/usr/share/maxima/5.41.0/src/risch.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module risch)
(load-macsyma-macros rzmac ratmac)
(declare-top (special parnumer pardenom logptdx wholepart
$ratalgdenom expexpflag $logsimp switch1 degree cary
$ratfac $logexpand ratform genvar *var var rootfactor
expint $keepfloat trigint operator $exponentialize $gcd
$logarc changevp klth r s beta gamma b mainvar expflag
expstuff liflag intvar switch varlist nogood genvar
$erfflag $liflag rischp $factorflag alphar m
genpairs hypertrigint *mosesflag *exp y $algebraic
implicit-real $%e_to_numlog generate-atan2
context rp-polylogp *in-risch-p*))
(defmvar $liflag t "Controls whether `risch' generates polylogs")
(defmvar $erfflag t "Controls whether `risch' generates `erfs'")
(defvar changevp t "When nil prevents changevar hack")
(defmacro pair (al bl) `(mapcar #'cons ,al ,bl))
;; internal representation of risch expressions: list with canonical rational
;; expression (CRE) as first element, standard maxima expressions as remaining
;; elements. risch expression is sum of CRE and remaining elements.
(defmacro rischzero () ''((0 . 1) 0))
(defun rischnoun (exp1 &optional (exp2 exp1 exp2p))
(unless exp2p (setq exp1 (rzero)))
`(,exp1 ((%integrate) ,(disrep exp2) ,intvar)))
(defun getrischvar ()
(do ((vl varlist (cdr vl))
(gl genvar (cdr gl)))
((null (cdr vl)) (car gl))))
;; test whether CRE p is constant with respect to variable of integration.
;; requires variables in varlist and genvar
;; to be ordered as by intsetup, with var of integration ordered before
;; any other expressions that contain it.
(defun risch-pconstp (p)
(or (pcoefp p) (pointergp mainvar (car p))))
(defun risch-constp (r)
(setq r (ratfix r))
(and (risch-pconstp (car r)) (risch-pconstp (cdr r))))
;; adds two risch expressions (defined above).
(defun rischadd (x y)
(destructuring-let (((a . b) x) ((c . d) y))
(cons (r+ a c) (append b d))))
(defmfun $risch (exp var)
(let ((*integrator-level* 0))
(declare (special *integrator-level*))
(with-new-context (context)
(rischint exp var))))
(defun spderivative (p var)
(cond ((pcoefp p) '(0 . 1))
((null (cdr p)) '(0 . 1))
((or (not (atom (car p))) (numberp (car p))) ;P IS A RATFORM
(let ((denprime (spderivative (cdr p) var)))
(cond ((rzerop denprime)
(ratqu (spderivative (car p) var) (cdr p)))
(t (ratqu (r- (r* (spderivative (car p) var)
(cdr p))
(r* (car p) denprime))
(r* (cdr p) (cdr p)))))))
(t (r+ (spderivative1 (car p)
(cadr p)
(caddr p)
var)
(spderivative (cons (car p) (cdddr p))
var)))))
(defun spderivative1 (var1 deg coeff var)
(cond ((eq var1 var)
(r* (ratexpt (cons (list var 1 1) 1) (1- deg))
(pctimes deg coeff)))
((pointergp var var1) '(0 . 1))
((equal deg 0) (spderivative coeff var))
(t (r+ (r* (ratexpt (cons (list var1 1 1) 1) deg)
(spderivative coeff var))
(r* (cond ((equal deg 1) coeff)
(t (r* deg
coeff
(ratexpt (cons (list var1 1 1) 1)
(1- deg)))))
(get var1 'rischdiff) )))))
(defun polylogp (exp &optional sub)
(and (mqapplyp exp) (eq (subfunname exp) '$li)
(or (null sub) (equal sub (car (subfunsubs exp))))))
(defun rischint (exp intvar &aux ($logarc nil) ($exponentialize nil)
($gcd '$algebraic) ($algebraic t) (implicit-real t)
($float nil) ($numer nil)
;; The risch integrator expects $logexpand T. Otherwise,
;; the integrator hangs for special types of integrals
;; (See bug report ID:3039452)
($logexpand t))
(prog ($%e_to_numlog $logsimp trigint operator y z var ratform liflag
mainvar varlist genvar hypertrigint $ratfac $ratalgdenom )
(if (specrepp exp) (setq exp (specdisrep exp)))
(if (specrepp intvar) (setq intvar (specdisrep intvar)))
(if (mnump intvar)
(merror (intl:gettext "risch: attempt to integrate wrt a number: ~:M") intvar))
(if (and (atom intvar) (isinop exp intvar)) (go noun))
(rischform exp)
(cond (trigint (return (trigin1 exp intvar)))
(hypertrigint (return (hypertrigint1 exp intvar t)))
(operator (go noun)))
(setq y (intsetup exp intvar))
(if operator (go noun))
(setq ratform (car y))
(setq varlist (caddr ratform))
(setq mainvar (caadr (ratf intvar)))
(setq genvar (cadddr ratform))
(unless (some #'algpget varlist)
(setq $algebraic nil)
(setq $gcd (car *gcdl*)))
(setq var (getrischvar))
(setq z (tryrisch (cdr y) mainvar))
(setf (caddr ratform) varlist)
(setf (cadddr ratform) genvar)
(return (cond ((atom (cdr z)) (disrep (car z)))
(t (let (($logsimp t) ($%e_to_numlog t))
(simplify (list* '(mplus)
(disrep (car z))
(cdr z)))))))
noun (return (list '(%integrate) exp intvar))))
(defun rischform (l)
(cond ((or (atom l) (alike1 intvar l) (freeof intvar l)) nil)
((polylogp l)
(if (and (integerp (car (subfunsubs l)))
(signp g (car (subfunsubs l))))
(rischform (car (subfunargs l)))
(setq operator t)))
((atom (caar l))
(case (caar l)
((%sin %cos %tan %cot %sec %csc)
(setq trigint t $exponentialize t)
(rischform (cadr l)))
((%asin %acos %atan %acot %asec %acsc)
(setq trigint t $logarc t)
(rischform (cadr l)))
((%sinh %cosh %tanh %coth %sech %csch)
(setq hypertrigint t $exponentialize t)
(rischform (cadr l)))
((%asinh %acosh %atanh %acoth %asech %acsch)
(setq hypertrigint t $logarc t)
(rischform (cadr l)))
((mtimes mplus mexpt rat %erf %log)
(mapc #'rischform (cdr l)))
(t (setq operator (caar l)))))
(t (setq operator (caar l)))))
(defun hypertrigint1 (exp var hyperfunc)
(let ((result (if hyperfunc
(sinint (resimplify exp) var)
(rischint (resimplify exp) var))))
;; The result can contain solveable integrals. Look for this case.
