This file is indexed.

/usr/share/maxima/5.41.0/src/nalgfa.lisp is in maxima-src 5.41.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
;;; -*-  Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     The data in this file contains enhancments.                    ;;;;;
;;;                                                                    ;;;;;
;;;  Copyright (c) 1984,1987 by William Schelter,University of Texas   ;;;;;
;;;     All rights reserved                                            ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;     (c) Copyright 1980 Massachusetts Institute of Technology         ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(in-package :maxima)

(macsyma-module nalgfa)

(declare-top (special vlist *nosplitf *algvar *denom *num *ans
		      algfac* $nalgfac alpha))

(load-macsyma-macros rzmac ratmac)

(defun new-alg ()
  (newsym (gentemp (symbol-name '$alg))))


(defun psqfrp (p var)
  (zerop (pdegree (pgcd p (pderivative p var)) var)))

(defun pgsubst (val var p) ;;generalized psubst substitutes any
  (cond ((pcoefp p) p) ;;expression for any var in p
	((eq var (car p))
	 (cond ((pzerop val)
		(ptterm (cdr p) 0))
	       ((do ((ld (cadr p) (car a))
		     (a (cdddr p) (cddr a))
		     (ans (caddr p)
			  (pplus
			   (ptimes ans (pexpt val (- ld (car a))))
			   (cadr a))))
		    ((null a) (ptimes ans (pexpt val ld)))))))
	((pointergp var (car p)) p)
	((do ((a (cdddr p) (cddr a))
	      (ans (ptimes (list (car p) (cadr p) 1)
			   (pgsubst val var (caddr p)))
		   (pplus ans
			  (ptimes (list (car p) (car a) 1)
				  (pgsubst val var (cadr a))))))
	     ((null a) ans)))))

(defun pvsubst (nvar ovar p)
  (cond ((or (pcoefp p) (pointergp ovar (car p))) p)
	((eq ovar (car p))
	 (cons nvar (cdr p)))
	(t (pgsubst (make-poly nvar) ovar p))))

(defun ordervar (var l)
  (let ((mvar (lmainvar l)))
    (cond ((null mvar) l)
	  ((null (pointergp mvar var)) (cons var l))
	  ((let ((newvar (gensym)))
	     (setq genvar (append genvar (list newvar)))
	     (setf (symbol-plist newvar) (symbol-plist var))
	     (setf (symbol-value newvar) (1+ (symbol-value mvar)))
	     (cons newvar (mapcar #'(lambda (p) (pvsubst newvar var p)) l)))))))

(defun lmainvar (l) ;;main var of list of poly's
  (do ((l l (cdr l))
       (v))
      ((null l) v)
    (cond ((pcoefp (car l)))
	  ((null v) (setq v (caar l)))
	  ((pointergp (caar l) v)
	   (setq v (caar l))))))

(defun presult (p1 p2 var) ;;change call in algsys?
  (let ((genvar genvar))
    (setq var (ordervar var (list p1 p2))
	  p1 (cadr var)
	  p2 (caddr var)
	  var (car var))
    (cond ((zerop (pdegree p1 var))
	   (cond ((zerop (pdegree p2 var)) 1)
		 ((pexpt p1 (cadr p2)))))
	  ((zerop (pdegree p2 var))
	   (pexpt p2 (cadr p1)))
	  ((resultant p1 p2)))))

(defun pcoefvec (p)
  (cond ((pcoefp p) (list p))
	((do ((l)
	      (i (cadr p) (1- i))
	      (p (cdr p)))
	     ((signp l i) (nreverse l))
	   (push (cond ((and p (= (car p) i))
			(prog1 (cadr p) (setq p (cddr p))))
		       ( 0 ))
		 l)))))

(defun algtrace1 (bvec tvec)
  (do ((i (- (length tvec) (length bvec)) (1- i)))
      ((zerop i) (algtrace* bvec tvec))
    (setq bvec (cons 0 bvec))))

(defun algtrace* (bvec tvec)
  (do ((b bvec (cdr b))
       (tr (car (last bvec))
	   (pplus tr (car (last b)))))
      ((null (cdr b)) tr)
    (or (pzerop (car b))
	(do ((l (cdr b) (cdr l))
	     (tv tvec (cdr tv)))
	    ((null l))
	  (rplaca l (pdifference (car l) (ptimes (car b) (car tv))))))))

