/usr/share/maxima/5.41.0/src/specfn.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module specfn)
;;*********************************************************************
;;**************** ******************
;;**************** Macsyma Special Function Routines ******************
;;**************** ******************
;;*********************************************************************
(load-macsyma-macros rzmac)
(load-macsyma-macros mhayat)
(defmacro mnumericalp (arg)
`(or (floatp ,arg) (and (or $numer $float) (integerp ,arg))))
;; subtitle polylogarithm routines
(declare-top (special $zerobern tlist %e-val))
(defun lisimp (expr vestigial z)
(declare (ignore vestigial))
(let ((s (simpcheck (car (subfunsubs expr)) z))
($zerobern t)
(a))
(subargcheck expr 1 1 '$li)
(setq a (simpcheck (car (subfunargs expr)) z))
(or (cond ((zerop1 a) a)
((not (integerp s)) ())
((= s 1)
(if (onep1 a)
(simp-domain-error
(intl:gettext "li: li[~:M](~:M) is undefined.") s a)
(neg (take '(%log) (sub 1 a)))))
((= s 0) (div a (sub 1 a)))
((< s 0) (lisimp-negative-integer s a))
((and (integerp a) (> s 1)
(cond ((= a 1) (take '(%zeta) s))
((= a -1)
;; li[s](-1) = (2^(1-s)-1)*zeta(s)
(mul (add -1 (inv (expt 2 (- s 1))))
(take '(%zeta) s))))))
((= s 2) (li2simp a))
((= s 3) (li3simp a))
((or (complex-float-numerical-eval-p a)
(complex-bigfloat-numerical-eval-p a))
(cond ((bigfloat:= 1 (bigfloat:to a))
;; li[s](1) -> zeta(s)
(let ((result ($zeta s)))
(if (floatp a)
($float result)
($bfloat result))))
((bigfloat:= -1 (bigfloat:to a))
;; li[s](-1) = (2^(1-s)-1)*zeta(s)
(let ((result (mul (add -1 (inv (expt 2 (- s 1))))
(take '(%zeta) s))))
(if (floatp a)
($float result)
($bfloat result))))
((integerp s)
(to (bigfloat::li-s-simp s (bigfloat:to a)))))))
(eqtest (subfunmakes '$li (ncons s) (ncons a))
expr))))
;; Expand the Polylogarithm li[s](z) for a negative integer parameter s.
(defun lisimp-negative-integer (s z)
(let ((n (- s)))
(mul (inv (power (sub 1 z) (+ n 1)))
(let ((index1 (gensumindex))
($simpsum t))
(dosum
(mul (power z index1)
(let ((index2 (gensumindex)))
(dosum
(mul (power -1 (add index2 1))
(take '(%binomial) (+ n 1) (sub index2 1))
(power (add 1 (sub index1 index2)) n))
index2 1 index1 t)))
index1 1 n t)))))
(defun li2simp (arg)
(cond ((mnumericalp arg)
;; When arg is a float or rational, use the original li2numer
;; using Spences function.
(li2numer (float arg)))
((complex-float-numerical-eval-p arg)
;; For complex args that should should result in float
;; answers, use bigfloat::li2numer.
(to (bigfloat::li2numer (bigfloat:to ($float arg)))))
((or (bigfloat-numerical-eval-p arg)
(complex-bigfloat-numerical-eval-p arg))
(to (bigfloat::li2numer (bigfloat:to ($bfloat arg)))))
((alike1 arg '((rat) 1 2))
(add (div (take '(%zeta) 2) 2)
(mul '((rat simp) -1 2)
(power (take '(%log) 2) 2))))))
(defun li3simp (arg)
(cond ((or (float-numerical-eval-p arg)
(complex-float-numerical-eval-p arg))
(to (bigfloat::li3numer (bigfloat:to ($float arg)))))
((or (bigfloat-numerical-eval-p arg)
(complex-bigfloat-numerical-eval-p arg))
(to (bigfloat::li3numer (bigfloat:to ($bfloat arg)))))
((alike1 arg '((rat) 1 2))
(add (mul '((rat simp) 7 8) (take '(%zeta) 3))
(mul (div (take '(%zeta) 2) -2) (take '(%log) 2))
(mul '((rat simp) 1 6) (power (take '(%log) 2) 3))))))
;; exponent in first term of taylor expansion of $li is one
(defun li-ord (subl)
(declare (ignore subl))
(ncons (rcone)))
;; taylor expansion of $li is its definition:
;; x + x^2/2^s + x^3/3^s + ...
(defun exp$li-fun (pw subl l) ; l is a irrelevant here
(setq subl (car subl)) ; subl is subscript of li
(prog ((e 0) ; e is exponent of current term
npw) ; npw is exponent of last term needed
(declare (fixnum e))
(setq npw (/ (float (car pw)) (float (cdr pw))))
(setq
l (cons '((0 . 1) 0 . 1)
nil))
a (setq e (1+ e))
(if (> e npw) (return l)
(rplacd (last l)
`(((,e . 1)
. ,(prep1 (m^ e (m- subl)))))))
(go a)))
;; computes first pw terms of asymptotic expansion of $li[s](z)
;;
;; pw should be < (1/2)*s or gamma term is undefined
;;
;; Wood, D.C. (June 1992). The Computation of Polylogarithms. Technical Report 15-92
;; University of Kent Computing Laboratory.
;; http://www.cs.kent.ac.uk/pubs/1992/110
;; equation 11.1
(defun li-asymptotic-expansion (pw s z)
(m+l (loop for k from 0 to pw collect
(m* (m^ -1 k)
(m- 1 (m^ 2 (m- 1 (m* 2 k))))
(m^ (m* 2 '$%pi) (m* 2 k))
(m// ($bern (m* 2 k))
`((mfactorial) ,(m* 2 k)))
(m// (m^ `((%log) ,(m- z)) (m- 2 (m* 2 k)))
($gamma (m+ s 1 (m* -2 k))))))))
;; Numerical evaluation for Chebyschev expansions of the first kind
(defun cheby (x chebarr)
(let ((bn+2 0.0) (bn+1 0.0))
(do ((i (floor (aref chebarr 0)) (1- i)))
((< i 1) (- bn+1 (* bn+2 x)))
(setq bn+2
(prog1 bn+1 (setq bn+1 (+ (aref chebarr i)
(- (* 2.0 x bn+1) bn+2))))))))
(defun cheby-prime (x chebarr)
(- (cheby x chebarr)
(* (aref chebarr 1) 0.5)))
;; These should really be calculated with minimax rational approximations.
