usage.release_instance_overhead (this, sizeof (value_type)
						    * osize);

  m_entries = nentries;
  m_size = nsize;
  m_size_prime_index = nindex;
  m_n_elements -= m_n_deleted;
  m_n_deleted = 0;

  value_type *p = oentries;
  do
    {
      value_type &x = *p;

      if (!is_empty (x) && !is_deleted (x))
        {
          value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));

          *q = x;
        }

      p++;
    }
  while (p < olimit);

  if (!m_ggc)
    Allocator <value_type> ::data_free (oentries);
  else
    ggc_free (oentries);
}

/* Implements empty() in cases where it isn't a no-op.  */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator>::empty_slow ()
{
  size_t size = m_size;
  value_type *entries = m_entries;
  int i;

  for (i = size - 1; i >= 0; i--)
    if (!is_empty (entries[i]) && !is_deleted (entries[i]))
      Descriptor::remove (entries[i]);

  /* Instead of clearing megabyte, downsize the table.  */
  if (size > 1024*1024 / sizeof (PTR))
    {
      int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
      int nsize = prime_tab[nindex].prime;

      if (!m_ggc)
	Allocator <value_type> ::data_free (m_entries);
      else
	ggc_free (m_entries);

      m_entries = alloc_entries (nsize);
      m_size = nsize;
      m_size_prime_index = nindex;
    }
  else
    memset (entries, 0, size * sizeof (value_type));
  m_n_deleted = 0;
  m_n_elements = 0;
}

/* This function clears a specified SLOT in a hash table.  It is
   useful when you've already done the lookup and don't want to do it
   again. */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator>::clear_slot (value_type *slot)
{
  gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
		         || is_empty (*slot) || is_deleted (*slot)));

  Descriptor::remove (*slot);

  mark_deleted (*slot);
  m_n_deleted++;
}

/* This function searches for a hash table entry equal to the given
   COMPARABLE element starting with the given HASH value.  It cannot
   be used to insert or delete an element. */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator>::value_type &
hash_table<Descriptor, Allocator>
::find_with_hash (const compare_type &comparable, hashval_t hash)
{
  m_searches++;
  size_t size = m_size;
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);

  value_type *entry = &m_entries[index];
  if (is_empty (*entry)
      || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
    return *entry;

  hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  for (;;)
    {
      m_collisions++;
      index += hash2;
      if (index >= size)
        index -= size;

      entry = &m_entries[index];
      if (is_empty (*entry)
          || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
        return *entry;
    }
}

/* This function searches for a hash table slot containing an entry
   equal to the given COMPARABLE element and starting with the given
   HASH.  To delete an entry, call this with insert=NO_INSERT, then
   call clear_slot on the slot returned (possibly after doing some
   checks).  To insert an entry, call this with insert=INSERT, then
   write the value you want into the returned slot.  When inserting an
   entry, NULL may be returned if memory allocation fails. */

template<typename Descriptor, template<typename Type> class Allocator>
typename hash_table<Descriptor, Allocator>::value_type *
hash_table<Descriptor, Allocator>
::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
		       enum insert_option insert)
{
  if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
    expand ();

  m_searches++;

  value_type *first_deleted_slot = NULL;
  hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  value_type *entry = &m_entries[index];
  size_t size = m_size;
  if (is_empty (*entry))
    goto empty_entry;
  else if (is_deleted (*entry))
    first_deleted_slot = &m_entries[index];
  else if (Descriptor::equal (*entry, comparable))
    return &m_entries[index];

  for (;;)
    {
      m_collisions++;
      index += hash2;
      if (index >= size)
	index -= size;

      entry = &m_entries[index];
      if (is_empty (*entry))
	goto empty_entry;
      else if (is_deleted (*entry))
	{
	  if (!first_deleted_slot)
	    first_deleted_slot = &m_entries[index];
	}
      else if (Descriptor::equal (*entry, comparable))
	return &m_entries[index];
    }

 empty_entry:
  if (insert == NO_INSERT)
    return NULL;

  if (first_deleted_slot)
    {
      m_n_deleted--;
      mark_empty (*first_deleted_slot);
      return first_deleted_slot;
    }

  m_n_elements++;
  return &m_entries[index];
}

/* This function deletes an element with the given COMPARABLE value
   from hash table starting with the given HASH.  If there is no
   matching element in the hash table, this function does nothing. */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator>
::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
{
  value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
  if (is_empty (*slot))
    return;