(defun algtrace (r p)
  (cond ((eq (caar r) (car p))
	 (ratreduce (algtrace1 (pcoefvec (car r))
			       (cdr (pcoefvec p)))
		    (cdr r)))
	((ratreduce (pctimes (cadr p) (car r))
		    (cdr r)))))

(defmfun $algtrace (r p var)
  (let ((varlist (list var))
	(genvar nil))
    (rdis* (algtrace (rform r) (car (rform p))))))

(defun good-form (l) ;;bad -> good
  (do ((l l (cddr l))
       (ans))
      ((null l) (nreverse ans))
    (push (cons (cadr l) (car l)) ans)))

(defun bad-form (l) ;;good -> bad
  (mapcar #'(lambda (q) (list (cdr q) (car q))) l))

(defmfun $algfac (a1 &optional (a2 nil a2?) (a3 nil a3?))
  (if a3?
      ($pfactoralg a1 a2 a3)
      (let ((varlist))
	(cond (a2?
	       (newvar a2)
	       (if (alike1 a2 (car varlist))
		   ($pfactoralg a1 nil a2)
		   ($pfactoralg a1 a2 (car (last varlist)))))
	      (t
	       (newvar a1)
		 (setq varlist (mapcan #'(lambda (q) (if (algpget q) (list q) nil)) varlist))
		 (cond ((= (length varlist) 1)
			($pfactoralg a1 nil (car varlist)))
		       ((> (length varlist) 1)
                        ;; MEANING OF NEXT MESSAGE IS UNCLEAR
			(merror (intl:gettext "algfac: too many algebraics.")))
		       (t
                        ;; MEANING OF NEXT MESSAGE IS UNCLEAR
			(merror (intl:gettext "algfac: no algebraics.")))))))))

(defmfun $pfactoralg (f p alg)
  (let ((varlist (list alg))
	(genvar) (vlist) (tellratlist) ($ratfac)
	($gcd '$algebraic)
	($algebraic) ($ratalgdenom t)
	(*denom 1) (*num 1) (*ans))
    (cond ((and (null p) (radfunp alg t)) (newvar (cadr alg)))
	  (t (newvar p)))
    (newvar1 f)
    (cond ((null vlist) (merror (intl:gettext "pfactoralg: attempt to factor a constant."))))
    (setq varlist (nconc varlist (sortgreat vlist)))
    (cond (p (setq p (cadr (ratrep* p)))
	     (push (cons alg (mapcar #'pdis (cdr p)))
		   tellratlist))
	  (t (setq p (algpget alg))
	     (setq p (pdifference
		      (pexpt (cadr (ratrep* alg)) (car p))
		      (cadr p)))))
    (setq $algebraic t)
    (setq f (cadr (ratrep* f)))
    (setq f (pfactoralg1 f p 0))
    (cons '(mtimes)
	  (cons (rdis (ratreduce *num *denom))
		(mapcar 'pdis f)))))

(declare-top (special adn*)) ;also redefine fact5 to call nalgfac correctly

(defun nalgfac (p mp)
  (let ((*num 1) (*denom 1) (*ans) (algfac*) ($nalgfac)
	($algebraic t) ($gcd '$algebraic))
    (setq p (pfactoralg1 p mp 0))
    (setq adn* (* adn* *denom))
    (cond ((equal *num 1) p)
	  (t (cons *num p)))))

(setq *nosplitf t)

(defun pfactoralg1 (f p ind)
  (cond ((pcoefp f) (setq *num (ptimeschk f *num)) *ans)
	((= (cadr f) 1) (setq f (pshift f (car p) ind))
	 (push (algnormal f) *ans)
	 (setq f (rquotient f (car *ans))
	       *denom (ptimeschk (cdr f) *denom)
	       *num (ptimeschk (car f) *num))
	 *ans)
	((equal (cdr f) (cdr p))
	 (push (pdifference (make-poly (car f)) (make-poly (car p))) *ans)
	 (setq f (rquotient f (car *ans))
	       *denom (ptimeschk (cdr f) *denom))
	 (pfactoralg1 (car f) p ind))
	((zerop (pdegree f (car p)))
	 (mapc #'(lambda (q) 
		   (if (pcoefp q) nil
		     (pfactoralg1 (pshift q (car p) -1) p (1+ ind))))
	       (let (($algebraic nil)
		     ($gcd (car *gcdl*)))
		 (pfactor1 f)))
	 *ans)
	(t (do ((l (let (($algebraic nil)
			 ($gcd (car *gcdl*)))
		     (pfactor (algnorm f p)))
		   (cddr l))
		(polys)
		(temp)
		(alg (car p)))
	       ((null l)
		(setq *num (ptimeschk f *num))
		(mapc #'(lambda (q) (pfactoralg1
				     (pshift q alg -1) p (1+ ind)))
		      polys)
		*ans)
	       (cond ((pcoefp (car l)) nil)
		     (t (setq temp (cond ((null (cddr l)) f)
					 (t (pgcd f (car l)))))
			(cond ((pcoefp temp) nil)
			      ((= (cadr temp) 1)
			       (setq temp (algnormal temp))
			       (push (pshift temp alg ind) *ans))
			      ((= (cadr l) 1)
			       (setq temp (algnormal temp))
			       (push (pshift temp alg ind) *ans)
			       (or *nosplitf
				   (setq *nosplitf
					 (list (car l) temp ind))))
			      (t (push temp polys)))
			(setq f (rquotient f temp)
			      *denom (ptimeschk (cdr f) *denom)
			      f (car f)))) ))))

