/usr/share/maxima/5.41.0/src/mhayat.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1980 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module mhayat macro)
;;; **************************************************************
;;; ***** HAYAT ******* Finite Power Series Routines *************
;;; **************************************************************
;;; ** (c) Copyright 1980 Massachusetts Institute of Technology **
;;; ****** This is a read-only file! (All writes reserved) *******
;;; **************************************************************
;;; Note: be sure to recompile this file if any modifications are made!
;;; TOP LEVEL STRUCTURE
;;; Power series have the following format when seen outside the power
;;; series package:
;;;
;;; ((MRAT SIMP <varlist> <genvar> <tlist> trunc) <poly-form>)
;;;
;;; This is the form of the output of the expressions, to
;;; be displayed they are RATDISREPed and passed to DISPLA.
;;; The <poly-forms> consist of a header and list of exponent-coefficient
;;; pairs as shown below. The PS is used to distinguish power series
;;; from their coefficients which have a similar representation.
;;;
;;; (PS (<var> . <ord-num>) (<trunc-lvl>)
;;; (<exponent> . <coeff>) (<exponent> . <coeff>) . . .)
;;;
;;; The <var> component of the power series is a gensym which represents the
;;; kernel of the power series. If the package is called with the arguments:
;;; Taylor(<expr>, x, a, n) then the kernel will be (x - a).
;;; The <ord-num> is a relative ordering for the various kernels in a
;;; multivariate expansion.
;;; <trunc-lvl> is the highest degree of the variable <var> which is retained
;;; in the current power series.
;;; The terms in the list of exponent-coefficient pairs are ordered by
;;; increasing degree.
(declare-top (special tlist ivars key-vars last-exp))
;; subtitle hayat macros
(defmacro pszero (var pw)
(declare (ignore var pw))
''(0 . 1)) ; until constants are fixed
(defmacro psp (e) `(eq (car ,e) 'ps))
(defmacro pscoefp (e) `(null (psp ,e)))
(defmacro psquo (ps1 &optional ps2)
(cond ((not ps2) `(psexpt ,ps1 (rcmone)))
(t `(pstimes ,ps1 (psexpt ,ps2 (rcmone))))))
(defmacro pslog-gvar (gvar)
`(pslog2 (get-inverse ,gvar)))
(defmacro gvar-o (e) `(cadr ,e))
(defmacro gvar (e) `(car (gvar-o ,e)))
(defmacro eqgvar (x y) `(eq (car ,x) (car ,y)))
(defmacro pointerp (x y) `(> (cdr ,x) (cdr ,y)))
(defmacro poly-data (p) `(caddr ,p))
(defmacro trunc-lvl (p) `(car (poly-data ,p)))
(defmacro terms (p) `(cdddr ,p))
(defmacro lt (terms) `(car ,terms))
(defmacro le (terms) `(caar ,terms))
(defmacro lc (terms) `(cdar ,terms))
(defmacro e (term) `(car ,term))
(defmacro c (term) `(cdr ,term))
(defmacro n-term (terms) `(cdr ,terms))
(defmacro mono-term? (terms) `(null (n-term ,terms)))
(defmacro nconc-terms (oldterms newterms) `(nconc ,oldterms ,newterms))
(defmacro term (e c) `(cons ,e ,c))
(defmacro make-ps (var-or-data-poly pdata-or-terms
&optional (terms () var-pdata-case?))
(if var-pdata-case?
`(cons 'ps (cons ,var-or-data-poly (cons ,pdata-or-terms ,terms)))
`(cons 'ps (cons (gvar-o ,var-or-data-poly)
(cons (poly-data ,var-or-data-poly)
,pdata-or-terms)))))
;; Be sure that PS has more than one term when deleting the first with del-lt
(defmacro del-lt (ps) `(rplacd (cddr ,ps) (cddddr ,ps)))
(defmacro add-term (terms &optional (term-or-e nil adding?) (c nil e-c?))
(cond ((null adding?) `(rplacd ,terms nil))
((null e-c?)
`(rplacd ,terms (cons ,term-or-e (cdr ,terms))))
(`(rplacd ,terms (cons (cons ,term-or-e ,c) (cdr ,terms))))))
(defmacro add-term-&-pop (terms &rest args)
`(progn (add-term ,terms . ,args) (setq ,terms (n-term ,terms))))
;; Keep both def'ns around until a new hayat is stable.