(if (isinop result '%integrate)
;; Found an integral. Evaluate the result again.
;; Set the flag *in-risch-p* to make sure that we do not call
;; rischint again from the integrator. This avoids endless loops.
(let ((*in-risch-p* t))
(meval (list '($ev) result '$nouns)))
result)))
(defun trigin1 (*exp var)
(let ((yyy (hypertrigint1 *exp var nil)))
(setq yyy (div ($expand ($num yyy))
($expand ($denom yyy))))
(let ((rischp var) (rp-polylogp t) $logarc $exponentialize result)
(setq result (sratsimp (if (and (freeof '$%i *exp) (freeof '$li yyy))
($realpart yyy)
($rectform yyy))))
;; The result can contain solveable integrals. Look for this case.
(if (isinop result '%integrate)
;; Found an integral. Evaluate the result again.
;; Set the flag *in-risch-p* to make sure that we do not call
;; rischint again from the integrator. This avoids endless loops.
(let ((*in-risch-p* t))
(meval (list '($ev) result '$nouns)))
result))))
(defun tryrisch (exp mainvar)
(prog (wholepart rootfactor parnumer pardenom
switch1 logptdx expflag expstuff expint y)
(setq expstuff '(0 . 1))
(cond ((eq mainvar var)
(return (rischfprog exp)))
((eq (get var 'leadop)
'mexpt)
(setq expflag t)))
(setq y (rischlogdprog exp))
(dolist (rat logptdx)
(setq y (rischadd (rischlogeprog rat) y)))
(if varlist (setq y (rischadd (tryrisch1 expstuff mainvar) y)))
(return (if expint (rischadd (rischexppoly expint var) y)
y))))
(defun tryrisch1 (exp mainvar)
(let* ((varlist (reverse (cdr (reverse varlist))))
(var (getrischvar)))
(tryrisch exp mainvar)))
(defun rischfprog (rat)
(let (rootfactor pardenom parnumer logptdx wholepart switch1)
(cons (cdr (ratrep* (dprog rat)))
(let ((varlist varlist)
(genvar (subseq genvar 0 (length varlist))))
(mapcar #'eprog logptdx)))))
(defun rischlogdprog (ratarg)
(prog (klth arootf deriv thebpg thetop thebot prod1 prod2 ans)
(setq ans '(0 . 1))
(cond ((or (pcoefp (cdr ratarg))
(pointergp var (cadr ratarg)))
(return (rischlogpoly ratarg))))
(aprog (ratdenominator ratarg))
(cprog (ratnumerator ratarg) (ratdenominator ratarg))
(do ((rootfactor (reverse rootfactor) (cdr rootfactor))
(parnumer (reverse parnumer) (cdr parnumer))
(klth (length rootfactor) (1- klth)))
((= klth 1))
(setq arootf (car rootfactor))
(cond
((pcoefp arootf))
((and (eq (get (car arootf) 'leadop) 'mexpt)
(null (cdddr arootf)))
(setq
expint
(append
(cond ((and (not (atom (car parnumer)))
(not (atom (caar parnumer)))
(eq (caaar parnumer) (car arootf)))
(gennegs arootf (cdaar parnumer) (cdar parnumer)))
(t (list
(list 'neg (car parnumer)
(car arootf) klth (cadr arootf)))))
expint)))
((not (zerop (pdegree arootf var)))
(setq deriv (spderivative arootf mainvar))
(setq thebpg (bprog arootf (ratnumerator deriv)))
(setq thetop (car parnumer))
(do ((kx (1- klth) (1- kx))) ((= kx 0))
(setq prod1 (r* thetop (car thebpg)))
(setq prod2 (r* thetop (cdr thebpg) (ratdenominator deriv)))
(setq thebot (pexpt arootf kx))
(setq ans (r+ ans (ratqu (r- prod2) (r* kx thebot))))
(setq thetop
(r+ prod1 (ratqu (spderivative prod2 mainvar) kx)))
(setq thetop (cdr (ratdivide thetop thebot))))
(push (ratqu thetop arootf) logptdx))))
(push (ratqu (car parnumer) (car rootfactor)) logptdx)
(cond ((or (pzerop ans) (pzerop (car ans)))
(return (rischlogpoly wholepart))))
(setq thetop (cadr (pdivide (ratnumerator ans)
(ratdenominator ans))))
