This file is indexed.

/usr/share/maxima/5.41.0/src/nummod.lisp is in maxima-src 5.41.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
;; Maxima functions for floor, ceiling, and friends
;; Copyright (C) 2004, 2005, 2007 Barton Willis

;; Barton Willis
;; Department of Mathematics
;; University of Nebraska at Kearney
;; Kearney NE 68847
;; willisb@unk.edu

;; This source code is licensed under the terms of the Lisp Lesser
;; GNU Public License (LLGPL). The LLGPL consists of a preamble, published
;; by Franz Inc. (http://opensource.franz.com/preamble.html), and the GNU
;; Library General Public License (LGPL), version 2, or (at your option)
;; any later version.  When the preamble conflicts with the LGPL,
;; the preamble takes precedence.

;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;; Library General Public License for details.

;; You should have received a copy of the GNU Library General Public
;; License along with this library; if not, write to the
;; Free Software Foundation, Inc., 51 Franklin St, Fifth Floor,
;; Boston, MA  02110-1301, USA.

(in-package :maxima)

(macsyma-module nummod)

;; Let's have version numbers 1,2,3,...

(eval-when (:load-toplevel :execute)
  ($put '$nummod 3 '$version)
  ;; Let's remove built-in symbols from list for user-defined properties.
  (setq $props (remove '$nummod $props)))

(defmacro opcons (op &rest args)
  `(simplify (list (list ,op) ,@args)))

;; charfun(pred) evaluates to 1 when the predicate 'pred' evaluates
;; to true; it evaluates to 0 when 'pred' evaluates to false; otherwise,
;; it evaluates to a noun form.

(defprop $charfun simp-charfun operators)
(defprop %charfun simp-charfun operators)

(defun simp-charfun (e yy z)
  (declare (ignore yy))
  (oneargcheck e)
  (setq e (take '($is) (simplifya (specrepcheck (second e)) z)))
  (let ((bool (mevalp e)))
    (cond ((eq t bool) 1)
	  ((eq nil bool) 0)
	  ((op-equalp e '$is) `(($charfun simp) ,(second e)))
	  (t `(($charfun simp) ,e)))))
  
(defun integer-part-of-sum (e)
  (let ((i-sum 0) (n-sum 0) (o-sum 0) (n))
    (setq e (margs e))
    (dolist (ei e)
      (cond ((maxima-integerp ei)
	     (setq i-sum (add ei i-sum)))
	    ((or (ratnump ei) (floatp ei) ($bfloatp ei))
	     (setq n-sum (add ei n-sum)))
	    (t
	     (setq o-sum (add ei o-sum)))))
    (setq n (opcons '$floor n-sum))
    (setq i-sum (add i-sum n))
    (setq o-sum (add o-sum (sub n-sum n)))
    (values i-sum o-sum)))

(defprop $floor simp-floor operators)

(defprop $floor tex-matchfix tex)
(defprop $floor (("\\left \\lfloor " ) " \\right \\rfloor") texsym)

;; $floor distributes over lists, matrices, and equations
(setf (get '$floor 'distribute_over) '(mlist $matrix mequal))

; These defprops for $entier are copied from orthopoly/orthopoly-init.lisp.

(defprop $entier tex-matchfix tex)
(defprop $entier (("\\lfloor ") " \\rfloor") texsym)

;; $entier and $fix distributes over lists, matrices, and equations
(setf (get '$entier 'distribute_over) '(mlist $matrix mequal))
(setf (get '$fix 'distribute_over) '(mlist $matrix mequal))

;; For an example, see pretty-good-floor-or-ceiling. Code courtesy of Stavros Macrakis.

(defmacro bind-fpprec (val &body exprs)
  `(let (fpprec bigfloatzero bigfloatone bfhalf bfmhalf)
     (let (($fpprec (fpprec1 nil ,val)))
       ,@exprs)))

;; Return true if the expression can be formed using rational numbers, logs, mplus, mexpt, or mtimes.

(defun use-radcan-p (e)
  (or ($ratnump e) (and (op-equalp e '%log 'mexpt 'mplus 'mtimes) (every 'use-radcan-p (cdr e)))))

;; When constantp(x) is true, we use bfloat evaluation to try to determine
;; the ceiling or floor. If numerical evaluation of e is ill-conditioned, this function
;; can misbehave.  I'm somewhat uncomfortable with this, but it is no worse
;; than some other stuff. One safeguard -- the evaluation is done with three
;; values for fpprec.  When the floating point evaluations are
;; inconsistent, bailout and return nil.  I hope that this function is
;; much more likely to return nil than it is to return a bogus value.

