/usr/share/maxima/5.41.0/src/polyrz.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module polyrz)
(declare-top (special $programmode varlist
$ratprint $factorflag genvar
equations $keepfloat $ratfac $rootsepsilon
$multiplicities))
(load-macsyma-macros ratmac)
;; PACKAGE FOR FINDING REAL ZEROS OF UNIVARIATE POLYNOMIALS
;; WITH INTEGER COEFFICIENTS USING STURM SEQUENCES.
(defmfun $realroots (exp &optional (eps $rootsepsilon) &aux exp1)
(setq exp1 (meqhk exp))
(when ($ratp exp1)
(setq exp1 ($ratdisrep exp1)))
(when (or (not (mnump eps)) (mnegp eps) (equal eps 0))
(merror (intl:gettext "realroots: second argument must be a positive number; found: ~M") eps))
(let (($keepfloat nil))
(sturmseq exp exp1 eps)))
(defun unipoly (exp exp1)
(setq exp1 (cadr (ratf exp1)))
(cond ((and (not (atom exp1))
(loop for v in (cdr exp1)
when (not (atom v))
do (return nil)
finally (return t)))
;;(EVERY #'ATOM (CDR EXP)))
exp1)
(t (merror (intl:gettext "UNIPOLY: argument must be a univariate polynomial; found: ~M") exp))))
(defun makrat (pt)
(cond ((floatp pt) (maxima-rationalize pt))
((numberp pt) (cons pt 1))
(($bfloatp pt) (bigfloat2rat pt))
((atom pt) (merror (intl:gettext "MAKRAT: argument must be a number; found: ~M") pt))
((equal (caar pt) 'rat) (cons (cadr pt) (caddr pt)))
(t (merror (intl:gettext "MAKRAT: argument must be a number; found: ~M") pt))))
(declare-top (special equations))
(defun sturmseq (exp exp1 eps)
(let (varlist equations $factorflag $ratprint $ratfac)
(cond ($programmode
(cons '(mlist)
(multout (findroots (psqfr (pabs (unipoly exp exp1)))
(makrat eps)))))
(t (solve2 (findroots (psqfr (pabs (unipoly exp exp1)))
(makrat eps)))
(cons '(mlist) equations)))))
(declare-top (unspecial equations))
(defmfun sturm1 (poly eps &aux b llist)
(setq b (cons (root-bound (cdr poly)) 1))
(setq llist (isolat poly (cons (- (car b)) (cdr b)) b))
(mapcar #'(lambda (int) (refine poly (car int) (cdr int) eps)) llist))
(defun root-bound (p)
(prog (n lcf loglcf coef logb)
(setq n (car p))
(setq lcf (abs (cadr p)))
(setq loglcf (- (integer-length lcf) 2))
(setq logb 1)
loop (cond ((null (setq p (cddr p))) (return (expt 2 logb)))
((< (setq coef (abs (cadr p))) lcf) (go loop)))
(setq logb (max logb (1+ (ceil (- (integer-length coef) loglcf 1) (- n (car p))))))
(go loop)))
(defun ceil (a b)
(+ (quotient a b) ;CEILING FOR POS A,B
(signum (rem a b))))
(defun sturmapc (fn llist multiplicity)
(cond ((null llist) nil)
(t (cons (funcall fn (car llist))
(cons multiplicity
(sturmapc fn (cdr llist) multiplicity)))) ))
(defun findroots (l eps)
(cond ((null l) nil)
((numberp (car l)) (findroots (cddr l) eps))
(t (append (sturmapc 'sturmout (sturm1 (car l) eps)(cadr l))
(findroots (cddr l) eps) )) ))
(defun sturmout (int)
(list '(mequal simp) (car varlist)
(midout (rhalf (rplus* (car int) (cadr int)))) ))
(defun midout (pt)
(cond ((equal (cdr pt) 1) (car pt))
($float (fpcofrat1 (car pt) (cdr pt)))
(t (list '(rat simp) (car pt) (cdr pt))) ))
(defun uprimitive (p)
(pquotient p (ucontent p))) ;PRIMITIVE UNIVAR. POLY
(defun sturm (p)
(prog (p1 p2 seq r)
(setq p1 (uprimitive p))
(setq p2 (uprimitive (pderivative p1 (car p1))))
(setq seq (list p2 p1))
a (setq r (prem p1 (pabs p2)))
(cond ((pzerop r) (return (reverse seq))))
(setq p1 p2)
(setq p2 (pminus (uprimitive r)))
(push p2 seq)
(go a) ))