(return (rischadd (ncons (ratqu thetop (ratdenominator ans)))
(rischlogpoly wholepart)))))
(defun gennegs (denom num numdenom)
(cond ((null num) nil)
(t (cons (list 'neg (cadr num)
(car denom)
(- klth (car num))
(r* numdenom (caddr denom) ))
(gennegs denom (cddr num) numdenom)))))
(defun rischlogeprog (p)
(prog (p1e p2e p2deriv logcoef ncc dcc allcc expcoef my-divisor)
(if (or (pzerop p) (pzerop (car p))) (return (rischzero)))
(setq p1e (ratnumerator p))
(desetq (dcc p2e) (oldcontent (ratdenominator p)))
(cond ((and (not switch1)
(cdr (setq pardenom (intfactor p2e))))
(setq parnumer nil)
(setq switch1 t)
(desetq (ncc p1e) (oldcontent p1e))
(cprog p1e p2e)
(setq allcc (ratqu ncc dcc))
(return (do ((pnum parnumer (cdr pnum))
(pden pardenom (cdr pden))
(ans (rischzero)))
((or (null pnum) (null pden))
(setq switch1 nil) ans)
(setq ans (rischadd
(rischlogeprog
(r* allcc (ratqu (car pnum) (car pden))))
ans))))))
(when (and expflag (null (p-red p2e)))
(push (cons 'neg p) expint)
(return (rischzero)))
(if expflag (setq expcoef (r* (p-le p2e) (ratqu (get var 'rischdiff)
(make-poly var)))))
(setq p1e (ratqu p1e (ptimes dcc (p-lc p2e)))
p2e (ratqu p2e (p-lc p2e))) ;MAKE DENOM MONIC
(setq p2deriv (spderivative p2e mainvar))
(setq my-divisor (if expflag (r- p2deriv (r* p2e expcoef)) p2deriv))
(when (equal my-divisor '(0 . 1))
;; (format t "HEY RISCHLOGEPROG, FOUND ZERO DIVISOR; GIVE UP.~%")
(return (rischnoun p)))
(setq logcoef (ratqu p1e my-divisor))
(when (risch-constp logcoef)
(if expflag
(setq expstuff (r- expstuff (r* expcoef logcoef))))
(return
(list
'(0 . 1)
(list '(mtimes)
(disrep logcoef)
(logmabs (disrep p2e))))))
(if (and expflag $liflag changevp)
(let* ((newvar (gensym))
(new-int ($changevar
`((%integrate) ,(simplify (disrep p)) ,intvar)
(sub newvar (get var 'rischexpr))
newvar intvar))
(changevp nil)) ;prevents recursive changevar
(if (and (freeof intvar new-int)
(freeof '%integrate
(setq new-int (rischint (sdiff new-int newvar)
newvar))))
(return
(list (rzero)
(maxima-substitute (get var 'rischexpr) newvar new-int))))))
(return (rischnoun p))))
(defun findint (exp)
(cond ((atom exp) nil)
((atom (car exp)) (findint (cdr exp)))
((eq (caaar exp) '%integrate) t)
(t (findint (cdr exp)))))
(defun logequiv (fn1 fn2)
(freeof intvar ($ratsimp (div* (remabs (leadarg fn1))
(remabs (leadarg fn2))))))
(defun remabs (exp)
(cond ((atom exp) exp)
((eq (caar exp) 'mabs) (cadr exp))
(t exp)))
(declare-top (special vlist lians degree))
(defun getfnsplit (l)
(let (coef fn)
(dolist (x l (values (muln coef nil) (muln fn nil)))
(if (free x intvar)
(push x coef)
(push x fn)))))
(defun getfncoeff (a form)
(cond ((null a) 0)
((equal (car a) 0) (getfncoeff (cdr a) form))
((and (listp (car a))
(eq (caaar a) 'mplus) (ratpl (getfncoeff (cdar a) form)
(getfncoeff (cdr a) form))))
((and (listp (car a))
(eq (caaar a) 'mtimes))
(multiple-value-bind (coef newfn)
(getfnsplit (cdar a))
;; (car a) is a mtimes expression. We insert coef and newfn as the
;; new arguments to the mtimes expression. This causes problems if
;; (1) coef is a mtimes expression too and
;; (2) (car a) has already a simp flag
;; We get a nested mtimes expression, which does not simplify.
;; We comment out the following code (DK 09/2009):
;; (setf (cdar a) (list coef newfn))
;; Insert a complete mtimes expression without simpflag.
;; Nested mtimes expressions simplify further.