(defmacro change-coef (terms coef) `(rplacd (lt ,terms) ,coef))
(defmacro change-lc (terms coef) `(rplacd (lt ,terms) ,coef))
(defmacro getdisrep (var) `(get (car ,var) 'disrep))
(defmacro getdiff (var) `(get (car ,var) 'diff))
(defmacro lt-poly (p)
`(make-ps (gvar-o ,p) (poly-data ,p)
(list (lt (terms ,p)))))
(defmacro oper-name (func) `(if (atom ,func) ,func (caar ,func)))
(defmacro oper-namep (oper-form) `(atom ,oper-form))
(defmacro integer-subscriptp (subscr-fun)
`(apply 'and (mapcar #'integerp (cdr ,subscr-fun))))
(defmacro mlet (varl vals comp)
`(mbinding (,varl ,vals) ,comp))
;;; these macros access "tlist" to get various global information
;;; "tlist" is structured as a list of datums, each datum having
;;; following form:
;;;
;;; (<var> <trunc-lvl stack> <pt of expansion>
;;; <list of switches> <internal var = gvar> . <ord-num>)
;;;
;;; possible switches are:
;;; $asymp = t asymptotic expansion
;;; multi variable in a multivariate expansion
;;; multivar the actual variable of expansion in a multi-
;;; variate expansion
;;;
;;; macros for external people to access the tlist
;;; ((MRAT SIMP <varlist> <genvar> <tlist> trunc) <poly-form>)
(defmacro mrat-header (mrat) `(car ,mrat))
(defmacro mrat-varlist (mrat) `(third (mrat-header ,mrat)))
(defmacro mrat-genvar (mrat) `(fourth (mrat-header ,mrat)))
(defmacro mrat-tlist (mrat) `(fifth (mrat-header ,mrat)))
(defmacro mrat-ps (mrat) `(cdr ,mrat))
;;; The following two macros are now functions.
;; (defmacro push-pw (datum pw)
;; `(rplaca (cdr ,datum) (cons ,pw (cadr ,datum))))
;; (defmacro pop-pw (datum)
;; `(rplaca (cdr ,datum) (cdadr ,datum)))
(defmacro datum-var (datum) `(car ,datum))
(defmacro trunc-stack (datum) `(cadr ,datum))
(defmacro current-trunc (datum) `(car (trunc-stack ,datum)))
(defmacro orig-trunc (datum) `(car (last (trunc-stack ,datum))))
(defmacro exp-pt (datum) `(caddr ,datum))
(defmacro switches (datum) `(cadddr ,datum))
(defmacro switch (sw datum)
`(cdr (assoc ,sw (switches ,datum) :test #'eq)))
(defmacro int-var (datum) `(cddddr ,datum))
(defmacro data-gvar-o (data) `(cddddr ,data))
(defmacro int-gvar (datum) `(car (int-var ,datum)))
(defmacro data-gvar (data) `(car (data-gvar-o ,data)))
(defmacro get-inverse (gensym)
`(cdr (assoc ,gensym ivars :test #'eq)))
(defmacro get-key-var (gensym)
`(cdr (assoc ,gensym key-vars :test #'eq)))
(defmacro gvar->var (gvar)
`(cdr (assoc ,gvar key-vars :test #'eq)))
(defmacro dummy-var () '(cdar key-vars))
(defmacro first-datum () '(car tlist))
(defmacro get-datum (expr &optional not-canonicalized?)
(if not-canonicalized?
`(assol ,expr tlist)
`(assoc ,expr tlist :test #'equal)))
(defmacro var-data (var)
`(assoc ,var tlist :test #'equal))
(defmacro gvar-data (gvar) `(var-data (gvar->var ,gvar)))
(defmacro ps-data (ps) `(gvar-data (gvar ,ps)))
(defmacro t-o-var (gensym) `(current-trunc (get-datum (get-key-var ,gensym))))
(defmacro gvar-trunc (gvar) `(current-trunc (gvar-data ,gvar)))
(defmacro ps-arg-trunc (ps) `(gvar-trunc (gvar ,ps)))
(defmacro ps-le (ps) `(le (terms ,ps)))
(defmacro ps-le* (ps) `(if (psp ,ps) (ps-le ,ps) '(0 . 1)))
(defmacro ps-lc (ps) `(lc (terms ,ps)))
(defmacro ps-lc* (ps) `(if (psp ,ps) (ps-lc ,ps) ,ps))
(defmacro ps-lt (ps) `(lt (terms ,ps)))
(defmacro getexp-le (fun) `(car (getexp-lt ,fun)))
(defmacro getexp-lc (fun) `(cdr (getexp-lt ,fun)))
(defmacro let-pw (datum pw comp)
`(let ((d ,datum))
(prog2 (push-pw d ,pw)
,comp
(pop-pw d))))
(defmacro tlist-mapc (datum-var &rest comp)
`(mapc #'(lambda (,datum-var) . ,comp) tlist))
(defmacro find-lexp (exp &optional e-start errflag accum-vars)
`(get-lexp ,exp ,e-start ,errflag ,(and accum-vars '(ncons t))))
(defmacro tay-err (msg) `(throw 'tay-err (list ,msg last-exp)))
(defmacro zero-warn (exp)
`(mtell (intl:gettext "taylor: assumed to be zero: ~M~%")
`((mlabel) () ,,exp)))
(defmacro merrcatch (form) `(catch 'errorsw ,form))
;;There is a duplicate version of this in MAXMAC
;;(defmacro infinities () ''($inf $minf $infinity))
;; Macros for manipulating expansion data in the expansion table.
