This file is indexed.

/usr/include/xtensor/xcomplex.hpp is in xtensor-dev 0.10.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/***************************************************************************
* Copyright (c) 2016, Johan Mabille, Sylvain Corlay and Wolf Vollprecht    *
*                                                                          *
* Distributed under the terms of the BSD 3-Clause License.                 *
*                                                                          *
* The full license is in the file LICENSE, distributed with this software. *
****************************************************************************/

#ifndef XCOMPLEX_HPP
#define XCOMPLEX_HPP

#include <type_traits>
#include <utility>

#include "xtensor/xbuilder.hpp"
#include "xtensor/xexpression.hpp"
#include "xtensor/xoffsetview.hpp"

namespace xt
{

    /******************************
     * real and imag declarations *
     ******************************/

    template <class E>
    decltype(auto) real(E&& e) noexcept;

    template <class E>
    decltype(auto) imag(E&& e) noexcept;

    /********************************
     * real and imag implementation *
     ********************************/

    namespace detail
    {
        template <bool iscomplex = true>
        struct complex_helper
        {
            template <class E>
            static inline auto real(E&& e) noexcept
            {
                using real_type = typename std::decay_t<E>::value_type::value_type;
                return xoffsetview<xclosure_t<E>, real_type, 0>(std::forward<E>(e));
            }

            template <class E>
            static inline auto imag(E&& e) noexcept
            {
                using real_type = typename std::decay_t<E>::value_type::value_type;
                return xoffsetview<xclosure_t<E>, real_type, sizeof(real_type)>(std::forward<E>(e));
            }
        };

        template <>
        struct complex_helper<false>
        {
            template <class E>
            static inline decltype(auto) real(E&& e) noexcept
            {
                return e;
            }

            template <class E>
            static inline auto imag(E&& e) noexcept
            {
                return zeros<typename std::decay_t<E>::value_type>(e.shape());
            }
        };

        template <bool isexpression = true>
        struct complex_expression_helper
        {
            template <class E>
            static inline auto real(E&& e) noexcept
            {
                return detail::complex_helper<is_complex<typename std::decay_t<E>::value_type>::value>::real(e);
            }

            template <class E>
            static inline auto imag(E&& e) noexcept
            {
                return detail::complex_helper<is_complex<typename std::decay_t<E>::value_type>::value>::imag(e);
            }
        };

        template <>
        struct complex_expression_helper<false>
        {
            template <class E>
            static inline decltype(auto) real(E&& e) noexcept
            {
                return forward_real(std::forward<E>(e));
            }

            template <class E>
            static inline decltype(auto) imag(E&& e) noexcept
            {
                return forward_imag(std::forward<E>(e));
            }
        };
    }

    /**
     * @brief Returns an \ref xexpression representing the real part of the given expression.
     *
     * @tparam e the \ref xexpression
     *
     * The returned expression either hold a const reference to \p e or a copy
     * depending on whether \p e is an lvalue or an rvalue.
     */
    template <class E>
    inline decltype(auto) real(E&& e) noexcept
    {
        return detail::complex_expression_helper<is_xexpression<std::decay_t<E>>::value>::real(std::forward<E>(e));
    }

    /**
     * @brief Returns an \ref xexpression representing the imaginary part of the given expression.
     *
     * @tparam e the \ref xexpression
     *
     * The returned expression either hold a const reference to \p e or a copy
     * depending on whether \p e is an lvalue or an rvalue.
     */
    template <class E>
    inline decltype(auto) imag(E&& e) noexcept
    {
        return detail::complex_expression_helper<is_xexpression<std::decay_t<E>>::value>::imag(std::forward<E>(e));
    }

#define UNARY_COMPLEX_FUNCTOR(NAME)                                 \
    template <class T>                                              \
    struct NAME##_fun                                               \
    {                                                               \
        using argument_type = T;                                    \
        using result_type = decltype(std::NAME(std::declval<T>())); \
        constexpr result_type operator()(const T& t) const          \
        {                                                           \
            using std::NAME;                                        \
            return NAME(t);                                         \
        }                                                           \
    }

    namespace math
    {
        UNARY_COMPLEX_FUNCTOR(norm);
        UNARY_COMPLEX_FUNCTOR(arg);

        namespace detail
        {
            // libc++ (OSX) conj is unfortunately broken and returns
            // std::complex<T> instead of T.
            template <class T>
            constexpr T conj(const T& c)
            {
                return c;
            }

            template <class T>
            constexpr std::complex<T> conj(const std::complex<T>& c)
            {
                return std::complex<T>(c.real(), -c.imag());
            }
        }

        template <class T>
        struct conj_fun
        {
            using argument_type = T;
            using result_type = decltype(detail::conj(std::declval<T>()));
            constexpr result_type operator()(const T& t) const
            {
                return detail::conj(t);
            }
        };
    }

#undef UNARY_COMPLEX_FUNCTOR

    /**
     * @brief Returns an \ref xfunction evaluating to the complex conjugate of the given expression.
     *
     * @param e the \ref xexpression
     */
    template <class E>
    inline auto conj(E&& e) noexcept
    {
        using value_type = typename std::decay_t<E>::value_type;
        using functor = math::conj_fun<value_type>;
        using result_type = typename functor::result_type;
        using type = xfunction<functor, result_type, const_xclosure_t<E>>;
        return type(functor(), std::forward<E>(e));
    }

    /**
     * @brief Calculates the phase angle (in radians) elementwise for the complex numbers in e.
     * @param e the \ref xexpression
     */
    template <class E>
    inline auto arg(E&& e) noexcept
    {
        using value_type = typename std::decay_t<E>::value_type;
        using functor = math::arg_fun<value_type>;
        using result_type = typename functor::result_type;
        using type = xfunction<functor, result_type, const_xclosure_t<E>>;
        return type(functor(), std::forward<E>(e));
    }

    /**
     * @brief Calculates the phase angle elementwise for the complex numbers in e.
     * Note that this function might be slightly less perfomant than \ref arg.
     * @param e the \ref xexpression
     * @param deg calculate angle in degrees instead of radians
     */
    template <class E>
    inline auto angle(E&& e, bool deg = false) noexcept
    {
        using value_type = complex_value_type_t<typename std::decay_t<E>::value_type>;
        value_type multiplier = 1.0;
        if (deg)
        {
            multiplier = value_type(180) / numeric_constants<value_type>::PI;
        }
        return arg(std::forward<E>(e)) * std::move(multiplier);
    }

    /**
     * Calculates the squared magnitude elementwise for the complex numbers in e.
     * Equivalent to pow(real(e), 2) + pow(imag(e), 2).
     * @param e the \ref xexpression
     */
    template <class E>
    inline auto norm(E&& e) noexcept
    {
        using value_type = typename std::decay_t<E>::value_type;
        using functor = math::norm_fun<value_type>;
        using result_type = typename functor::result_type;
        using type = xfunction<functor, result_type, const_xclosure_t<E>>;
        return type(functor(), std::forward<E>(e));
    }
}
#endif