(defun pretty-good-floor-or-ceiling (x fn &optional digits)
  (let (($float2bf t) ($algebraic t) (f1) (f2) (f3) (eps) (lb) (ub) (n))
    
    (setq digits (if (and (integerp digits) (> 0 digits)) digits 25))
    (catch 'done

      ;; To handle ceiling(%i^%i), we need to apply rectform. If bfloat
      ;; is improved, it might be possible to remove this call to rectform.

      (setq x ($rectform x))
      (if (not ($freeof '$%i '$minf '$inf '$und '$infinity x)) (throw 'done nil))

      ;; When x doesn't evaluate to a bigfloat, bailout and return nil.
      ;; This happens when, for example, x = asin(2). For now, bfloatp
      ;; evaluates to nil for a complex big float. If this ever changes,
      ;; this code might need to be repaired.
      
      (bind-fpprec digits 
        (setq f1 ($bfloat x))
        (if (not ($bfloatp f1)) (throw 'done nil)))
		   
      (incf digits 20)
      (setq f2 (bind-fpprec digits ($bfloat x)))
      (if (not ($bfloatp f2)) (throw 'done nil))

      (incf digits 20)
      (bind-fpprec digits 
        (setq f3 ($bfloat x))
        (if (not ($bfloatp f3)) (throw 'done nil))

        ;; Let's say that the true value of x is in the interval
        ;; [f3 - |f3| * eps, f3 + |f3| * eps], where eps = 10^(20 - digits).
        ;; Define n to be the number of integers in this interval; we have
        
        (setq eps (power ($bfloat 10) (- 20 digits)))
        (setq lb (sub f3 (mult (take '(mabs) f3) eps)))
        (setq ub (add f3 (mult (take '(mabs) f3) eps)))

        ;; If n > 1, we're going to give up. This is true iff ceiling(ub) -
        ;; ceiling(lb) > 1. However, we don't want to blindly try to calculate
        ;; that: if ub and lb are enormous, we probably won't have enough
        ;; precision in the bigfloats to calculate either ceiling. Start by
        ;; taking the difference: if it's at least 2, then we know that n >= 2.
        (when (fpgreaterp (cdr (sub ub lb)) (cdr ($bfloat 2)))
          (throw 'done nil))

        (setq n (sub (take '($ceiling) ub)
                     (take '($ceiling) lb))))

      (setq f1 (take (list fn) f1))
      (setq f2 (take (list fn) f2))
      (setq f3 (take (list fn) f3))
      
      ;; Provided f1 = f2 = f3 and n = 0, return f1.
      ;; If n = 1 and (use-radcan-p e) and ($radcan e) is a $ratnump, return
      ;; floor / ceiling of radcan(x).
      
      (cond ((and (= f1 f2 f3) (= n 0)) f1)
	    ((and (=  f1 f2 f3) (= n 1) (use-radcan-p x))
	     (setq x ($radcan x))
	     (if ($ratnump x) (take (list fn) x) nil))
	    (t nil)))))


;; (a) The function fpentier rounds a bigfloat towards zero--we need to
;;     check for that.

;; (b) Since limit(f(x))=(m)inf implies limit(floor(f(x)))=(m)inf,
;;     floor(inf/minf) = inf/minf.  Since minf<limit(f(x))<inf implies
;;     minf<limit(floor(f(x)))<inf, floor(ind)=ind

;;     I think floor(complex number) should be undefined too.  Some folks
;;     might like floor(a + %i b) --> floor(a) + %i floor(b). But
;;     this would violate the integer-valuedness of floor.
;;     So floor(infinity) remains unsimplified

(defun simp-floor (e e1 z)
  (oneargcheck e)
  (setq e (simplifya (specrepcheck (nth 1 e)) z))

  (cond ((numberp e) (floor e))

	((ratnump e) (floor (cadr e) (caddr e)))

	(($bfloatp e)
	 (setq e1 (fpentier e))
	 (if (and (minusp (cadr e)) (not (zerop1 (sub e1 e))))
	     (1- e1)
	     e1))

	((maxima-integerp e) e)

	(($orderlessp e (neg e))
	 (sub 0 (opcons '$ceiling (neg e))))

	((and (setq e1 (mget e '$numer)) (floor e1)))

	((or (member e infinities) (eq e '$und) (eq e '$ind)) '$und)
	;;((member e '($inf $minf $ind $und)) e) ; Proposed code
	;; leave floor(infinity) as is
	((or (eq e '$zerob)) -1)
	((or (eq e '$zeroa)) 0)

	((and ($constantp e) (pretty-good-floor-or-ceiling e '$floor)))

	((mplusp e)
	 (let ((i-sum) (o-sum))
	   (multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
	   (setq o-sum (if (equal i-sum 0) `(($floor simp) ,o-sum)
			 (opcons '$floor o-sum)))
	   (add i-sum o-sum)))

	;; handle 0 <= e < 1 implies floor(e) = 0 and
	;; -1 <= e < 0 implies floor(e) = -1.