(setf (car a) (list '(mtimes) coef newfn))
(setf (cdar a) (list coef newfn))
(cond ((zerop1 coef) (getfncoeff (cdr a) form))
((and (matanp newfn) (member '$%i varlist :test #'eq))
(let (($logarc t) ($logexpand '$all))
(rplaca a ($expand (resimplify (car a)))))
(getfncoeff a form))
((and (alike1 (leadop newfn) (leadop form))
(or (alike1 (leadarg newfn) (leadarg form))
(and (mlogp newfn)
(logequiv form newfn))))
(ratpl (rform coef)
(prog2 (rplaca a 0)
(getfncoeff (cdr a) form))))
((do ((vl varlist (cdr vl))) ((null vl))
(and (not (atom (car vl)))
(alike1 (leadop (car vl)) (leadop newfn))
(if (mlogp newfn)
(logequiv (car vl) newfn)
(alike1 (car vl) newfn))
(rplaca (cddar a) (car vl))
(return nil))))
((let (vlist) (newvar1 (car a)) (null vlist))
(setq cary
(ratpl (cdr (ratrep* (car a)))
cary))
(rplaca a 0)
(getfncoeff (cdr a) form))
((and liflag
(mlogp form)
(mlogp newfn))
(push (dilog (cons (car a) form)) lians)
(rplaca a 0)
(getfncoeff (cdr a) form))
((and liflag
(polylogp form)
(mlogp newfn)
(logequiv form newfn))
(push (mul* (cadar a) (make-li (1+ (car (subfunsubs form)))
(leadarg form)))
lians)
(rplaca a 0)
(getfncoeff (cdr a) form))
(t (setq nogood t) 0))))
(t (rplaca a (list '(mtimes) 1 (car a)))
(getfncoeff a form))))
(defun rischlogpoly (exp)
(cond ((equal exp '(0 . 1)) (rischzero))
(expflag (push (cons 'poly exp) expint)
(rischzero))
((not (among var exp)) (tryrisch1 exp mainvar))
(t (do ((degree (pdegree (car exp) var) (1- degree))
(p (car exp))
(den (cdr exp))
(lians ())
(sum (rzero))
(cary (rzero))
(y) (z) (ak) (nogood) (lbkpl1))
((minusp degree) (cons sum (append lians (cdr y))))
(setq ak (r- (ratqu (polcoef p degree) den)
(r* (cons (1+ degree) 1)
cary
(get var 'rischdiff))))
(if (not (pzerop (polcoef p degree)))
(setq p (if (pcoefp p) (pzero) (psimp var (p-red p)))))
(setq y (tryrisch1 ak mainvar))
(setq cary (car y))
(and (> degree 0) (setq liflag $liflag))
(setq z (getfncoeff (cdr y) (get var 'rischexpr)))
(setq liflag nil)
(cond ((and (> degree 0)
(or nogood (findint (cdr y))))
(return (rischnoun sum (r+ (r* ak
(make-poly var degree 1))
(ratqu p den))))))
(setq lbkpl1 (ratqu z (cons (1+ degree) 1)))
(setq sum (r+ (r* lbkpl1 (make-poly var (1+ degree) 1))
(r* cary (if (zerop degree) 1
(make-poly var degree 1)))
sum))))))
(defun make-li (sub arg)
(subfunmake '$li (ncons sub) (ncons arg)))
;;integrates log(ro)^degree*log(rn)' in terms of polylogs
;;finds constants c,d and integers j,k such that
;;c*ro^j+d=rn^k If ro and rn are poly's then can assume either j=1 or k=1
(defun dilog (l)
(destructuring-let* ((((nil coef nlog) . olog) l)
(narg (remabs (cadr nlog)))
(varlist varlist)
(genvar genvar)
(rn (rform narg)) ;; can add new vars to varlist
(ro (rform (cadr olog)))
(var (caar ro))
((j . k) (ratreduce (pdegree (car rn) var) (pdegree (car ro) var)))
(idx (gensym))
(rc) (rd))
(cond ((and (= j 1) (> k 1))
(setq rn (ratexpt rn k)
coef (div coef k)
narg (rdis rn)))
((and (= k 1) (> j 1))
(setq ro (ratexpt ro j)
coef (div coef (f* j degree))
olog (mul j olog))))
(desetq (rc . rd) (ratdivide rn ro))
(cond ((and (freeof intvar (rdis rc)) ;; can't use risch-constp because varlist
(freeof intvar (rdis rd))) ;; is not set up with vars in correct order.