;; Someone has done LI[2] already, and this should be updated; I haven't
;; seen any results for LI[3] yet.
(defun li2numer (y)
;; Spence's function can be used to compute li[2] for 0 <= x <= 1.
;; To compute the rest, we need the following identities:
;;
;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
;; li[2](x) = li[2](1/(1-x)) + log(1-x)*log((1-x)/x^2)/2 - %pi^2/6
;;
;; The first tells us how to compute li[2] for x > 1. The result is complex.
;; For x < 0, the second can be used, and the result is real.
;;
;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog2/17/01/01/)
(labels ((li2 (x)
(cond ((< x 0)
(+ (li2 (/ (- 1 x)))
(* 0.5 (log (- 1 x)) (log (/ (- 1 x) (* x x))))
(- (/ (cl:expt (float pi) 2) 6))))
((< x 1)
(slatec:dspenc x))
((= x 1)
(/ (cl:expt (float pi) 2) 6))
(t
;; li[2](x) = -li[2](1/x)-log(-x)^2/2-%pi^2/6
(- (+ (li2 (/ x))
(/ (cl:expt (cl:log (- x)) 2) 2)
(/ (cl:expt (float pi) 2) 6)))))))
(complexify (li2 y))))
(defvar *li2* (make-array 15. :initial-contents '(14.0 1.93506430 .166073033 2.48793229e-2
4.68636196e-3 1.0016275e-3 2.32002196e-4
5.68178227e-5 1.44963006e-5 3.81632946e-6
1.02990426e-6 2.83575385e-7 7.9387055e-8
2.2536705e-8 6.474338e-9)
:element-type 'flonum))
(defvar *li3* (make-array 15. :initial-contents '(14.0 1.95841721 8.51881315e-2 8.55985222e-3
1.21177214e-3 2.07227685e-4 3.99695869e-5
8.38064066e-6 1.86848945e-6 4.36660867e-7
1.05917334e-7 2.6478920e-8 6.787e-9
1.776536e-9 4.73417e-10)
:element-type 'flonum))
(defvar *s12* (make-array 18. :initial-contents '(17.0 1.90361778 .431311318 .100022507
2.44241560e-2 6.22512464e-3 1.64078831e-3
4.44079203e-4 1.22774942e-4 3.45398128e-5
9.85869565e-6 2.84856995e-6 8.31708473e-7
2.45039499e-7 7.2764962e-8 2.1758023e-8 6.546158e-9
1.980328e-9)
:element-type 'flonum))
(defun chebyli2 (x)
(* x (cheby-prime (/ (1+ (* x 4)) 3) *li2*)))
(defun chebyli3 (x)
(* x (cheby-prime (/ (1+ (* 4 x)) 3) *li3*)))
(defun chebys12 (x)
(* (/ (expt x 2) 4)
(cheby-prime (/ (1+ (* 4 x)) 3) *s12*)))
;; subtitle polygamma routines
;; gross efficiency hack, exp is a function of *k*, *k* should be mbind'ed
(defun msum (exp lo hi)
(if (< hi lo)
0
(let ((sum 0))
(do ((*k* lo (1+ *k*)))
((> *k* hi) sum)
(declare (special *k*))
(setq sum (add2 sum (meval exp)))))))
(defun pole-err (exp)
(declare (special errorsw))
(cond (errorsw (throw 'errorsw t))
(t (merror (intl:gettext "Pole encountered in: ~M") exp))))
(declare-top (special $maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom))
(defprop $psi psisimp specsimp)
;; Integral of psi function psi[n](x)
(putprop '$psi
`((n x)
nil
,(lambda (n x)
(cond
((and ($integerp n) (>= n 0))
(cond
((= n 0) `((%log_gamma) ,x))
(t `((mqapply) (($psi array) ((mplus) -1 ,n)) ,x))))
(t nil))))
'integral)
(mapcar #'(lambda (var val)
(and (not (boundp var)) (setf (symbol-value var) val)))
'($maxpsiposint $maxpsinegint $maxpsifracnum $maxpsifracdenom)
'(20. -10. 6 6))
(defun psisimp (expr a z)
(let ((s (simpcheck (car (subfunsubs expr)) z)))
(subargcheck expr 1 1 '$psi)
(setq a (simpcheck (car (subfunargs expr)) z))
(and (setq z (integer-representation-p a))
(< z 1)
(pole-err expr))
(eqtest (psisimp1 s a) expr)))
;; This gets pretty hairy now.