	((and (member ($compare 0 e) '("<" "<=") :test #'equal)
	      (equal ($compare e 1) "<"))
	 0)
	((and (member ($compare -1 e) '("<" "<=") :test #'equal)
	      (equal ($compare e 0) "<"))
	 -1)
	(t `(($floor simp) ,e))))

(defun floor-integral (x)
  (let ((f (take '($floor) x)))
    (mul f (div 1 2) (add (mul 2 x) -1 (neg f)))))

(defun ceiling-integral (x)
  (let ((f (take '($ceiling) x)))
    (mul f (div 1 2) (add 1 (mul 2 x) (neg f)))))

(putprop '$floor `((x) ,#'floor-integral) 'integral)
(putprop '$ceiling `((x) ,#'ceiling-integral) 'integral)

(defprop $ceiling simp-ceiling operators)

(defprop $floor simplim%floor simplim%function)

(defun simplim%floor (expr var val)
  (let* ((arg (cadr expr))
	 (b (behavior arg var val))
	 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
	 (arglim (ridofab arglimab)))
    (cond ((and (= b -1)
		(maxima-integerp arglim))
	   (m- arglim 1))
	  ((and (= b 1)
		(maxima-integerp arglim))
	   arglim)
	  ((and (mnump arglim)
		(not (maxima-integerp arglim)))
	   (simplify (list '($floor) arglim)))
	  (t
	   (throw 'limit nil)))))

(defprop $ceiling tex-matchfix tex)
(defprop $ceiling (("\\left \\lceil " ) " \\right \\rceil") texsym)

;; $ceiling distributes over lists, matrices, and equations.
(setf (get '$ceiling 'distribute_over) '(mlist $matrix mequal))

(defun simp-ceiling (e e1 z)
  (oneargcheck e)
  (setq e (simplifya (specrepcheck (nth 1 e)) z))
  (cond ((numberp e) (ceiling e))

	((ratnump e) (ceiling (cadr e) (caddr e)))

	(($bfloatp e)
	 (sub 0 (opcons '$floor (sub 0 e))))

	((maxima-integerp e) e)

	(($orderlessp e (neg e))
	 (sub* 0 (opcons '$floor (neg e))))

	((and (setq e1 (mget e '$numer)) (ceiling e1)))

	((or (member e infinities) (eq e '$und) (eq e '$ind)) '$und)
	((or (eq e '$zerob)) 0)
	((or (eq e '$zeroa)) 1)

	((and ($constantp e) (pretty-good-floor-or-ceiling e '$ceiling)))

	((mplusp e)
	 (let ((i-sum) (o-sum))
	   (multiple-value-setq (i-sum o-sum) (integer-part-of-sum e))
	   (setq o-sum (if (equal i-sum 0) `(($ceiling simp) ,o-sum)
			 (opcons '$ceiling o-sum)))
	   (add i-sum o-sum)))

	;; handle 0 < e <= 1 implies ceiling(e) = 1 and
	;; -1 < e <= 0 implies ceiling(e) = 0.

	((and (equal ($compare 0 e) "<")
	      (member ($compare e 1) '("<" "<=") :test #'equal))
	 1)
	((and (equal ($compare -1 e) "<")
	      (member ($compare e 0) '("<" "<=") :test #'equal))
	 0)
	(t `(($ceiling simp) ,e))))

(defprop $ceiling simplim%ceiling simplim%function)

(defun simplim%ceiling (expr var val)
  (let* ((arg (cadr expr))
	 (b (behavior arg var val))
	 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
	 (arglim (ridofab arglimab)))
    (cond ((and (= b -1)
		(maxima-integerp arglim))
	   arglim)
	  ((and (= b 1)
		(maxima-integerp arglim))
	   (m+ arglim 1))
	  ((and (mnump arglim)
		(not (maxima-integerp arglim)))
	   (simplify (list '($ceiling) arglim)))
	  (t
	   (throw 'limit nil)))))


(defprop $mod simp-nummod operators)
(defprop $mod tex-infix tex)
(defprop $mod (" \\rm{mod} ") texsym)
(defprop $mod 180. tex-rbp)
(defprop $mod 180. tex-rbp)

;; $mod distributes over lists, matrices, and equations
(setf (get '$mod 'distribute_over) '(mlist $matrix mequal))

;; See "Concrete Mathematics," Section 3.21.
	     