(defun pshift (f alg c)
  (if (= c 0) f
      (pgsubst (pplus (make-poly (car f)) (pctimes c (make-poly alg)))
	       (car f) f)))



(defmfun $splitfield (p var)
  (let ((varlist)
	(genvar)
	(genpairs)
	(*algvar)
	($gcd '$algebraic))
    (newsym var)
    (setq *algvar (caar (new-alg)))
    (setq p (psplit-field (cadr (ratf p))))
    (cons
     '(mlist)
     (cons (pdis* (car p))
	   (mapcar 'rdis* (cdr p))))))

(defun psplit-field (p)			;modresult?
  (let ((l (mapcar #'(lambda (q) (psplit-field1 (cdr q)))
		   (good-form (pfactor p)))) ;don't normalize lcfs?
	($algebraic t))
    (if (null (cdr l)) (car l)
	(do ((l l (cdr l))
	     (prim) (zeroes) (temp))
	    ((null l) (cons (or prim '|$splits in q|) zeroes))
	  (cond ((eq (caar l) 'linear)
		 (setq zeroes (cons (cdar l) zeroes)))
		((null prim)
		 (setq prim (caar l)
		       zeroes (nconc (cdar l) zeroes)))
		((setq temp
		       (primelmt (cons (car p) (cdr prim))
				 (cons (car p) (cdaar l))
				 *algvar)
		       zeroes
		       (nconc
			(mapcar
			 #'(lambda (q)
			     (ratgsubst (cadddr temp) (caaar l) q))
			 (cdar l))
			(mapcar
			 #'(lambda (q)
			     (ratgsubst (caddr temp) (car prim) q))
			 zeroes))
		       prim (car temp))))))))

(defun plsolve (p)
  (ratreduce (ptterm (cdr p) 0)
	     (pminus (ptterm (cdr p) 1))))


(defun psplit-field1 (p)
  ;;returns minimal poly and list of roots
  ;;p must be square free
  (*bind* ((minpoly (cons *algvar (cdr p)))
	   (zeroes) ($algebraic t)
	   ($ratalgdenom t))
	  (if (equal (cadr p) 1) (return (cons 'linear (plsolve p))))
	  (do ((polys (list p) )
	       (nminpoly)
	       (*nosplitf nil nil)
	       (alpha (cons (make-poly (car minpoly)) 1)))
	      ((null polys)
	       (cons minpoly zeroes))
	    (push alpha zeroes)
	    (putprop (car minpoly) (cdr minpoly) 'tellrat)
	    (rplaca polys
		    (car
		     (rquotient (pctimes (cdr alpha) (car polys))
				(pdifference
				 (pctimes (cdr alpha) (pget (caar polys)))
				 (car alpha)))))
	    (setq polys
		  (mapcan
		   #'(lambda (q)
		       (cond ((equal (cadr q) 1) ;;linear factor
			      (push (plsolve q) zeroes)
			      nil) ;;flush linear factor
			     ((list q))))
		   (mapcan #'(lambda (q)
			       (let ((*ans) (*num 1) (*denom 1))
				 (nreverse (pfactoralg1 q minpoly 0))))
			   polys)))
	    (when *nosplitf
	      (setq nminpoly (car *nosplitf)
		    *nosplitf (cdr *nosplitf))
	      (putprop *algvar (cdr nminpoly) 'tellrat)
	      (let ((beta
		     (plsolve (pgcd (cons (caar *nosplitf) (cdr minpoly))
				    (exchangevar (car *nosplitf) *algvar)))))
		(setq alpha (ratplus (cons (make-poly *algvar) 1)
				     (rattimes (cons (- (cadr *nosplitf)) 1)
					       beta t)))
		(setq zeroes
		      (mapcar
		       #'(lambda (q) (ratgsubst beta (car minpoly) q))
		       zeroes))
		(setq polys
		      (mapcar
		       #'(lambda (q) (car (rgsubst beta (car minpoly) q)))
		       polys))
		(setq minpoly
		      (cons *algvar (cdr nminpoly))))))))