(defun psisimp1 (s a)
(let ((*k*))
(declare (special *k*))
(or
(and (integerp s) (>= s 0) (mnumericalp a)
(let (($float2bf t)) ($float (mfuncall '$bfpsi s a 18))))
(and (integerp s) (>= s 0) ($bfloatp a)
(mfuncall '$bfpsi s a $fpprec))
(and (not $numer) (not $float) (integerp s) (> s -1)
(cond
((integerp a)
(and (not (> a $maxpsiposint)) ; integer values
(m*t (expt -1 s) (factorial s)
(m- (msum (inv (m^t '*k* (1+ s))) 1 (1- a))
(cond ((zerop s) '$%gamma)
(($zeta (1+ s))))))))
((or (not (ratnump a)) (ratgreaterp a $maxpsiposint)) ())
((ratgreaterp a 0)
(cond
((ratgreaterp a 1)
(let* ((int ($entier a)) ; reduction to fractional values
(frac (m-t a int)))
(m+t
(psisimp1 s frac)
(if (> int $maxpsiposint)
(subfunmakes '$psi (ncons s) (ncons int))
(m*t (expt -1 s) (factorial s)
(msum (m^t (m+t (m-t a int) '*k*)
(1- (- s)))
0 (1- int)))))))
((= s 0)
(let ((p (cadr a)) (q (caddr a)))
(cond
((or (> p $maxpsifracnum)
(> q $maxpsifracdenom) (bignump p) (bignump q)) ())
((and (= p 1)
(cond ((= q 2)
(m+ (m* -2 '((%log) 2)) (m- '$%gamma)))
((= q 3)
(m+ (m* '((rat simp) -1 2)
(m^t 3 '((rat simp) -1 2)) '$%pi)
(m* '((rat simp) -3 2) '((%log) 3))
(m- '$%gamma)))
((= q 4)
(m+ (m* '((rat simp) -1 2) '$%pi)
(m* -3 '((%log) 2)) (m- '$%gamma)))
((= q 6)
(m- (m+ (m* '((rat simp) 3 2) '((%log) 3))
(m* 2 '((%log) 2))
(m* '((rat simp) 1 2) '$%pi
(m^t 3 '((rat simp) 1 2)))
'$%gamma))))))
((and (= p 2) (= q 3))
(m+ (m* '((rat simp) 1 2)
(m^t 3 '((rat simp) -1 2)) '$%pi)
(m* '((rat simp) -3 2) '((%log) 3))
(m- '$%gamma)))
((and (= p 3) (= q 4))
(m+ (m* '((rat simp) 1 2) '$%pi)
(m* -3 '((%log) 2)) (m- '$%gamma)))
((and (= p 5) (= q 6))
(m- (m* '((rat simp) 1 2) '$%pi
(m^t 3 '((rat simp) 1 2)))
(m+ (m* '((rat simp) 3 2) '((%log) 3))
(m* 2 '((%log) 2))
'$%gamma)))
;; Gauss's Formula
((let ((f (m* `((%cos) ,(m* 2 a '$%pi '*k*))
`((%log) ,(m-t 2 (m* 2 `((%cos)
,(m//t (m* 2 '$%pi '*k*)
q))))))))
(m+t (msum f 1 (1- (truncate q 2)))
(let ((*k* (truncate q 2)))
(declare (special *k*))
(m*t (meval f)
(cond ((oddp q) 1)
('((rat simp) 1 2)))))
(m-t (m+ (m* '$%pi '((rat simp) 1 2)
`((%cot) ((mtimes simp) ,a $%pi)))
`((%log) ,q)
'$%gamma))))))))
((alike1 a '((rat) 1 2))
(m*t (expt -1 (1+ s)) (factorial s)
(1- (expt 2 (1+ s))) (simplify ($zeta (1+ s)))))
((and (ratgreaterp a '((rat) 1 2))
(ratgreaterp 1 a))
(m*t
(expt -1 s)
(m+t (psisimp1 s (m- 1 a))
(let ((dif (m* '$%pi
($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
($z (m-t a)))
(declare (special $z))
(meval dif)))))))
((ratgreaterp a $maxpsinegint) ;;; Reflection Formula
(m*t
(expt -1 s)
(m+t (m+t (psisimp1 s (m- a))
(let ((dif (m* '$%pi
($diff `((%cot) ,(m* '$%pi '$z)) '$z s)))
($z (m-t a)))
(declare (special $z))
(meval dif)))
(m*t (factorial s) (m^t (m-t a) (1- (- s)))))))))
(subfunmakes '$psi (ncons s) (ncons a)))))
;; subtitle polygamma tayloring routines
;; These routines are specially coded to be as fast as possible given the
;; current $TAYLOR; too bad they have to be so ugly.
(declare-top (special var subl *last* sign last-exp))
(defun expgam-fun (pw temp)
(setq temp (get-datum (get-key-var (car var))))
(let-pw temp pw
(pstimes
(let-pw temp (e1+ pw)
(psexpt-fn (getexp-fun '(($psi) -1) var (e1+ pw))))
(make-ps var (ncons pw) '(((-1 . 1) 1 . 1))))))
(defun expplygam-funs (pw subl l) ; l is a irrelevant here
(setq subl (car subl))
(if (or (not (integerp subl)) (< subl -1))
(tay-err "Unable to expand at a subscript in")
(prog ((e 0) (sign 0) npw)
(declare (fixnum e) (fixnum sign))
(setq npw (/ (float (car pw)) (float (cdr pw))))
(setq
l (cond ((= subl -1)
`(((1 . 1) . ,(prep1 '((mtimes) -1 $%gamma)))))
((= subl 0)
(cons '((-1 . 1) -1 . 1)
(if (> 0.0 npw) ()
`(((0 . 1)
. ,(prep1 '((mtimes) -1 $%gamma)))))))
(t (setq *last* (factorial subl))
`(((,(- (1+ subl)) . 1)
,(* (expt -1 (1+ subl))
(factorial subl)) . 1))))
e (if (< subl 1) (- subl) -1)
sign (if (< subl 1) -1 (expt -1 subl)))
a (setq e (1+ e) sign (- sign))
(if (> e npw) (return l)
(rplacd (last l)
`(((,e . 1)
. ,(rctimes (rcplygam e)
(prep1 ($zeta (+ (1+ subl) e))))))))
(go a))))
(defun rcplygam (k)
(declare (fixnum k) )
(cond ((= subl -1) (cons sign k))
((= subl 0) (cons sign 1))
(t (prog1
(cons (* sign *last*) 1)
(setq *last*
(quot (* *last* (+ subl (1+ k)))
(1+ k)))))))
(defun plygam-ord (subl)
(if (equal (car subl) -1) (ncons (rcone))
`((,(m- (m1+ (car subl))) . 1))))
(defun plygam-pole (a c func)
(if (rcmintegerp c)
(let ((ps (get-lexp (m- a (rcdisrep c)) () t)))
(rplacd (cddr ps) (cons `((0 . 1) . ,c) (cdddr ps)))
(if (atom func) (gam-const a ps func)
(plygam-const a ps func)))
(prep1 (simplifya
(if (atom func) `((%gamma) ,(rcdisrep c))
