/usr/share/maxima/5.41.0/src/nalgfa.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module nalgfa)
(declare-top (special vlist *nosplitf *algvar *denom *num *ans
algfac* $nalgfac alpha))
(load-macsyma-macros rzmac ratmac)
(defun new-alg ()
(newsym (gentemp (symbol-name '$alg))))
(defun psqfrp (p var)
(zerop (pdegree (pgcd p (pderivative p var)) var)))
(defun pgsubst (val var p) ;;generalized psubst substitutes any
(cond ((pcoefp p) p) ;;expression for any var in p
((eq var (car p))
(cond ((pzerop val)
(ptterm (cdr p) 0))
((do ((ld (cadr p) (car a))
(a (cdddr p) (cddr a))
(ans (caddr p)
(pplus
(ptimes ans (pexpt val (- ld (car a))))
(cadr a))))
((null a) (ptimes ans (pexpt val ld)))))))
((pointergp var (car p)) p)
((do ((a (cdddr p) (cddr a))
(ans (ptimes (list (car p) (cadr p) 1)
(pgsubst val var (caddr p)))
(pplus ans
(ptimes (list (car p) (car a) 1)
(pgsubst val var (cadr a))))))
((null a) ans)))))
(defun pvsubst (nvar ovar p)
(cond ((or (pcoefp p) (pointergp ovar (car p))) p)
((eq ovar (car p))
(cons nvar (cdr p)))
(t (pgsubst (make-poly nvar) ovar p))))
(defun ordervar (var l)
(let ((mvar (lmainvar l)))
(cond ((null mvar) l)
((null (pointergp mvar var)) (cons var l))
((let ((newvar (gensym)))
(setq genvar (append genvar (list newvar)))
(setf (symbol-plist newvar) (symbol-plist var))
(setf (symbol-value newvar) (1+ (symbol-value mvar)))
(cons newvar (mapcar #'(lambda (p) (pvsubst newvar var p)) l)))))))
(defun lmainvar (l) ;;main var of list of poly's
(do ((l l (cdr l))
(v))
((null l) v)
(cond ((pcoefp (car l)))
((null v) (setq v (caar l)))
((pointergp (caar l) v)
(setq v (caar l))))))
(defun presult (p1 p2 var) ;;change call in algsys?
(let ((genvar genvar))
(setq var (ordervar var (list p1 p2))
p1 (cadr var)
p2 (caddr var)
var (car var))
(cond ((zerop (pdegree p1 var))
(cond ((zerop (pdegree p2 var)) 1)
((pexpt p1 (cadr p2)))))
((zerop (pdegree p2 var))
(pexpt p2 (cadr p1)))
((resultant p1 p2)))))
(defun pcoefvec (p)
(cond ((pcoefp p) (list p))
((do ((l)
(i (cadr p) (1- i))
(p (cdr p)))
((signp l i) (nreverse l))
(push (cond ((and p (= (car p) i))
(prog1 (cadr p) (setq p (cddr p))))
( 0 ))
l)))))
(defun algtrace1 (bvec tvec)
(do ((i (- (length tvec) (length bvec)) (1- i)))
((zerop i) (algtrace* bvec tvec))
(setq bvec (cons 0 bvec))))
(defun algtrace* (bvec tvec)
(do ((b bvec (cdr b))
(tr (car (last bvec))
(pplus tr (car (last b)))))
((null (cdr b)) tr)
(or (pzerop (car b))
(do ((l (cdr b) (cdr l))
(tv tvec (cdr tv)))
((null l))
(rplaca l (pdifference (car l) (ptimes (car b) (car tv))))))))
(defun algtrace (r p)
(cond ((eq (caar r) (car p))
(ratreduce (algtrace1 (pcoefvec (car r))
(cdr (pcoefvec p)))
(cdr r)))
((ratreduce (pctimes (cadr p) (car r))
(cdr r)))))
(defmfun $algtrace (r p var)
(let ((varlist (list var))
(genvar nil))
(rdis* (algtrace (rform r) (car (rform p))))))
(defun good-form (l) ;;bad -> good
(do ((l l (cddr l))
(ans))
((null l) (nreverse ans))
(push (cons (cadr l) (car l)) ans)))
(defun bad-form (l) ;;good -> bad
(mapcar #'(lambda (q) (list (cdr q) (car q))) l))
(defmfun $algfac (a1 &optional (a2 nil a2?) (a3 nil a3?))