(defun signum(x)
(cond ((zerop x) 0)
((minusp x) -1)
(t 1)))
;; IVAR COUNTS SIGN CHANGES IN A STURM SEQUENCE
(defun ivar (seq pt)
(prog (v s ls)
(setq v 0)
(setq ls 0)
a (cond ((null seq)(return v)))
(setq s (reval (car seq) pt))
(setq seq (cdr seq))
(cond ((minusp (* s ls))(setq v (1+ v)))
((not (zerop ls))(go a)))
(setq ls s)
(go a) ))
(defun ivar2 (seq pt)
(cond ((not (atom pt)) (ivar seq pt))
(t (setq seq (mapcar (function leadterm) seq))
(ivar seq (cons pt 1)) )))
;; OUTPUT SIGN(P(R)) , R RATIONAL (A.B)
(defun reval (p r)
(cond ((pcoefp p) (signum p))
((zerop (car r)) (signum (ptterm (cdr p) 0)))
(t (prog (a b bi v m c)
(setq bi 1)
(setq v 0)
(setq p (cdr p))
(setq m (car p))
(setq a (car r))
(setq b (cdr r))
a (cond ((equal m (car p)) (setq c (cadr p))
(setq p (cddr p)))
(t (setq c 0)))
(cond ((zerop m) (return (signum (+ v (* bi c))))))
(setq v (* a (+ v (* bi c))))
(setq bi (* bi b))
(setq m (1- m))
(go a) ))))
(defun makpoint (pt)
(cond ((eq pt '$inf) 1)
((eq pt '$minf) -1)
(t (makrat (let (($numer t))
(meval pt))))))
(defmfun $nroots (exp &optional (l '$minf) (r '$inf))
(let (varlist $keepfloat $ratfac)
(nroots (unipoly exp (meqhk exp)) (makpoint l) (makpoint r))))
(defun nroots (p l r)
(rootaddup (psqfr p) l r))
(defun rootaddup (llist l r)
(cond ((null llist) 0)
((numberp (car llist)) (rootaddup (cddr llist) l r))
(t (+ (rootaddup (cddr llist) l r)
(* (cadr llist) (nroot1 (car llist) l r)))) ))
(defun nroot1 (p l r)
(let ((seq (sturm p)))
(- (ivar2 seq l) (ivar2 seq r))))
;; RETURNS ROOT IN INTERVAL OF FORM (A,B])
(defun isolat (p l r)
(prog (seq lv rv mid midv tlist islist rts)
(setq seq (sturm p))
(setq lv (ivar seq l))
(setq rv (ivar seq r))
(setq tlist (setq islist nil))
(cond ((equal lv rv) (return nil)))
a (cond ((> (setq rts (- lv rv)) 1)(go b))
((equal rts 1)(setq islist (cons (cons l r) islist))))
(cond ((null tlist) (return islist)))
(setq lv (car tlist))
(setq rv (cadr tlist))
(setq l (caddr tlist))
(setq r (cadddr tlist))
(setq tlist (cddddr tlist))
(go a)
b (setq mid (rhalf (rplus* l r)))
(setq midv (ivar seq mid))
(cond ((not (equal lv midv))
(setq tlist (append (list lv midv l mid) tlist))))
(setq l mid)
(setq lv midv)
(go a)))
(defun refine (p l r eps)
(prog (sr mid smid)
(cond ((zerop (setq sr (reval p r)))
(return (list r r))) )
a (cond ((rlessp (rdifference* r l) eps)
(return (list l r))) )
(setq mid (rhalf (rplus* l r)))
(setq smid (reval p mid))
(cond ((zerop smid)(return (list mid mid)))
((equal smid sr)(setq r mid))
(t (setq l mid)) )
(go a)))
(defun rhalf (r) (rreduce (car r) (* 2 (cdr r))))
(defun rreduce (a b)
(let ((g (abs (gcd a b))))
(cons (truncate a g) (truncate b g))) )
(defun rplus* (a b)
(cons (+ (* (car a) (cdr b)) (* (car b) (cdr a)))
(* (cdr a) (cdr b))))
(defun rdifference* (a b)
(rplus* a (cons (- (car b)) (cdr b))) )
(defun rlessp (a b)
(< (* (car a) (cdr b))
(* (car b) (cdr a)) ))
;;; This next function is to do what SOLVE2 should do in programmode
(defun multout (rootlist)
(progn
(setq rootlist (do ((rtlst)
(multlst)
(lunch rootlist))
((null lunch) (cons (reverse rtlst)
(reverse multlst)))
(setq rtlst (cons (car lunch) rtlst))
(setq multlst (cons (cadr lunch) multlst))
(setq lunch (cddr lunch))))
(setq $multiplicities (cons '(mlist) (cdr rootlist)))
(car rootlist)))
(declare-top (unspecial equations))
|