`((mqapply) ,func ,(rcdisrep c)))
() ))))
(defun gam-const (a arg func)
(let ((const (ps-lc* arg)) (arg-c))
(cond ((not (rcintegerp const))
(taylor2 (diff-expand `((%gamma) ,a) tlist)))
(t
(setq const (car const))
(if (pscoefp arg) (setq arg-c (get-lexp (m+t a (- const)) (rcone) (signp le const))))
(if (and arg-c (not (psp arg-c)))
(taylor2 (simplify `((%gamma) ,const)))
(let ((datum (get-datum (get-key-var (gvar (or arg-c arg)))))
(ord (if arg-c (le (terms arg-c)) (le (n-term (terms arg))))))
(setq func (current-trunc datum))
(if (> const 0)
(pstimes (let-pw datum (e- func ord) (expand (m+t a (- const)) '%gamma))
(let-pw datum (e+ func ord)
(tsprsum (m+t a (m-t '%%taylor-index%%))
`(%%taylor-index%% 1 ,const) '%product)))
(pstimes (expand (m+t a (- const)) '%gamma)
(let-pw datum (e+ func ord)
(psexpt (tsprsum (m+t a '%%taylor-index%%)
`(%%taylor-index%% 0 ,(- (1+ const))) '%product)
(rcmone)))))))))))
(defun plygam-const (a arg func)
(let ((const (ps-lc* arg)) (sub (cadr func)))
(cond
((or (not (integerp sub)) (< sub -1))
(tay-err "Unable to expand at a subscript in"))
((not (rcintegerp const))
(taylor2 (diff-expand `((mqapply) ,func ,a) tlist)))
(t (setq const (car const))
(psplus
(expand (m+t a (- const)) func)
(if (> const 0)
(pstimes
(cons (* (expt -1 sub) (factorial sub)) 1)
(tsprsum `((mexpt) ,(m+t a (m-t '%%taylor-index%%)) ,(- (1+ sub)))
`(%%taylor-index%% 1 ,const) '%sum))
(pstimes
(cons (* (expt -1 (1+ sub)) (factorial sub)) 1)
(tsprsum `((mexpt) ,(m+t a '%%taylor-index%%) ,(- (1+ sub)))
`(%%taylor-index%% 0 ,(- (1+ const))) '%sum))))))))
(declare-top (unspecial var subl *last* sign last-exp))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Lambert W function
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; References
;;
;; Corless, R. M., Gonnet, D. E. G., Jeffrey, D. J., Knuth, D. E. (1996).
;; "On the Lambert W function". Advances in Computational Mathematics 5:
;; pp 329-359
;;
;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf.
;; or http://www.apmaths.uwo.ca/~rcorless/frames/PAPERS/LambertW/
;;
;; D. J. Jeffrey, D. E. G. Hare, R. M. Corless
;; Unwinding the branches of the Lambert W function
;; The Mathematical Scientist, 21, pp 1-7, (1996)
;; http://www.apmaths.uwo.ca/~djeffrey/Offprints/wbranch.pdf
;;
;; Winitzki, S. Uniform Approximations for Transcendental Functions.
;; In Part 1 of Computational Science and its Applications - ICCSA 2003,
;; Lecture Notes in Computer Science, Vol. 2667, Springer-Verlag,
;; Berlin, 2003, 780-789. DOI 10.1007/3-540-44839-X_82
;; http://homepages.physik.uni-muenchen.de/~Winitzki/papers/
;;
;; Darko Verebic,
;; Having Fun with Lambert W(x) Function
;; arXiv:1003.1628v1, March 2010, http://arxiv.org/abs/1003.1628
;;
;; See also http://en.wikipedia.org/wiki/Lambert's_W_function
(defun $lambert_w (z)
(simplify (list '(%lambert_w) (resimplify z))))
;;; Set properties to give full support to the parser and display
(defprop $lambert_w %lambert_w alias)
(defprop $lambert_w %lambert_w verb)
(defprop %lambert_w $lambert_w reversealias)
(defprop %lambert_w $lambert_w noun)
;;; lambert_w is a simplifying function
(defprop %lambert_w simp-lambertw operators)
;;; Derivative of lambert_w
(defprop %lambert_w
((x)
((mtimes)
((mexpt) $%e ((mtimes ) -1 ((%lambert_w) x)))
((mexpt) ((mplus) 1 ((%lambert_w) x)) -1)))
grad)
;;; Integral of lambert_w
;;; integrate(W(x),x) := x*(W(x)^2-W(x)+1)/W(x)
(defprop %lambert_w
((x)
((mtimes)
x
((mplus)
((mexpt) ((%lambert_w) x) 2)
((mtimes) -1 ((%lambert_w) x))
1)
((mexpt) ((%lambert_w) x) -1)))
integral)
(defun simp-lambertw (x yy z)
(declare (ignore yy))
(oneargcheck x)
(setq x (simpcheck (cadr x) z))
(cond ((equal x 0) 0)
((equal x 0.0) 0.0)
((zerop1 x) ($bfloat 0)) ;bfloat case
((alike1 x '$%e)
;; W(%e) = 1
1)
((alike1 x '((mtimes simp) ((rat simp) -1 2) ((%log simp) 2)))
;; W(-log(2)/2) = -log(2)
'((mtimes simp) -1 ((%log simp) 2)))
((alike1 x '((mtimes simp) -1 ((mexpt simp) $%e -1)))
;; W(-1/e) = -1
-1)
((alike1 x '((mtimes) ((rat) -1 2) $%pi))
;; W(-%pi/2) = %i*%pi/2
'((mtimes simp) ((rat simp) 1 2) $%i $%pi))
;; numerical evaluation
((complex-float-numerical-eval-p x)
;; x may be an integer. eg "lambert_w(1),numer;"
(if (integerp x)
(to (bigfloat::lambert-w-k 0 (bigfloat:to ($float x))))
(to (bigfloat::lambert-w-k 0 (bigfloat:to x)))))
((complex-bigfloat-numerical-eval-p x)
(to (bigfloat::lambert-w-k 0 (bigfloat:to x))))
(t (list '(%lambert_w simp) x))))
;; An approximation of the k-branch of generalized Lambert W function
;; k integer
;; z real or complex lisp float
;; Used as initial guess for Halley's iteration.
;; When W(z) is real, ensure that guess is real.