(if a3?
($pfactoralg a1 a2 a3)
(let ((varlist))
(cond (a2?
(newvar a2)
(if (alike1 a2 (car varlist))
($pfactoralg a1 nil a2)
($pfactoralg a1 a2 (car (last varlist)))))
(t
(newvar a1)
(setq varlist (mapcan #'(lambda (q) (if (algpget q) (list q) nil)) varlist))
(cond ((= (length varlist) 1)
($pfactoralg a1 nil (car varlist)))
((> (length varlist) 1)
;; MEANING OF NEXT MESSAGE IS UNCLEAR
(merror (intl:gettext "algfac: too many algebraics.")))
(t
;; MEANING OF NEXT MESSAGE IS UNCLEAR
(merror (intl:gettext "algfac: no algebraics.")))))))))
(defmfun $pfactoralg (f p alg)
(let ((varlist (list alg))
(genvar) (vlist) (tellratlist) ($ratfac)
($gcd '$algebraic)
($algebraic) ($ratalgdenom t)
(*denom 1) (*num 1) (*ans))
(cond ((and (null p) (radfunp alg t)) (newvar (cadr alg)))
(t (newvar p)))
(newvar1 f)
(cond ((null vlist) (merror (intl:gettext "pfactoralg: attempt to factor a constant."))))
(setq varlist (nconc varlist (sortgreat vlist)))
(cond (p (setq p (cadr (ratrep* p)))
(push (cons alg (mapcar #'pdis (cdr p)))
tellratlist))
(t (setq p (algpget alg))
(setq p (pdifference
(pexpt (cadr (ratrep* alg)) (car p))
(cadr p)))))
(setq $algebraic t)
(setq f (cadr (ratrep* f)))
(setq f (pfactoralg1 f p 0))
(cons '(mtimes)
(cons (rdis (ratreduce *num *denom))
(mapcar 'pdis f)))))
(declare-top (special adn*)) ;also redefine fact5 to call nalgfac correctly
(defun nalgfac (p mp)
(let ((*num 1) (*denom 1) (*ans) (algfac*) ($nalgfac)
($algebraic t) ($gcd '$algebraic))
(setq p (pfactoralg1 p mp 0))
(setq adn* (* adn* *denom))
(cond ((equal *num 1) p)
(t (cons *num p)))))
(setq *nosplitf t)
(defun pfactoralg1 (f p ind)
(cond ((pcoefp f) (setq *num (ptimeschk f *num)) *ans)
((= (cadr f) 1) (setq f (pshift f (car p) ind))
(push (algnormal f) *ans)
(setq f (rquotient f (car *ans))
*denom (ptimeschk (cdr f) *denom)
*num (ptimeschk (car f) *num))
*ans)
((equal (cdr f) (cdr p))
(push (pdifference (make-poly (car f)) (make-poly (car p))) *ans)
(setq f (rquotient f (car *ans))
*denom (ptimeschk (cdr f) *denom))
(pfactoralg1 (car f) p ind))
((zerop (pdegree f (car p)))
(mapc #'(lambda (q)
(if (pcoefp q) nil
(pfactoralg1 (pshift q (car p) -1) p (1+ ind))))
(let (($algebraic nil)
($gcd (car *gcdl*)))
(pfactor1 f)))
*ans)
(t (do ((l (let (($algebraic nil)
($gcd (car *gcdl*)))
(pfactor (algnorm f p)))
(cddr l))
(polys)
(temp)
(alg (car p)))
((null l)
(setq *num (ptimeschk f *num))
(mapc #'(lambda (q) (pfactoralg1
(pshift q alg -1) p (1+ ind)))
polys)
*ans)
(cond ((pcoefp (car l)) nil)
(t (setq temp (cond ((null (cddr l)) f)
(t (pgcd f (car l)))))
(cond ((pcoefp temp) nil)
((= (cadr temp) 1)
(setq temp (algnormal temp))
