/usr/share/singular/LIB/compregb.lib is in singular-data 1:4.1.0-p3+ds-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | //////////////////////////////////////////////////////////////////////////////
version="version compregb.lib 4.0.0.0 Jun_2013 "; // $Id: 95e4c7dacb9b13daa2efb154f66ace0d4fef37dc $
category="General purpose";
info="
LIBRARY: compregb.lib experimental implementation for comprehensive Groebner systems
AUTHOR: Akira Suzuki (http://kurt.scitec.kobe-u.ac.jp/~sakira/CGBusingGB/)
(<sakira@kobe-u.ac.jp>)
OVERVIEW:
see \"A Simple Algorithm to compute Comprehensive Groebner Bases using Groebner
Bases\" by Akira Suzuki and Yosuke Sato for details.
PROCEDURES:
cgs(polys,vars,pars,R1,R2); comprehensive Groebner systems
base2str(G); pretty print of the result G
KEYWORDS: comprehensive Groebner system
";
///////////////////////////////////////////////////////////////////////////////
// global variables are the followings:
// Parameters, Variables, VMinDPoly,
// RingAll, RingVar;
///////////////////////////////////////////////////////////////////////////////
static proc setup_special_dpolys()
{
poly VMinDPoly = Variables[size(Variables)];
export(VMinDPoly);
}
static proc newcasebasis(poly Case, ideal Basis)
{
list CB = Case, Basis;
return(CB);
}
static proc contains(poly Vari, list Varis)
{
int l = size(Varis);
for (int i = 1; i <= l; i ++)
{
if (Vari == Varis[i])
{
return(1);
}
}
return(0);
}
static proc polys_heads(list PolyL)
{
int i, j;
int length = size(PolyL);
if (!length)
{
return(PolyL);
}
setring(RingVar);
list PolyL = imap(RingAll, PolyL);
list HCoefs = list();
length = size(PolyL);
for (i = 1; i <= length; i ++)
{
HCoefs = insert(HCoefs, leadcoef(PolyL[i]));
}
setring(RingAll);
list HCoefs = imap(RingVar, HCoefs);
list CoefL;
ideal CoefLsub;
poly Coef;
for (i = 1; i <= length; i ++)
{
Coef = HCoefs[i];
if (typeof(Coef) == "poly")
{
CoefLsub = factorize(Coef, 1);
for (j = 1; j <= size(CoefLsub); j ++)
{
if (CoefLsub[j] > 1)
{
CoefL = insert(CoefL, CoefLsub[j]);
}
}
}
}
for (i = 1; i <= size(CoefL); i ++)
{
Coef = CoefL[i];
for (j = i + 1; j <= size(CoefL); j ++)
{
if (Coef == CoefL[j])
{
CoefL = delete(CoefL, j);
j --;
}
}
}
return(CoefL);
}
static proc polys_restrict_v(ideal Polys)
{
return(polys_separate_v_p(Polys)[0]);
}
static proc polys_restrict_p(ideal Polys)
{
return(polys_separate_v_p(Polys)[1]);
}
static proc polys_separate_v_p(ideal Polys)
{
list R_v, R_p;
poly P;
int length = size(Polys);
for (int i = 1; i <= length; i ++)
{
P = Polys[i];
if (P < VMinDPoly)
{
R_p = insert(R_p, P);
}
else
{
R_v = insert(R_v, P);
}
}
return(R_v, R_p);
}
static proc cgs_main(ideal Polys)
{
ideal F;
list FP, FV, HFact, Bases;
poly H;
int i;
// F = groebner(Polys);
F = slimgb(Polys);
if (F[1] == 1)
{
return(list());
}
FV, FP = polys_separate_v_p(F);
HFact = polys_heads(FV);
int HFL = size(HFact);
H = 1;
for (i = 1; i <= HFL; i ++)
{
H = H * HFact[i];
}
Bases = insert(Bases, list(H, F));
for (i = 1; i <= HFL; i ++)
{
// print("paras:" + string(FP));
// print("ideal:" + string(HFact[i]));
Bases = cgs_main(F + ideal(HFact[i])) + Bases;
}
return(Bases);
}
proc cgs(ideal Polys, list Vars, list Paras,def RingVar,def RingAll)
"USAGE: cgs(Polys,Vars,Paras,RingVar,RingAll); Polys an ideal, Vars, the list
of variables, Paras the list of parameters, RingVar the ring with
Paras as parameters, RingAll the ring with Paras as variables
(RingAll should be the current ring)
RETURN: a list L of lists L[i] of a polynomial and an ideal:
L[i][1] the polynomial giving the condition on the parameters
L[i][2] the Groebner basis for this case
EXAMPLE: example cgs; shows an example
"
{
option(redSB);
list Parameters = Paras;
list Variables = Vars;
poly VMinDPoly = Vars[size(Vars)];
export(Parameters, Variables, VMinDPoly);
export(RingVar, RingAll);
setring(RingAll);
list G = cgs_main(Polys);
keepring(RingAll);
return(G);
}
example
{ "EXAMPLE:";echo=2;
ring RingVar=(0,a,b),(x,y,t),lp;
ring RingAll=0,(x,y,t,a,b),(lp(3),dp);
ideal polys=x^3-a,y^4-b,x+y-t;
list vars=x,y,t;
list paras=a,b;
list G = cgs(polys,vars,paras,RingVar,RingAll);
G;
}
proc basis2str(list B)
{
string Str;
ideal Factors;
int i;
Str = "(";
Factors = factorize(B[1], 1);
for (i = 1; i <= size(Factors); i ++)
{
Str = Str + "(" + string(Factors[i]) + ")";
}
Str = Str + "!=0,";
list FV, FP;
FV, FP = polys_separate_v_p(B[2]);
for (i = 1; i <= size(FP); i ++)
{
Str = Str + string(FP[i]) + "=0,";
}
if (size(Str) > 1)
{
Str = Str[1, size(Str) - 1] + ")[";
}
else
{
Str = "()[";
}
if (size(FV))
{
for (i = 1; i <= size(FV); i ++)
{
Str = Str + string(FV[i]) + ",";
}
Str = Str[1, size(Str) - 1] + "]";
}
else
{
Str += "]";
}
return(Str);
}
proc bases2str(list Bases)
{
string Str;
int i;
Str = "";
for (i = 1; i <= size(Bases); i ++)
{
Str = Str + basis2str(Bases[i]) + newline;
}
return(Str);
}
/*
ring RingVar=(0,a,b),(x,y,t),lp; ring RingAll=0,(x,y,t,a,b),(lp(3),dp);
ideal polys=x^3-a,y^4-b,x+y-t; list vars=x,y,t; list paras=a,b;
list G = cgs(polys,vars,paras,RingVar,RingAll);
bases2str(G);
*/
|