(setq narg ($ratsimp (sub 1 (div narg (rdis rd)))))
(mul* coef (power -1 (1+ degree))
`((mfactorial) ,degree)
(dosum (mul* (power -1 idx)
(div* (power olog idx)
`((mfactorial) ,idx))
(make-li (add degree (neg idx) 1) narg))
idx 0 degree t)))
(t (setq nogood t) 0))))
(defun exppolycontrol (flag f a expg n)
(let (y l var (varlist varlist) (genvar genvar))
(setq varlist (reverse (cdr (reverse varlist))))
(setq var (getrischvar))
(setq y (get var 'leadop))
(cond ((and (not (pzerop (ratnumerator f)))
(risch-constp (setq l (ratqu a f))))
(cond (flag ;; multiply in expg^n - n may be negative
(list (r* l (ratexpt (cons (list expg 1 1) 1) n))
0))
(t l)))
((eq y intvar)
(rischexpvar nil flag (list f a expg n)))
(t (rischexplog (eq y 'mexpt) flag f a
(list expg n (get var 'rischarg)
var (get var 'rischdiff)))))))
(defun rischexppoly (expint var)
(let (y w num denom type (ans (rischzero))
(expdiff (ratqu (get var 'rischdiff) (list var 1 1))))
(do ((expint expint (cdr expint)))
((null expint) ans)
(desetq (type . y) (car expint))
(desetq (num . denom) (ratfix y))
(cond ((eq type 'neg)
(setq w (exppolycontrol t
(r* (- (cadr denom))
expdiff)
(ratqu num (caddr denom))
var
(- (cadr denom)))))
((or (numberp num) (not (eq (car num) var)))
(setq w (tryrisch1 y mainvar)))
(t (setq w (rischzero))
(do ((num (cdr num) (cddr num))) ((null num))
(cond ((equal (car num) 0)
(setq w (rischadd
(tryrisch1 (ratqu (cadr num) denom) mainvar)
w)))
(t (setq w (rischadd (exppolycontrol
t
(r* (car num) expdiff)
(ratqu (cadr num) denom)
var
(car num))
w)))))))
(setq ans (rischadd w ans)))))
(defun rischexpvar (expexpflag flag l)
(prog (lcm y m p alphar beta gamma delta r s
tt denom k wl wv i ytemp ttemp yalpha f a expg n yn yd)
(desetq (f a expg n) l)
(cond ((or (pzerop a) (pzerop (car a)))
(return (cond ((null flag) (rzero))
(t (rischzero))))))
(setq denom (ratdenominator f))
(setq p (findpr (cdr (partfrac a mainvar))
(cdr (partfrac f mainvar))))
(setq lcm (plcm (ratdenominator a) p))
(setq y (ratpl (spderivative (cons 1 p) mainvar)
(ratqu f p)))
(setq lcm (plcm lcm (ratdenominator y)))
(setq r (car (ratqu lcm p)))
(setq s (car (r* lcm y)))
(setq tt (car (r* a lcm)))
(setq beta (pdegree r mainvar))
(setq gamma (pdegree s mainvar))
(setq delta (pdegree tt mainvar))
(setq alphar (max (- (1+ delta) beta)
(- delta gamma)))
(setq m 0)
(cond ((equal (1- beta) gamma)
(setq y (r* -1
(ratqu (polcoef s gamma)
(polcoef r beta))))
(and (equal (cdr y) 1)
(numberp (car y))
(setq m (car y)))))
(setq alphar (max alphar m))
(if (minusp alphar)
(return (if flag (cxerfarg (rzero) expg n a) nil)))
(cond ((not (and (equal alphar m) (not (zerop m))))
(go down2)))
(setq k (+ alphar beta -2))
(setq wl nil)
l2 (setq wv (list (cons (polcoef tt k) 1)))
(setq i alphar)
l1 (setq wv
(cons (r+ (r* (cons i 1)
(polcoef r (+ k 1 (- i))))
(cons (polcoef s (+ k (- i))) 1))
wv))
(decf i)
(cond ((> i -1) (go l1)))
(setq wl (cons wv wl))
(decf k)
(cond ((> k -1) (go l2)))
(setq y (lsa wl))
(if (or (eq y 'singular) (eq y 'inconsistent))
(cond ((null flag) (return nil))
(t (return (cxerfarg (rzero) expg n a)))))
(setq k 0)
(setq lcm 0)
(setq y (cdr y))
l3 (setq lcm
(r+ (r* (car y) (pexpt (list mainvar 1 1) k))
lcm))
(incf k)
(setq y (cdr y))
(cond ((null y)
(return (cond ((null flag) (ratqu lcm p))
(t (list (r* (ratqu lcm p)
(cons (list expg n 1) 1))
0))))))
(go l3)
down2 (cond ((> (1- beta) gamma)
(setq k (+ alphar (1- beta)))
(setq denom '(ratti alphar (polcoef r beta) t)))
((< (1- beta) gamma)
(setq k (+ alphar gamma))
(setq denom '(polcoef s gamma)))
(t (setq k (+ alphar gamma))
(setq denom
'(ratpl (ratti alphar (polcoef r beta) t)
(polcoef s gamma)))))
(setq y 0)
loop (setq yn (polcoef (ratnumerator tt) k)
yd (r* (ratdenominator tt) ;DENOM MAY BE 0
(cond ((zerop alphar) (polcoef s gamma))
(t (eval denom))) ))
(cond ((rzerop yd)
(cond ((pzerop yn) (setq k (1- k) alphar (1- alphar))
(go loop)) ;need more constraints?
(t (cond
((null flag) (return nil))
(t (return (cxerfarg (rzero) expg n a)))))))
(t (setq yalpha (ratqu yn yd))))
(setq ytemp (r+ y (r* yalpha
(cons (list mainvar alphar 1) 1) )))
(setq ttemp (r- tt (r* yalpha
(r+ (r* s (cons (list mainvar alphar 1) 1))
(r* r alphar
(list mainvar (1- alphar) 1))))))
(decf k)
(decf alphar)
(cond ((< alphar 0)
(cond
((rzerop ttemp)
(cond
((null flag) (return (ratqu ytemp p)))
(t (return (list (ratqu (r* ytemp (cons (list expg n 1) 1))
p)
0)))))
((null flag) (return nil))
((and (risch-constp (setq ttemp (ratqu ttemp lcm)))
$erfflag
(equal (pdegree (car (get expg 'rischarg)) mainvar) 2)
(equal (pdegree (cdr (get expg 'rischarg)) mainvar) 0))
(return (list (ratqu (r* ytemp (cons (list expg n 1) 1)) p)
(erfarg2 (r* n (get expg 'rischarg)) ttemp))))
(t (return
(cxerfarg
(ratqu (r* y (cons (list expg n 1) 1)) p)
expg
n
(ratqu tt lcm)))))))
(setq y ytemp)
(setq tt ttemp)
(go loop)))
;; *JM should be declared as an array, although it is not created
;; by this file. -- cwh
(defun lsa (mm)
(prog (d *mosesflag m m2)
(setq d (length (car mm)))
;; MTOA stands for MATRIX-TO-ARRAY. An array is created and
;; associated functionally with the symbol *JM. The elements
;; of the array are initialized from the matrix MM.