(push (pshift temp alg ind) *ans))
((= (cadr l) 1)
(setq temp (algnormal temp))
(push (pshift temp alg ind) *ans)
(or *nosplitf
(setq *nosplitf
(list (car l) temp ind))))
(t (push temp polys)))
(setq f (rquotient f temp)
*denom (ptimeschk (cdr f) *denom)
f (car f)))) ))))
(defun pshift (f alg c)
(if (= c 0) f
(pgsubst (pplus (make-poly (car f)) (pctimes c (make-poly alg)))
(car f) f)))
(defmfun $splitfield (p var)
(let ((varlist)
(genvar)
(genpairs)
(*algvar)
($gcd '$algebraic))
(newsym var)
(setq *algvar (caar (new-alg)))
(setq p (psplit-field (cadr (ratf p))))
(cons
'(mlist)
(cons (pdis* (car p))
(mapcar 'rdis* (cdr p))))))
(defun psplit-field (p) ;modresult?
(let ((l (mapcar #'(lambda (q) (psplit-field1 (cdr q)))
(good-form (pfactor p)))) ;don't normalize lcfs?
($algebraic t))
(if (null (cdr l)) (car l)
(do ((l l (cdr l))
(prim) (zeroes) (temp))
((null l) (cons (or prim '|$splits in q|) zeroes))
(cond ((eq (caar l) 'linear)
(setq zeroes (cons (cdar l) zeroes)))
((null prim)
(setq prim (caar l)
zeroes (nconc (cdar l) zeroes)))
((setq temp
(primelmt (cons (car p) (cdr prim))
(cons (car p) (cdaar l))
*algvar)
zeroes
(nconc
(mapcar
#'(lambda (q)
(ratgsubst (cadddr temp) (caaar l) q))
(cdar l))
(mapcar
#'(lambda (q)
(ratgsubst (caddr temp) (car prim) q))
zeroes))
prim (car temp))))))))
(defun plsolve (p)
(ratreduce (ptterm (cdr p) 0)
(pminus (ptterm (cdr p) 1))))
(defun psplit-field1 (p)
;;returns minimal poly and list of roots
;;p must be square free
(*bind* ((minpoly (cons *algvar (cdr p)))
(zeroes) ($algebraic t)
($ratalgdenom t))
(if (equal (cadr p) 1) (return (cons 'linear (plsolve p))))
(do ((polys (list p) )
(nminpoly)
(*nosplitf nil nil)
(alpha (cons (make-poly (car minpoly)) 1)))
((null polys)
(cons minpoly zeroes))
(push alpha zeroes)
(putprop (car minpoly) (cdr minpoly) 'tellrat)
(rplaca polys
(car
(rquotient (pctimes (cdr alpha) (car polys))
(pdifference
(pctimes (cdr alpha) (pget (caar polys)))
(car alpha)))))
(setq polys
(mapcan
#'(lambda (q)
(cond ((equal (cadr q) 1) ;;linear factor
(push (plsolve q) zeroes)
nil) ;;flush linear factor
((list q))))
(mapcan #'(lambda (q)
(let ((*ans) (*num 1) (*denom 1))
(nreverse (pfactoralg1 q minpoly 0))))
polys)))
(when *nosplitf
(setq nminpoly (car *nosplitf)
*nosplitf (cdr *nosplitf))
(putprop *algvar (cdr nminpoly) 'tellrat)
(let ((beta
(plsolve (pgcd (cons (caar *nosplitf) (cdr minpoly))
(exchangevar (car *nosplitf) *algvar)))))
(setq alpha (ratplus (cons (make-poly *algvar) 1)
(rattimes (cons (- (cadr *nosplitf)) 1)
beta t)))
(setq zeroes
(mapcar
#'(lambda (q) (ratgsubst beta (car minpoly) q))
zeroes))
(setq polys
(mapcar