(defun init-lambert-w-k (k z)
(let ( ; parameters for k = +/- 1 near branch pont z=-1/%e
(branch-eps 0.2e0)
(branch-point (/ -1 %e-val))) ; branch pont z=-1/%e
(cond
; For principal branch k=0, use expression by Winitzki
((= k 0) (init-lambert-w-0 z))
; For k=1 branch, near branch point z=-1/%e with im(z) < 0
((and (= k 1)
(< (imagpart z) 0)
(< (abs (- branch-point z)) branch-eps))
(bigfloat::lambert-branch-approx z))
; For k=-1 branch, z real with -1/%e < z < 0
; W(z) is real in this range
((and (= k -1) (realp z) (> z branch-point) (< z 0))
(init-lambert-w-minus1 z))
; For k=-1 branch, near branch point z=-1/%e with im(z) >= 0
((and (= k -1)
(>= (imagpart z) 0)
(< (abs (- branch-point z)) branch-eps))
(bigfloat::lambert-branch-approx z))
; Default to asymptotic expansion Corless et al (4.20)
; W_k(z) = log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
(t (let ((two-pi-i-k (complex 0.0e0 (* 2 pi k))))
(+ (log z)
two-pi-i-k
(* -1 (log (+ (log z) two-pi-i-k )))))))))
;; Complex value of the principal branch of Lambert's W function in
;; the entire complex plane with relative error less than 1%, given
;; standard branch cuts for sqrt(z) and log(z).
;; Winitzki (2003)
(defun init-lambert-w-0 (z)
(let ((a 2.344e0) (b 0.8842e0) (c 0.9294e0) (d 0.5106e0) (e -1.213e0)
(y (sqrt (+ (* 2 %e-val z ) 2)) ) ) ; y=sqrt(2*%e*z+2)
; w = (2*log(1+B*y)-log(1+C*log(1+D*y))+E)/(1+1/(2*log(1+B*y)+2*A)
(/
(+ (* 2 (log (+ 1 (* b y))))
(* -1 (log (+ 1 (* c (log (+ 1 (* d y)))))))
e)
(+ 1
(/ 1 (+ (* 2 (log (+ 1 (* b y)))) (* 2 a)))))))
;; Approximate k=-1 branch of Lambert's W function over -1/e < z < 0.
;; W(z) is real, so we ensure the starting guess for Halley iteration
;; is also real.
;; Verebic (2010)
(defun init-lambert-w-minus1 (z)
(cond
((not (realp z))
(merror "z not real in init-lambert-w-minus1"))
((or (< z (/ -1 %e-val)) (plusp z))
(merror "z outside range of approximation in init-lambert-w-minus1"))
;; In the region where W(z) is real
;; -1/e < z < C, use power series about branch point -1/e ~ -0.36787
;; C = -0.3 seems a reasonable crossover point
((< z -0.3)
(bigfloat::lambert-branch-approx z))
;; otherwise C <= z < 0, use iteration W(z) ~ ln(-z)-ln(-W(z))
;; nine iterations are sufficient over -0.3 <= z < 0
(t (let* ((ln-z (log (- z))) (maxiter 9) (w ln-z))
(dotimes (k maxiter w)
(setq w (- ln-z (log (- w)))))))))
(in-package #-gcl #:bigfloat #+gcl "BIGFLOAT")
;; Approximate Lambert W(k,z) for k=1 and k=-1 near branch point z=-1/%e
;; using power series in y=-sqrt(2*%e*z+2)
;; for im(z) < 0, approximates k=1 branch
;; for im(z) >= 0, approximates k=-1 branch
;;
;; Corless et al (1996) (4.22)
;; Verebic (2010)
;;
;; z is a real or complex bigfloat:
(defun lambert-branch-approx (z)
(let ((y (- (sqrt (+ (* 2 (%e z) z ) 2)))) ; y=-sqrt(2*%e*z+2)
(b0 -1) (b1 1) (b2 -1/3) (b3 11/72))
(+ b0 (* y (+ b1 (* y (+ b2 (* b3 y))))))))
;; Algorithm based in part on Corless et al (1996).
;;
;; It is Halley's iteration applied to w*exp(w).
;;
;;
;; w[j] exp(w[j]) - z
;; w[j+1] = w[j] - -------------------------------------------------
;; (w[j]+2)(w[j] exp(w[j]) -z)
;; exp(w[j])(w[j]+1) - ---------------------------
;; 2 w[j] + 2
;;
;; The algorithm has cubic convergence. Once convergence begins, the
;; number of digits correct at step k is roughly 3 times the number
;; which were correct at step k-1.
;;
;; Convergence can stall using convergence test abs(w[j+1]-w[j]) < prec,
;; as happens for generalized_lambert_w(-1,z) near branch point z = -1/%e
;; Therefore also stop iterating if abs(w[j]*exp(w[j]) - z) << abs(z)
(defun lambert-w-k (k z &key (maxiter 50))
(let ((w (init-lambert-w-k k z)) we w1e delta (prec (* 4 (epsilon z))))
(dotimes (i maxiter (maxima::merror "lambert-w-k did not converge"))
(setq we (* w (exp w)))
(when (<= (abs (- z we)) (* 4 (epsilon z) (abs z))) (return))
(setq w1e (* (1+ w) (exp w)))
(setq delta (/ (- we z)
(- w1e (/ (* (+ w 2) (- we z)) (+ 2 (* 2 w))))))
(decf w delta)
(when (<= (abs (/ delta w)) prec) (return)))
;; Check iteration converged to correct branch
(check-lambert-w-k k w z)
w))
(defmethod init-lambert-w-k ((k integer) (z number))
(maxima::init-lambert-w-k k z))
(defmethod init-lambert-w-k ((k integer) (z bigfloat))
(bfloat-init-lambert-w-k k z))
(defmethod init-lambert-w-k ((k integer) (z complex-bigfloat))
(bfloat-init-lambert-w-k k z))
(defun bfloat-init-lambert-w-k (k z)
"Approximate generalized_lambert_w(k,z) for bigfloat: z as initial guess"
(let ((branch-point -0.36787944117144)) ; branch point -1/%e
(cond
;; if k=-1, z very close to -1/%e and imag(z)>=0, use power series
((and (= k -1)
(or (zerop (imagpart z))
(plusp (imagpart z)))
(< (abs (- z branch-point)) 1e-10))
(lambert-branch-approx z))
;; if k=1, z very close to -1/%e and imag(z)<0, use power series
((and (= k 1)
(minusp (imagpart z))
(< (abs (- z branch-point)) 1e-10))
(lambert-branch-approx z))
;; Initialize using float value if z is representable as a float
((< (abs z) 1.0e100)
(if (complexp z)
(bigfloat (lambert-w-k k (cl:complex (float (realpart z) 1.0)
(float (imagpart z) 1.0))))
(bigfloat (lambert-w-k k (float z 1.0)))))
;; For large z, use Corless et al (4.20)
;; W_k(z) ~ log(z) + 2.pi.i.k - log(log(z)+2.pi.i.k)
(t
(let ((log-z (log z)))
(if (= k 0)
(- log-z (log log-z))
(let* ((i (make-instance 'complex-bigfloat :imag (intofp 1)))
(two-pi-i-k (* 2 (%pi z) i k)))
(- (+ log-z two-pi-i-k)
(log (+ log-z two-pi-i-k))))))))))
;; Check Lambert W iteration converged to the correct branch
;; W_k(z) + ln W_k(z) = ln z, for k = -1 and z in [-1/e,0)
;; = ln z + 2 pi i k, otherwise
;; See Jeffrey, Hare, Corless (1996), eq (12)
;; k integer
;; z, w bigfloat: numbers
(defun check-lambert-w-k (k w z)
(let ((tolerance #-gcl 1.0e-6
#+gcl (cl:float 1/1000000)))
(if
(cond
;; k=-1 branch with z and w real.