(mtoa '*jm* (length mm) d mm)
(setq m (tfgeli '*jm* (length mm) d))
(cond ((or (and (null (car m)) (null (cadr m)))
(and (car m)
(> (length (car m)) (- (length mm) (1- d)))))
(return 'singular))
((cadr m) (return 'inconsistent)))
(setq *mosesflag t)
(ptorat '*jm* (1- d) d)
(setq m2 (xrutout '*jm* (1- d) d nil nil))
(setq m2 (lsafix (cdr m2) (caddr m)))
(return m2)))
(defun lsafix (l n)
(declare (special *jm*))
(do ((n n (cdr n))
(l l (cdr l)))
((null l))
(setf (aref *jm* 1 (car n)) (car l)))
(do ((s (length l) (1- s))
(ans))
((= s 0) (cons '(list) ans))
(setq ans (cons (aref *jm* 1 s) ans))))
(defun findpr (alist flist &aux (p 1) alphar fterm)
(do ((alist alist (cdr alist))) ((null alist))
(setq fterm (findflist (cadar alist) flist))
(if fterm (setq flist (remove y flist :count 1 :test #'eq)))
(setq alphar
(cond ((null fterm) (caddar alist))
((equal (caddr fterm) 1)
(fpr-dif (car flist) (caddar alist)))
(t (max (- (caddar alist) (caddr fterm)) 0))))
(if (not (zerop alphar))
(setq p (ptimes p (pexpt (cadar alist) alphar)))))
(do ((flist flist (cdr flist)))
((null flist))
(when (equal (caddar flist) 1)
(setq alphar (fpr-dif (car flist) 0))
(setq p (ptimes p (pexpt (cadar flist) alphar)))))
p)
(defun fpr-dif (fterm alpha)
(destructuring-let* (((num den mult) fterm)
(m (spderivative den mainvar))
(n))
(cond ((rzerop m) alpha)
(t (setq n (ratqu (cdr (ratdivide num den))
m))
(if (and (equal (cdr n) 1) (numberp (car n)))
(max (car n) alpha)
alpha)))))
(defun findflist (a llist)
(cond ((null llist) nil)
((equal (cadar llist) a) (car llist))
(t (findflist a (cdr llist)))))
(defun rischexplog (expexpflag flag f a l)
(declare (special var))
(prog (lcm y yy m p alphar beta gamma delta
mu r s tt denom ymu rbeta expg n eta logeta logdiff
temp cary nogood vector aarray rmu rrmu rarray)
(desetq (expg n eta logeta logdiff) l)
(cond ((or (pzerop a) (pzerop (car a)))
(return (cond ((null flag) (rzero))
(t (rischzero))))))
(setq p (findpr (cdr (partfrac a var)) (cdr (partfrac f var))))
(setq lcm (plcm (ratdenominator a) p))
(setq y (ratpl (spderivative (cons 1 p) mainvar)
(ratqu f p)))
(setq lcm (plcm lcm (ratdenominator y)))
(setq r (car (ratqu lcm p)))
(setq s (car (r* lcm y)))
(setq tt (car (r* a lcm)))
(setq beta (pdegree r var))
(setq gamma (pdegree s var))
(setq delta (pdegree tt var))
(cond (expexpflag (setq mu (max (- delta beta)
(- delta gamma)))
(go expcase)))
(setq mu (max (- (1+ delta) beta)
(- (1+ delta) gamma)))
(cond ((< beta gamma) (go back))
((= (1- beta) gamma) (go down1)))
(setq y (tryrisch1 (ratqu (r- (r* (polcoef r (1- beta))
(polcoef s gamma))
(r* (polcoef r beta)
(polcoef s (1- gamma))))
(r* (polcoef r beta)
(polcoef r beta) ))
mainvar))
(setq cary (car y))
(setq yy (getfncoeff (cdr y) (get var 'rischexpr)))
(cond ((and (not (findint (cdr y)))
(not nogood)
(not (atom yy))
(equal (cdr yy) 1)
(numberp (car yy))
(> (car yy) mu))
(setq mu (car yy))))
(go back)
expcase
(cond ((not (equal beta gamma)) (go back)))
(setq y (tryrisch1 (ratqu (polcoef s gamma) (polcoef r beta))
mainvar))
(cond ((findint (cdr y)) (go back)))
(setq yy (ratqu (r* -1 (car y)) eta))
(cond ((and (equal (cdr yy) 1)
(numberp (car yy))
(> (car yy) mu))
(setq mu (car yy))))
(go back)
down1(setq y (tryrisch1 (ratqu (polcoef s gamma) (polcoef r beta))
mainvar))
(setq cary (car y))
(setq yy (getfncoeff (cdr y) (get var 'rischexpr)))
(cond ((and (not (findint (cdr y)))
(not nogood)
(equal (cdr yy) 1)
(numberp (car yy))
(> (- (car yy)) mu))
(setq mu (- (car yy)))))
back (if (minusp mu)
(return (if flag (cxerfarg (rzero) expg n a) nil)))
(cond ((> beta gamma)(go lsacall))
((= beta gamma)
(go recurse)))
(setq denom (polcoef s gamma))
(setq y '(0 . 1))
linearloop
(setq ymu (ratqu (polcoef (ratnumerator tt) (+ mu gamma))
(r* (ratdenominator tt) denom)))