(defun simp-nummod (e e1 z)
  (twoargcheck e)
  (let ((x (simplifya (specrepcheck (cadr e)) z))
	(y (simplifya (specrepcheck (caddr e)) z)))
    (cond ((or (equal 0 y) (equal 0 x)) x)
	  ((equal 1 y) (sub x (opcons '$floor x)))
	  ((and ($constantp x) ($constantp y))
	   (sub x (mul y (opcons '$floor (div x y)))))
	  ((not (equal 1 (setq e1 ($gcd x y))))
	   (mul e1 (opcons '$mod (div x e1) (div y e1))))
	  (t `(($mod simp) ,x ,y)))))

;; The function 'round' rounds a number to the nearest integer. For a tie, round to the 
;; nearest even integer. 

(defprop %round simp-round operators)
(setf (get '%round 'integer-valued) t)
(setf (get '%round 'reflection-rule) #'odd-function-reflect)
(setf (get '$round 'alias) '%round)
(setf (get '$round 'verb) '%round)
(setf (get '%round 'noun) '$round)

;; round distributes over lists, matrices, and equations.
(setf (get '%round 'distribute_over) '(mlist $matrix mequal))

(defun simp-round (e yy z)
  (oneargcheck e)
  (setq yy (caar e)) ;; find a use for the otherwise unused YY.
  (setq e (simplifya (specrepcheck (second e)) z))
  (cond (($featurep e '$integer) e) ;; takes care of round(round(x)) --> round(x).
	((member e '($inf $minf $und $ind) :test #'eq) e)
	((eq e '$zerob) 0)
	((eq e '$zeroa) 0)
	(t 
	 (let* ((lb (take '($floor) e))
		(ub (take '($ceiling) e))
		(sgn (csign (sub (sub ub e) (sub e lb)))))
	   (cond ((eq sgn t) `((,yy simp) ,e))
		 ((eq sgn '$neg) ub)
		 ((eq sgn '$pos) lb)
		 ((alike lb ub) lb) ;; For floats that are integers, this can happen. Maybe featurep should catch this.
		 ((and (eq sgn '$zero) ($featurep lb '$even)) lb)
		 ((and (eq sgn '$zero) ($featurep ub '$even)) ub)
		 ((apply-reflection-simp yy e t))
		 (t `((,yy simp) ,e)))))))

(defprop %round simplim%round simplim%function)

(defun simplim%round (expr var val)
  (let* ((arg (cadr expr))
	 (b (behavior arg var val))
	 (arglimab (limit arg var val 'think)) ; with $zeroa $zerob
	 (arglim (ridofab arglimab)))
    (cond ((and (= b -1)
		(maxima-integerp (m+ 1//2 arglim)))
	   (m- arglim 1//2))
	  ((and (= b 1)
		(maxima-integerp (m+ 1//2 arglim)))
	   (m+ arglim 1//2))
	  ((and (mnump arglim)
		(not (maxima-integerp (m+ 1//2 arglim))))
	   (simplify (list '(%round) arglim)))
	  (t
	   (throw 'limit nil)))))
 
;; Round a number towards zero.

(defprop %truncate simp-truncate operators)
(setf (get '%truncate 'integer-valued) t)
(setf (get '%truncate 'reflection-rule) #'odd-function-reflect)
(setf (get '$truncate 'alias) '%truncate)
(setf (get '$truncate 'verb) '%truncate)
(setf (get '%truncate 'noun) '$truncate)

;; truncate distributes over lists, matrices, and equations.
(setf (get '%truncate 'distribute_over) '(mlist $matrix mequal))

(defun simp-truncate (e yy z)
  (oneargcheck e)
  (setq yy (caar e)) ;; find a use for the otherwise unused YY.
  (setq e (simplifya (specrepcheck (second e)) z))
  (cond (($featurep e '$integer) e) ;; takes care of truncate(truncate(x)) --> truncate(x).
	((member e '($inf $minf $und $ind) :test #'eq) e)
	((eq e '$zerob) 0)
	((eq e '$zeroa) 0)
	(t
	 (let ((sgn (csign e)))
	   (cond ((member sgn '($neg $nz) :test #'eq) (take '($ceiling) e))
		 ((member sgn '($zero $pz $pos) :test #'eq) (take '($floor) e))
		 ((apply-reflection-simp yy e t))
		 (t `((,yy simp) ,e)))))))