#'(lambda (q) (car (rgsubst beta (car minpoly) q)))
polys))
(setq minpoly
(cons *algvar (cdr nminpoly))))))))
(defun exchangevar (poly var)
(let ((newvar (gensym))
(ovar (car poly)))
(setf (symbol-value newvar) (1+ (eval ovar)))
(pvsubst ovar newvar
(pvsubst var ovar
(pvsubst newvar var poly)))))
(defun rgsubst (val var p) ;;generalized psubst substitutes any
(cond ((pcoefp p)
(cons p 1)) ;;expression for any var in p
((eq var (car p))
(cond ((pzerop val)
(cons (ptterm (cdr p) 0) 1))
((do ((ld (cadr p) (car a))
(a (cdddr p) (cddr a))
(ans (cons (caddr p) 1)
(ratplus
(rattimes ans
(ratexpt val
(- ld (car a)))
t)
(cons (cadr a) 1))))
((null a) (rattimes ans (ratexpt val ld) t))))))
((pointergp var (car p)) (cons p 1))
(t (let ((newsym (gensym)))
(setf (symbol-value newsym) (1+ (symbol-value (car p))))
(rgsubst val newsym (pvsubst newsym var p))))))
(defun ratgsubst (val var rat)
(ratquotient (rgsubst val var (car rat))
(rgsubst val var (cdr rat))))
(defun algnorm (f p)
(presult f p (car p)))
(defmfun $algnorm (r p var)
(let ((varlist (list var))
(genvar))
(setq r (ratf r)
p (cadr (ratf p)))
(rdis* (cons (algnorm (cadr r) p)
(algnorm (cddr r) p)))))
(defun sqfrnorm (f p fvar) ;;f must be sqfr, p is minpoly, fvar # pvar
(*bind* ((pvar (car p)))
(setq f (cdr (ordervar pvar (list f p))) ;;new main var will be car of p
p (cadr f) f (car f)) ;make mainvar of f = mainvar(p)
(do ((i 0 (1+ i))
(dif (pdifference (make-poly fvar) (make-poly (car p))))
(f f (pgsubst dif fvar f))
(res))
((and (eq (car f) (car p))
(setq res (primpart (algnorm f p)))
(psqfrp res fvar))
(list res
(*bind* (($algebraic t)) ;;;modified f
(putprop pvar (cdr p) 'tellrat)
(pvsubst pvar (car p) f))
(car p)
p
i)))))
(defun primelmt (a b gvar &aux ($algebraic nil))
;;a is a poly with coeff's in k(b)
;;gvar is new variable
(let ((norm (sqfrnorm (cons gvar (cdr a)) b gvar))
(alpha) (beta) ($ratalgdenom t))
(rplaca norm (primpart (car norm)))
(putprop gvar (cdar norm) 'tellrat)
(setq $algebraic t
beta (pgcd (cadddr norm)
(pvsubst (caddr norm)
(car b)
(cadr norm))))
(setq beta (plsolve beta)
alpha (ratplus (cons (make-poly gvar) 1)
(rattimes (cons (- (cadddr (cdr norm))) 1)
beta t)))
(list (car norm) ;;minimal poly
(pplus (make-poly a) ;;new prim elm in old guys
(list (car b) 1 (- (cadddr (cdr norm)))))
alpha beta))) ;;in terms of gamma
;; discriminant of a basis
(defmfun $bdiscr (&rest args)
(let ((varlist) (genvar))
(xcons (bdiscr (mapcar #'rform (butlast args))
(car (rform (car (last args)))))
(list 'mrat 'simp varlist genvar))))
(defun bdiscr (l minp)
(det (mapcar #'(lambda (q1)
(mapcar #'(lambda (q2) (algtrace (ptimes q1 q2) minp)) l))
l)))
|