(setq y (r+ y (setq ymu (r* ymu (pexpt (list logeta 1 1) mu) ))))
(setq tt (r- tt
(r* s ymu)
(r* r (spderivative ymu mainvar))))
(decf mu)
(cond ((not (< mu 0)) (go linearloop))
((not flag) (return (if (rzerop tt) (ratqu y p) nil)))
((rzerop tt)
(return (cons (ratqu (r* y (cons (list expg n 1) 1)) p) '(0))))
(t (return (cxerfarg (ratqu (r* y (cons (list expg n 1) 1)) p)
expg
n
(ratqu tt lcm)))))
recurse
(setq rbeta (polcoef r beta))
(setq y '(0 . 1))
recurseloop
(setq f (r+ (ratqu (polcoef s gamma) rbeta)
(if expexpflag
(r* mu (spderivative eta mainvar))
0)))
(setq ymu (exppolycontrol nil
f
(ratqu (polcoef (ratnumerator tt)
(+ beta mu))
(r* (ratdenominator tt) rbeta))
expg n))
(when (null ymu)
(return (cond ((null flag) nil)
(t (return (cxerfarg (ratqu (r* y (cons (list expg n 1) 1)) p)
expg n (ratqu tt lcm)))))))
(setq y (r+ y (setq ymu (r* ymu (pexpt (list logeta 1 1) mu)))))
(setq tt (r- tt
(r* s ymu)
(r* r (spderivative ymu mainvar))))
(decf mu)
(cond
((not (< mu 0)) (go recurseloop))
((not flag)
(return (cond ((rzerop tt) (ratqu y p)) (t nil))))
((rzerop tt)
(return (cons (ratqu (r* y (cons (list expg n 1) 1)) p) '(0))))
(t (return (cxerfarg (ratqu (r* y (cons (list expg n 1) 1)) p)
expg
n
(ratqu tt lcm)))))
lsacall
(setq rrmu mu)
muloop
(setq temp (r* (ratexpt (cons (list logeta 1 1) 1) (1- mu))
(r+ (r* s (cons (list logeta 1 1) 1))
(r* mu r logdiff ))))
mu1 (setq vector nil)
(setq rmu (+ rrmu beta))
rmuloop
(setq vector (cons (ratqu (polcoef (ratnumerator temp) rmu)
(ratdenominator temp)) vector))
(decf rmu)
(unless (< rmu 0) (go rmuloop))
(decf mu)
(setq aarray (append aarray (list (reverse vector))))
(cond ((not (< mu 0)) (go muloop))
((equal mu -2) (go skipmu)))
(setq temp tt)
(go mu1)
skipmu
(setq rarray nil)
arrayloop
(setq vector nil)
(setq vector (mapcar 'car aarray))
(setq aarray (mapcar 'cdr aarray))
(setq rarray (append rarray (list vector)))
(unless (null (car aarray)) (go arrayloop))
(setq rmu (1+ rrmu))
(setq vector nil)
array1loop
(setq vector (cons '(0 . 1) vector))
(decf rmu)
(unless (< rmu 0) (go array1loop))
(setq aarray nil)
array2loop
(cond ((equal (car rarray) vector) nil)
(t (setq aarray (cons (car rarray) aarray))))
(setq rarray (cdr rarray))
(when rarray (go array2loop))
(setq rarray (reverse aarray))
(setq temp (lsa rarray))
(when (or (eq temp 'singular) (eq temp 'inconsistent))
(return (if (null flag) nil (cxerfarg (rzero) expg n a))))
(setq temp (reverse (cdr temp)))
(setq rmu 0)
(setq y 0)
l3 (setq y (r+ y (r* (car temp) (pexpt (list logeta 1 1) rmu))))
(setq temp (cdr temp))
(incf rmu)
(unless (> rmu rrmu) (go l3))
(return (if (null flag)
(ratqu y p)
(cons (r* (list expg n 1) (ratqu y p)) '(0))))))
(defun erfarg (exparg coef)
(prog (num denom erfarg)
(setq exparg (r- exparg))
(unless (and (setq num (pnthrootp (ratnumerator exparg) 2))
(setq denom (pnthrootp (ratdenominator exparg) 2)))
(return nil))
(setq erfarg (cons num denom))
(if (risch-constp
(setq coef (ratqu coef (spderivative erfarg mainvar))))
(return (simplify `((mtimes) ((rat) 1 2)
((mexpt) $%pi ((rat) 1 2))
,(disrep coef)
((%erf) ,(disrep erfarg))))))))
(defun erfarg2 (exparg coeff &aux (var mainvar) a b c d)
(when (and (= (pdegree (car exparg) var) 2)
(eq (caar exparg) var)
(risch-pconstp (cdr exparg))
(risch-constp coeff))
(setq a (ratqu (r* -1 (caddar exparg))
(cdr exparg)))
(setq b (disrep (ratqu (r* -1 (polcoef (car exparg) 1))
(cdr exparg))))
(setq c (disrep (ratqu (r* (polcoef (car exparg) 0))
(cdr exparg))))
(setq d (ratsqrt a))
(setq a (disrep a))
(simplify `((mtimes)
((mtimes)
((mexpt) $%e ((mplus) ,c
((mquotient) ((mexpt) ,b 2)
((mtimes) 4 ,a))))
((rat) 1 2)
,(disrep coeff)
((mexpt) ,d -1)
((mexpt) $%pi ((rat) 1 2)))
((%erf) ((mplus)
((mtimes) ,d ,intvar)
((mtimes) ,b ((rat) 1 2) ((mexpt) ,d -1))))))))