((and (= k -1) (realp z) (minusp z) (>= z (/ -1 (%e z))))
(if (and (realp w)
(<= w -1)
(< (abs (+ w (log w) (- (log z)))) tolerance))
t
nil))
(t
; i k = (W_k(z) + ln W_k(z) - ln(z)) / 2 pi
(let (ik)
(setq ik (/ (+ w (log w) (- (log z))) (* 2 (%pi z))))
(if (and (< (realpart ik) tolerance)
(< (abs (- k (imagpart ik))) tolerance))
t
nil))))
t
(maxima::merror "Lambert W iteration converged to wrong branch"))))
(in-package :maxima)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; Generalized Lambert W function
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(defun $generalized_lambert_w (k z)
(simplify (list '(%generalized_lambert_w) (resimplify k) (resimplify z))))
;;; Set properties to give full support to the parser and display
(defprop $generalized_lambert_w %generalized_lambert_w alias)
(defprop $generalized_lambert_w %generalized_lambert_w verb)
(defprop %generalized_lambert_w $generalized_lambert_w reversealias)
(defprop %generalized_lambert_w $generalized_lambert_w noun)
;;; lambert_w is a simplifying function
(defprop %generalized_lambert_w simp-generalized-lambertw operators)
;;; Derivative of lambert_w
(defprop %generalized_lambert_w
((k x)
nil
((mtimes)
((mexpt) $%e ((mtimes ) -1 ((%generalized_lambert_w) k x)))
((mexpt) ((mplus) 1 ((%generalized_lambert_w) k x)) -1)))
grad)
;;; Integral of lambert_w
;;; integrate(W(k,x),x) := x*(W(k,x)^2-W(k,x)+1)/W(k,x)
(defprop %generalized_lambert_w
((k x)
nil
((mtimes)
x
((mplus)
((mexpt) ((%generalized_lambert_w) k x) 2)
((mtimes) -1 ((%generalized_lambert_w) k x))
1)
((mexpt) ((%generalized_lambert_w) k x) -1)))
integral)
(defun simp-generalized-lambertw (expr ignored z)
(declare (ignore ignored))
(twoargcheck expr)
(let ((k (simpcheck (cadr expr) z))
(x (simpcheck (caddr expr) z)))
(cond
;; Numerical evaluation for real or complex x
((and (integerp k) (complex-float-numerical-eval-p x))
;; x may be an integer. eg "generalized_lambert_w(0,1),numer;"
(if (integerp x)
(to (bigfloat::lambert-w-k k (bigfloat:to ($float x))))
(to (bigfloat::lambert-w-k k (bigfloat:to x)))))
;; Numerical evaluation for real or complex bigfloat x
((and (integerp k) (complex-bigfloat-numerical-eval-p x))
(to (bigfloat::lambert-w-k k (bigfloat:to x))))
(t (list '(%generalized_lambert_w simp) k x)))))
(in-package "BIGFLOAT")
(defvar *debug-li-eval* nil)
(defun li3numer (x)
;; If |x| < series-threshold, the series is used.
(let ((series-threshold 0.8))
(cond ((zerop x)
0.0)
((= x 1)
(maxima::$zeta (maxima::to (float 3 x))))
((= x -1)
;; li[3](-1) = -(1-2^(1-3))*li[3](1)
;; = -3/4*zeta(3)
;;
;; From the formula
;;
;; li[s](-1) = (2^(1-s)-1)*zeta(s)
;;
;; (See http://functions.wolfram.com/10.08.03.0003.01)
(* -3/4 (to (maxima::$zeta (maxima::to (float 3 x))))))
((> (abs x) 1)
;; For z not in the interval (0, 1) and for integral n, we
;; have the identity:
;;
;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
;; + 2 * sum(li[2*r](-1)/(n-2*r)!*log(-z)^(n-2*r), r, 1, floor(n/2))
;;
;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/17/02/01/01/0008/)
;;
;; In particular for n = 3:
;;
;; li[3](z) = li[3](1/z) - log(-z)/6*(log(-z)^2+%pi^2)
(let* ((lg (log (- x)))
(dpi (%pi x))
(result (- (li3numer (/ x))
(* (/ lg 6)
(+ (* lg lg) (* dpi dpi))))))
result))
((> (abs x) .9)
;; When x is on or near the unit circle the other
;; approaches don't work. Use the expansion in powers of
;; log(z) (from cephes cpolylog)
;;
;; li[s](z) = sum(Z(s-j)*(log(z))^j/j!, j = 0, inf)
;;
;; where Z(j) = zeta(j) for j != 1. For j = 1:
;;
;; Z(1) = -log(-log(z)) + sum(1/k, k, 1, s - 1)
;;
;;
;; This is similar to
;; http://functions.wolfram.com/10.08.06.0024.01, but that
;; identity is clearly undefined if v is a positive
;; integer because zeta(1) is undefined.