  Descriptor::remove (*slot);

  mark_deleted (*slot);
  m_n_deleted++;
}

/* This function scans over the entire hash table calling CALLBACK for
   each live entry.  If CALLBACK returns false, the iteration stops.
   ARGUMENT is passed as CALLBACK's second argument. */

template<typename Descriptor,
	  template<typename Type> class Allocator>
template<typename Argument,
	  int (*Callback)
     (typename hash_table<Descriptor, Allocator>::value_type *slot,
      Argument argument)>
void
hash_table<Descriptor, Allocator>::traverse_noresize (Argument argument)
{
  value_type *slot = m_entries;
  value_type *limit = slot + size ();

  do
    {
      value_type &x = *slot;

      if (!is_empty (x) && !is_deleted (x))
        if (! Callback (slot, argument))
          break;
    }
  while (++slot < limit);
}

/* Like traverse_noresize, but does resize the table when it is too empty
   to improve effectivity of subsequent calls.  */

template <typename Descriptor,
	  template <typename Type> class Allocator>
template <typename Argument,
	  int (*Callback)
     (typename hash_table<Descriptor, Allocator>::value_type *slot,
      Argument argument)>
void
hash_table<Descriptor, Allocator>::traverse (Argument argument)
{
  size_t size = m_size;
  if (elements () * 8 < size && size > 32)
    expand ();

  traverse_noresize <Argument, Callback> (argument);
}

/* Slide down the iterator slots until an active entry is found.  */

template<typename Descriptor, template<typename Type> class Allocator>
void
hash_table<Descriptor, Allocator>::iterator::slide ()
{
  for ( ; m_slot < m_limit; ++m_slot )
    {
      value_type &x = *m_slot;
      if (!is_empty (x) && !is_deleted (x))
        return;
    }
  m_slot = NULL;
  m_limit = NULL;
}

/* Bump the iterator.  */

template<typename Descriptor, template<typename Type> class Allocator>
inline typename hash_table<Descriptor, Allocator>::iterator &
hash_table<Descriptor, Allocator>::iterator::operator ++ ()
{
  ++m_slot;
  slide ();
  return *this;
}


/* Iterate through the elements of hash_table HTAB,
   using hash_table <....>::iterator ITER,
   storing each element in RESULT, which is of type TYPE.  */

#define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
  for ((ITER) = (HTAB).begin (); \
       (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
       ++(ITER))

/* ggc walking routines.  */

template<typename E>
static inline void
gt_ggc_mx (hash_table<E> *h)
{
  typedef hash_table<E> table;

  if (!ggc_test_and_set_mark (h->m_entries))
    return;

  for (size_t i = 0; i < h->m_size; i++)
    {
      if (table::is_empty (h->m_entries[i])
	  || table::is_deleted (h->m_entries[i]))
	continue;

      E::ggc_mx (h->m_entries[i]);
    }
}

template<typename D>
static inline void
hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
			     void *cookie)
{
  hash_table<D> *map = static_cast<hash_table<D> *> (h);
  gcc_checking_assert (map->m_entries == obj);
  for (size_t i = 0; i < map->m_size; i++)
    {
      typedef hash_table<D> table;
      if (table::is_empty (map->m_entries[i])
	  || table::is_deleted (map->m_entries[i]))
	continue;

      D::pch_nx (map->m_entries[i], op, cookie);
    }
}

template<typename D>
static void
gt_pch_nx (hash_table<D> *h)
{
  bool success
    = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
  gcc_checking_assert (success);
  for (size_t i = 0; i < h->m_size; i++)
    {
      if (hash_table<D>::is_empty (h->m_entries[i])
	  || hash_table<D>::is_deleted (h->m_entries[i]))
	continue;

      D::pch_nx (h->m_entries[i]);
    }
}

template<typename D>
static inline void
gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
{
  op (&h->m_entries, cookie);
}

template<typename H>
inline void
gt_cleare_cache (hash_table<H> *h)
{
  extern void gt_ggc_mx (typename H::value_type &t);
  typedef hash_table<H> table;
  if (!h)
    return;

  for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
    if (!table::is_empty (*iter) && !table::is_deleted (*iter))
      {
	int res = H::keep_cache_entry (*iter);
	if (res == 0)
	  h->clear_slot (&*iter);
	else if (res != -1)
	  gt_ggc_mx (*iter);
      }
}

#endif /* TYPED_HASHTAB_H */