(defun exchangevar (poly var)
  (let ((newvar (gensym))
	(ovar (car poly)))
    (setf (symbol-value newvar) (1+ (eval ovar)))
    (pvsubst ovar newvar
	     (pvsubst var ovar
		      (pvsubst newvar var poly)))))

(defun rgsubst (val var p) ;;generalized psubst substitutes any
  (cond ((pcoefp p)
	 (cons p 1)) ;;expression for any var in p
	((eq var (car p))
	 (cond ((pzerop val)
		(cons (ptterm (cdr p) 0) 1))
	       ((do ((ld (cadr p) (car a))
		     (a (cdddr p) (cddr a))
		     (ans (cons (caddr p) 1)
			  (ratplus
			   (rattimes ans
				     (ratexpt val
					      (- ld (car a)))
				     t)
			   (cons (cadr a) 1))))
		    ((null a) (rattimes ans (ratexpt val ld) t))))))
	((pointergp var (car p)) (cons p 1))
	(t (let ((newsym (gensym)))
	     (setf (symbol-value newsym) (1+ (symbol-value (car p))))
	     (rgsubst val newsym (pvsubst newsym var p))))))

(defun ratgsubst (val var rat)
  (ratquotient (rgsubst val var (car rat))
	       (rgsubst val var (cdr rat))))

(defun algnorm (f p)
  (presult f p (car p)))

(defmfun $algnorm (r p var)
  (let ((varlist (list var))
	(genvar))
    (setq r (ratf r)
	  p (cadr (ratf p)))
    (rdis* (cons (algnorm (cadr r) p)
		 (algnorm (cddr r) p)))))

(defun sqfrnorm (f p fvar) ;;f must be sqfr, p is minpoly, fvar # pvar
  (*bind* ((pvar (car p)))
	  (setq f (cdr (ordervar pvar (list f p))) ;;new main var will be car of p
		p (cadr f) f (car f))  ;make mainvar of f = mainvar(p)
	  (do ((i 0 (1+ i))
	       (dif (pdifference (make-poly fvar) (make-poly (car p))))
	       (f f (pgsubst dif fvar f))
	       (res))
	      ((and (eq (car f) (car p))
		    (setq res (primpart (algnorm f p)))
		    (psqfrp res fvar))
	       (list res
		     (*bind* (($algebraic t))		;;;modified f
			     (putprop pvar (cdr p) 'tellrat)
			     (pvsubst pvar (car p) f))
		     (car p)
		     p
		     i)))))

(defun primelmt (a b gvar &aux ($algebraic nil))
  ;;a is a poly with coeff's in k(b)
  ;;gvar is new variable
  (let ((norm (sqfrnorm (cons gvar (cdr a)) b gvar))
	(alpha) (beta) ($ratalgdenom t))
    (rplaca norm (primpart (car norm)))
    (putprop gvar (cdar norm) 'tellrat)
    (setq $algebraic t
	  beta (pgcd (cadddr norm)
		     (pvsubst (caddr norm)
			      (car b)
			      (cadr norm))))
    (setq beta (plsolve beta)
	  alpha (ratplus (cons (make-poly gvar) 1)
			 (rattimes (cons (- (cadddr (cdr norm))) 1)
				   beta t)))
    (list (car norm) ;;minimal poly
	  (pplus (make-poly a) ;;new prim elm in old guys
		 (list (car b) 1 (- (cadddr (cdr norm)))))
	  alpha beta)))	;;in terms of gamma

;; discriminant of a basis

(defmfun $bdiscr (&rest args)
  (let ((varlist) (genvar))
    (xcons (bdiscr (mapcar #'rform (butlast args))
		   (car (rform (car (last args)))))
	   (list 'mrat 'simp varlist genvar))))

(defun bdiscr (l minp)
  (det (mapcar #'(lambda (q1)
		   (mapcar #'(lambda (q2) (algtrace (ptimes q1 q2) minp)) l))
	       l)))