This file is indexed.

/usr/share/octave/packages/symbolic-2.6.0/laguerreL.m is in octave-symbolic 2.6.0-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
%% Copyright (C) 2008 Eric Chassande-Mottin
%% Copyright (C) 2011 Carnë Draug
%% Copyright (C) 2016 Colin B. Macdonald
%%
%% This program is free software; you can redistribute it and/or modify it under
%% the terms of the GNU General Public License as published by the Free Software
%% Foundation; either version 3 of the License, or (at your option) any later
%% version.
%%
%% This program is distributed in the hope that it will be useful, but WITHOUT
%% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
%% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
%% details.
%%
%% You should have received a copy of the GNU General Public License along with
%% this program; if not, see <http://www.gnu.org/licenses/>.

%% -*- texinfo -*-
%% @documentencoding UTF-8
%% @defun laguerreL (@var{n}, @var{x})
%% Evaluate Laguerre polynomials.
%%
%% Compute the value of the Laguerre polynomial of order @var{n}
%% for each element of @var{x}.
%%
%% This implementation uses a three-term recurrence directly on the values
%% of @var{x}.  The result is numerically stable, as opposed to evaluating
%% the polynomial using the monomial coefficients.  For example, we can
%% symbolically construct the Laguerre polynomial of degree 14 and evaluate it
%% at the point 6:
%% @example
%% @group
%% syms x
%% L = laguerreL (14, x);
%% exact = subs (L, x, 6)
%%   @result{} exact = (sym)
%%       34213
%%       ─────
%%       35035
%% @end group
%% @end example
%% But if we extract the monomial coefficients and numerically evaluate the
%% polynomial at a point, the result is rather poor:
%% @example
%% @group
%% coeffs = sym2poly (L);
%% polyval (coeffs, 6)
%%   @result{} 0.97654
%% ans - double (exact)
%%   @result{} -1.6798e-11
%% @end group
%% @end example
%% So please don't do that!  The numerical @code{laguerreL} function
%% does much better:
%% @example
%% @group
%% laguerreL (14, 6) - double (exact)
%%   @result{} 9.9920e-16
%% @end group
%% @end example
%%
%% @seealso{@@sym/laguerreL}
%% @end defun

function L = laguerreL(n, x)

  if (nargin ~= 2)
    print_usage ();
  end

  if (any (n < 0) || any (mod (n, 1) ~= 0))
    error('second argument "n" must consist of positive integers');
  end

  if (~isscalar (n) && isscalar (x))
    x = x*ones (size (n));
  elseif (~isscalar (n) && ~isscalar (x) && ~isequal (size (n), size (x)))
    error ('inputs must be same size or scalar')
  end

  L0 = ones (size (x), class(x));
  L1 = 1 - x;

  if (isscalar (n))
    if (n == 0)
      L = L0;
    elseif (n == 1)
      L = L1;
    else
      for k = 2:n
        L = (2*k-1-x)/k .* L1 - (k-1)/k * L0;
        L0 = L1;
        L1 = L;
      end
    end
  else
    L = L0;
    L(n >= 1) = L1(n >= 1);
    maxn = max (n(:));
    for k = 2:maxn
      I = (n >= k);  % mask for entries still to be updated
      L(I) = (2*k - 1 - x(I))/k .* L1(I) - (k - 1)/k * L0(I);
      L0 = L1;
      L1 = L;
    end
  end

end


%!assert (isequal (laguerreL (0, rand), 1))

%!test
%! x = rand;
%! assert (isequal (laguerreL (1, x), 1 - x))

%!test
%! x=rand;
%! y1=laguerreL(2, x);
%! p2=[.5 -2 1];
%! y2=polyval(p2,x);
%! assert(y1 - y2, 0, 10*eps);

%!test
%! x=rand;
%! y1=laguerreL(3, x);
%! p3=[-1/6 9/6 -18/6 1];
%! y2=polyval(p3,x);
%! assert(y1 - y2, 0, 20*eps);

%!test
%! x=rand;
%! y1=laguerreL(4, x);
%! p4=[1/24 -16/24 72/24 -96/24 1];
%! y2=polyval(p4,x);
%! assert(y1 - y2, 0, 30*eps)

%!error <positive integer> laguerreL(1.5, 10)
%!error <Invalid call> laguerreL(10)
%!error <same size or scalar> laguerreL([0 1], [1 2 3])
%!error <same size or scalar> laguerreL([0 1], [1; 2])

%!test
%! % numerically stable implementation (in n)
%! L = laguerreL (10, 10);
%! Lex = 1763/63;
%! assert (L, Lex, -eps)
%! L = laguerreL (20, 10);
%! Lex = -177616901779/14849255421;  % e.g., laguerreL(sym(20),10)
%! assert (L, Lex, -eps)

%!test
%! % vectorized x
%! L = laguerreL (2, [5 6 7]);
%! Lex = [3.5 7 11.5];
%! assert (L, Lex, eps)

%!test
%! L = laguerreL (0, [4 5]);
%! assert (L, [1 1], eps)

%!test
%! % vector n
%! L = laguerreL ([0 1 2 3], [4 5 6 9]);
%! assert (L, [1 -4 7 -26], eps)

%!test
%! % vector n, scalar x
%! L = laguerreL ([0 1 2 3], 6);
%! assert (L, [1 -5 7 1], eps)

%!assert (isa (laguerreL (0, single (1)), 'single'))
%!assert (isa (laguerreL (1, single ([1 2])), 'single'))
%!assert (isa (laguerreL ([1 2], single ([1 2])), 'single'))