;;
;; Thus,
;;
;; li[3](z) = Z(3) + Z(2)*log(z) + Z(1)*log(z)^2/2!
;; + Z(0)*log(z)^3/3! + sum(Z(-k)*log(z)^(k+4)/(k+4)!,k,1,inf);
;;
;; But Z(-k) = zeta(-k) is 0 if k is even. So
;;
;; li[3](z) = Z(3) + Z(2)*log(z) + Z(1)*log(z)^2/2!
;; + Z(0)*log(z)^3/3! + sum(Z(-(2*k+1))*log(z)^(2*k+4)/(2*k+4)!,k,0,inf);
(flet ((zfun (j)
(cond ((= j 1)
(let ((sum (- (log (- (log x))))))
(+ sum
(loop for k from 1 below 3
sum (/ k)))))
(t
(to (maxima::$zeta (maxima::to (float j (realpart x)))))))))
(let* ((eps (epsilon x))
(logx (log x))
(logx^2 (* logx logx))
(sum (+ (zfun 3)
(* (zfun 2) logx)
(* (zfun 1) logx^2 1/2)
(* (zfun 0) (* logx^2 logx) 1/6))))
(do* ((k 0 (1+ k))
(top (expt logx 4) (* top logx^2))
(bot 24 (* bot (+ k k 3) (+ k k 4)))
(term (* (/ top bot) (to (maxima::$zeta (- (+ 1 (* 2 k))))))
(* (/ top bot) (to (maxima::$zeta (- (+ 1 (* 2 k))))))))
((<= (abs term) (* (abs sum) eps)))
;;(format t "~3d: ~A / ~A = ~A~%" k top bot term)
(incf sum term))
sum)))
((> (abs x) series-threshold)
;; The series converges too slowly so use the identity:
;;
;; li[3](-x/(1-x)) + li[3](1-x) + li[3](x)
;; = li[3](1) + %pi^2/6*log(1-x) - 1/2*log(x)*(log(1-x))^2 + 1/6*(log(1-x))^3
;;
;; Or
;;
;; li[3](x) = li[3](1) + %pi^2/6*log(1-x) - 1/2*log(x)*(log(1-x))^2 + 1/6*(log(1-x))^3
;; - li[3](-x/(1-x)) - li[3](1-x)
;;
;; (See http://functions.wolfram.com/10.08.17.0048.01)
(let* ((dpi (%pi x))
(u (log x))
(s (/ (* u u u) 6))
(xc (- 1 x)))
(decf s (* 0.5 u u (log xc)))
(incf s (/ (* dpi dpi u) 6))
(decf s (li3numer (- (/ xc x))))
(decf s (li3numer xc))
(incf s (li3numer 1))))
(t
;; Sum the power series. threshold determines when the
;; summation has converted.
(let* ((threshold (epsilon x))
(p (* x x x))
(term (/ p 27)))
(incf term (* 0.125 x x))
(incf term x)
(do* ((k 4 (1+ k))
(p1 (* p x) (* p1 x))
(h (/ p1 (* k k k)) (/ p1 (* k k k)))
(s h (+ s h)))
((<= (abs (/ h s)) threshold)
(+ s term))))))))
(defun li2numer (z)
;; The series threshold to above sqrt(1/2) because li[2](%i) needs
;; the value of li[2](1/2-%i/2), and the magnitude of the argument
;; is sqrt(1/2) = 0.707. If the threshold is below this, we get
;; into an infinite recursion oscillating between the two args.
(let ((series-threshold .75))
(cond ((zerop z)
0)
((= z 1)
;; %pi^2/6. This follows from the series.
(/ (expt (%pi z) 2) 6))
((= z -1)
;; -%pi^2/12. From the formula
;;
;; li[s](-1) = (2^(1-s)-1)*zeta(s)
;;
;; (See http://functions.wolfram.com/10.08.03.0003.01)
(/ (expt (%pi z) 2) -12))
((> (abs z) 1)
;; Use
;; li[2](z) = -li[2](1/z) - 1/2*log(-z)^2 - %pi^2/6,
;;
;; valid for all z not in the intervale (0, 1).
;;
;; (See http://functions.wolfram.com/10.08.17.0013.01)
(- (+ (li2numer (/ z))
(* 0.5 (expt (log (- z)) 2))
(/ (expt (%pi z) 2) 6))))
((> (abs z) series-threshold)
;; For 0.5 <= |z|, where the series would not converge very quickly, use
;;
;; li[2](z) = li[2](1/(1-z)) + 1/2*log(1-z)^2 - log(-z)*log(1-z) - %pi^2/6
;;
;; (See http://functions.wolfram.com/10.08.17.0016.01)
(let* ((1-z (- 1 z))
(ln (log 1-z)))
(+ (li2numer (/ 1-z))
(* 0.5 ln ln)
(- (* (log (- z))
ln))
(- (/ (expt (%pi z) 2) 6)))))
(t
;; Series evaluation:
;;
;; li[2](z) = sum(z^k/k^2, k, 1, inf);
(let ((eps (epsilon z)))
(do* ((k 0 (1+ k))
(term z (* term (/ (* z k k)
(expt (1+ k) 2))))
(sum z (+ term sum)))
((<= (abs (/ term sum)) eps)
sum)))))))
(defun polylog-power-series (s z)
;; Series evaluation:
;;
;; li[s](z) = sum(z^k/k^s, k, 1, inf);
(let ((eps (epsilon z)))
(do* ((k 1 (1+ k))
(term z (* term z (expt (/ (- k 1) k) s)))
(sum z (+ term sum)))
((<= (abs (/ term sum)) eps)
;; Return the value and the number of terms used, for
;; debugging and for helping in determining the series
;; threshold.