(defun cxerfarg (ans expg n numdenom &aux (arg (r* n (get expg 'rischarg)))
(fails 0))
(prog (denom erfans num nerf)
(desetq (num . denom) numdenom)
(unless $erfflag (setq fails num) (go lose))
(if (setq erfans (erfarg arg numdenom))
(return (list ans erfans)))
again (when (and (not (pcoefp denom))
(null (p-red denom))
(eq (get (car denom) 'leadop) 'mexpt))
(setq arg (r+ arg (r* (- (p-le denom))
(get (p-var denom) 'rischarg)))
denom (p-lc denom))
(go again))
(loop for (coef exparg exppoly) in (explist num arg 1)
do (setq coef (ratqu coef denom)
nerf (or (erfarg2 exparg coef) (erfarg exparg coef)))
(if nerf (push nerf erfans) (setq fails
(pplus fails exppoly))))
lose (return
(if (pzerop fails) (cons ans erfans)
(rischadd (cons ans erfans)
(rischnoun (r* (ratexpt (cons (make-poly expg) 1) n)
(ratqu fails (cdr numdenom)))))))))
(defun explist (p oarg exps)
(cond ((or (pcoefp p) (not (eq 'mexpt (get (p-var p) 'leadop))))
(list (list p oarg (ptimes p exps))))
(t (loop with narg = (get (p-var p) 'rischarg)
for (exp coef) on (p-terms p) by #'cddr
nconc (explist coef
(r+ oarg (r* exp narg))
(ptimes exps
(make-poly (p-var p) exp 1)))))))
(declare-top (special *fnewvarsw))
(defun intsetup (exp *var)
(prog (varlist clist $factorflag dlist genpairs old y z $ratfac $keepfloat
*fnewvarsw)
y (setq exp (radcan1 exp))
(fnewvar exp)
(setq *fnewvarsw t)
a (setq clist nil)
(setq dlist nil)
(setq z varlist)
up (setq y (pop z))
(cond ((freeof *var y) (push y clist))
((eq y *var) nil)
((and (mexptp y)
(not (eq (cadr y) '$%e)))
(cond ((not (freeof *var (caddr y)))
(setq dlist `((mexpt simp)
$%e
,(mul2* (caddr y)
`((%log) ,(cadr y)))))
(setq exp (maxima-substitute dlist y exp))
(setq varlist nil) (go y))
((atom (caddr y))
(cond ((numberp (caddr y)) (push y dlist))
(t (setq operator t)(return nil))))
(t (push y dlist))))
(t (push y dlist)))
(if z (go up))
(if (member '$%i clist :test #'eq) (setq clist (cons '$%i (delete '$%i clist :test #'equal))))
(setq varlist (append clist
(cons *var
(nreverse (sort (append dlist nil) #'intgreat)))))
(orderpointer varlist)
(setq old varlist)
(mapc #'intset1 (cons *var dlist))
(cond ((alike old varlist) (return (ratrep* exp)))
(t (go a)))))
(defun leadop (exp)
(cond ((atom exp) exp)
((mqapplyp exp) (cadr exp))
(t (caar exp))))
(defun leadarg (exp)
(cond ((atom exp) 0)
((and (mexptp exp) (eq (cadr exp) '$%e)) (caddr exp))
((mqapplyp exp) (car (subfunargs exp)))
(t (cadr exp))))
(defun intset1 (b)
(let (e c d)
(fnewvar
(setq d (if (mexptp b) ;needed for radicals
`((mtimes simp)
,b
,(radcan1 (sdiff (simplify (caddr b)) *var)))
(radcan1 (sdiff (simplify b) *var)))))
(setq d (ratrep* d))
(setq c (ratrep* (leadarg b)))
(setq e (cdr (assoc b (pair varlist genvar) :test #'equal)))
(putprop e (leadop b) 'leadop)
(putprop e b 'rischexpr)
(putprop e (cdr d) 'rischdiff)
(putprop e (cdr c) 'rischarg)))
;; order of expressions for risch.
;; expressions containing erf and li last.
;; then order by size of expression to guarantee that
;; any subexpressions are considered smaller.
;; this relation should be transitive, since it is called by sort.
(defun intgreat (a b)
(cond ((and (not (atom a)) (not (atom b)))
(cond ((and (not (freeof '%erf a)) (freeof '%erf b)) t)
((and (not (freeof '$li a)) (freeof '$li b)) t)
((and (freeof '$li a) (not (freeof '$li b))) nil)
((and (freeof '%erf a) (not (freeof '%erf b))) nil)
((> (conssize a) (conssize b)) t)
((< (conssize a) (conssize b)) nil)
(t (great (resimplify (fixintgreat a))
(resimplify (fixintgreat b))))))
(t (great (resimplify (fixintgreat a))
(resimplify (fixintgreat b))))))
(defun fixintgreat (a)
(subst '/_101x *var a))
(declare-top (unspecial b beta cary context *exp degree gamma
klth liflag m nogood operator
r s switch switch1 *var var y))
|