(values sum k)))))
(defun polylog-log-series (s z)
;; When x is on or near the unit circle the other
;; approaches don't work. Use the expansion in powers of
;; log(z) (from cephes cpolylog)
;;
;; li[s](z) = sum(Z(s-j)*(log(z))^j/j!, j = 0, inf)
;;
;; where Z(j) = zeta(j) for j != 1. For j = 1:
;;
;; Z(1) = -log(-log(z)) + sum(1/k, k, 1, s - 1)
(flet ((zfun (j)
;; Compute Z(j)
(cond ((= j 1)
(let ((sum (- (log (- (log z))))))
(+ sum
(loop for k from 1 below s
sum (/ k)))))
(t
(to (maxima::$zeta (maxima::to (float j (realpart z)))))))))
(let* ((eps (epsilon z))
(logx (log z))
(logx^2 (* logx logx))
(top logx)
(bot 1)
(sum (zfun s)))
;; Compute sum(Z(s-j)*log(z)^j/j!, j = 1, s)
(do* ((k 1 (1+ k))
(zf (zfun (- s k)) (zfun (- s k)))
(term (* (/ top bot) zf)
(* (/ top bot) zf)))
((> k s))
(when *debug-li-eval*
(format t "~3d: ~A / ~A * ~A => ~A~%" k top bot zf term))
(incf sum term)
(setf bot (* bot (1+ k)))
(setf top (* top logx)))
(when *debug-li-eval*
(format t "s = ~A, sum = ~S top, bot = ~S ~S~%"
s sum top bot))
;; Compute the sum for j = s+1 and up. But since
;; zeta(-k) is 0 for k even, we only every other term.
(do* ((k (+ s 1) (+ k 2))
(zf (zfun (- s k)) (zfun (- s k)))
(term (* (/ top bot) zf)
(* (/ top bot) zf)))
((<= (abs term) (* (abs sum) eps))
;; Return the result and the number of terms used for
;; helping in determining the series threshold and the
;; log-series threshold.
(values sum k))
(when *debug-li-eval*
(format t "~3d: ~A / ~A = ~A~%" k top bot term))
(incf sum term)
(setf bot (* bot (+ k 1) (+ k 2)))
(setf top (* top logx^2))))))
(defun polylog-inversion-formula (s z)
;; For z not in the interval (0, 1) and for integral n, we
;; have the identity:
;;
;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
;; + 2 * sum(li[2*r](-1)/(n-2*r)!*log(-z)^(n-2*r), r, 1, floor(n/2))
;;
;; (See http://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/17/02/01/01/0008/)
;;
;; Or
;;
;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
;; + 2 * sum(li[2*m-2*r](-1)/(n-2*m+2*r)!*log(-z)^(n-2*m+2*r), r, 0, m - 1)
;;
;; where m = floor(n/2). Thus, n-2*m = 0 if n is even and 1 if n is odd.
;;
;; For n = 2*m, we have
;;
;; li[2*m](z) = -log(-z)^(2*m)/(2*m)! - li[2*m](1/z)
;; + 2 * sum(li[2*r](-1)/(2*m-2*r)!*log(-z)^(2*m-2*r), r, 1, m)
;; = -log(-z)^(2*m)/(2*m)! - li[2*m](1/z)
;; + 2 * sum((li[2*m-2*r](-1)*log(-z)^(2*r+1))/(2*r+1)!,r,0,m-1);
;;
;; For n = 2*m+1, we have
;;
;; li[2*m+1](z) = -log(-z)^(2*m+1)/(2*m+1)! + li[2*m+1](1/z)
;; + 2 * sum(li[2*r](-1)/(2*m-2*r + 1)!*log(-z)^(2*m-2*r + 1), r, 1, m)
;; = -log(-z)^(2*m+1)/(2*m+1)! + li[2*m+1](1/z)
;; + 2 * sum((li[2*m-2*r](-1)*log(-z)^(2*r+1))/(2*r+1)!,r,0,m-1);
;; Thus,
;;
;; li[n](z) = -log(-z)^n/n! + (-1)^(n-1)*li[n](1/z)
;; + 2 * sum((li[2*m-2*r](-1)*log(-z)^(2*r+1))/(2*r+1)!,r,0,floor(n/2)-1);
(let* ((lgz (log (- z)))
(lgz^2 (* lgz lgz))
(half-s (floor s 2))
(neg-1 (float -1 (realpart z)))
(sum 0))
(if (evenp s)
(do* ((r 0 (1+ r))
(top (if (oddp s) lgz 1) (* top lgz^2))
(bot 1 (* bot (+ r r -1) (+ r r)))
(term (* (li-s-simp (* 2 (- half-s r)) neg-1)
(/ top bot))
(* (li-s-simp (* 2 (- half-s r)) neg-1)
(/ top bot))))
((>= r half-s))
(incf sum term)
(when *debug-li-eval*
(format t "r = ~4d: ~A / ~A, ~A; ~A~%" r top bot term sum)))
(do* ((r 0 (1+ r))
(top (if (oddp s) lgz 1) (* top lgz^2))
(bot 1 (* bot (+ r r) (+ r r 1)))
(term (* (li-s-simp (* 2 (- half-s r)) neg-1)
(/ top bot))
(* (li-s-simp (* 2 (- half-s r)) neg-1)
(/ top bot))))
((>= r half-s))
(incf sum term)
(when *debug-li-eval*
(format t "r = ~4d: ~A / ~A, ~A; ~A~%" r top bot term sum))))
(+ (+ sum sum)
(- (/ (expt lgz s)
(maxima::take '(maxima::mfactorial) s)))
(* (expt -1 (- s 1))
(li-s-simp s (/ z))))))
(defun li-s-simp (s z)
(let ((series-threshold 0.5)
(log-series-threshold 2))
(cond ((zerop z)
(maxima::to (to 0.0)))
((= z 1)
(maxima::$zeta (maxima::to (float s z))))
((= z -1)
(- (* (- 1 (expt 2 (- 1 s)))
(to (li-s-simp s (- z))))))
((<= (abs z) series-threshold)
(values (polylog-power-series s z)))
((<= (abs z) log-series-threshold)
(values (polylog-log-series s z)))
((> (abs z) 1.5)
(polylog-inversion-formula s z)))))
|