(defmacro exp-datum-lt (fun exp-datum)
`(if (atom (cadr ,exp-datum))
(funcall (cadr ,exp-datum) (cdr ,fun))
(copy-tree (cadr ,exp-datum))))
(defmacro exp-datum-le (fun exp-datum) `(e (exp-datum-lt ,fun ,exp-datum)))
(defmacro exp-fun (exp-datum)
`(if (atom (car ,exp-datum)) (car ,exp-datum) (caar ,exp-datum)))
;;; These macros are used to access the various extendable
;;; portions of a polynomial.
(defmacro ext-fun (p) `(cadr (poly-data ,p)))
(defmacro ext-args (p) `(caddr (poly-data ,p)))
(defmacro extendablep (p)
`((lambda (d)
(or (null (car d))
(cdr d)))
(poly-data ,p)))
(defmacro exactp (p) `(null (trunc-lvl ,p)))
(defmacro nexactp (p) `(trunc-lvl ,p))
;;; These macros are used to access user supplied information.
(defmacro get-ps-form (fun) `(get ,fun 'sp2))
(defmacro term-disrep (term p) `(m* (srdis (c ,term))
(m^ (get-inverse (gvar ,p))
(edisrep (e ,term)))))
;; coefficient arithmetic
(defmacro rczero () ''(0 . 1))
(defmacro rcone () ''(1 . 1))
(defmacro rcfone () ''(1.0 . 1.0))
(defmacro rctwo () ''(2 . 1))
(defmacro rcmone () ''(-1 . 1))
(defmacro rczerop (r)
`(signp e (car ,r)))
(defmacro rcintegerp (c) `(and (integerp (car ,c)) (equal (cdr ,c) 1)))
(defmacro rcpintegerp (c)
`(and (rcintegerp ,c)
;(signp g (car ,c))
;What is this obsession with signp? Even in maclisp it's slower
; and more code, since it doesn't assume the thing is a number.
;The car is integerp, after all (as implied by rcintegerp).
(plusp (car ,c))))
(defmacro rcmintegerp (c)
`(and (rcintegerp ,c)
;(signp l (car ,c))
;Similar to above.
(minusp (car ,c))))
(defmacro rcplus (x y) `(ratplus ,x ,y))
(defmacro rcdiff (x y) `(ratdif ,x ,y))
(defmacro rcminus (x) `(ratminus ,x))
(defmacro rctimes (x y) `(rattimes ,x ,y t))
(defmacro rcquo (x y) `(ratquotient ,x ,y))
(defmacro rcdisrep (x) `(cdisrep ,x))
(defmacro rcderiv (x v) `(ratderivative ,x ,v))
(defmacro rcderivx (x) `(ratdx1 (car ,x) (cdr ,x)))
;; exponent arithmetic
;; These macros are also used in BMT;PADE and RAT;NALGFA.
(defmacro infp (x) `(null ,x))
(defmacro inf nil nil)
(defmacro e- (e1 &optional (e2 nil 2e?))
(cond (2e? `(ediff ,e1 ,e2))
(`(cons (f- (car ,e1)) (cdr ,e1)))))
(defmacro e// (e1 &optional (e2 nil 2e?))
(cond (2e? `(equo ,e1 ,e2))
(`(erecip ,e1))))
(defmacro e>= (e1 e2) `(or (e> ,e1 ,e2) (e= ,e1 ,e2)))
(defmacro ezero () ''(0 . 1))
(defmacro eone () ''(1 . 1))
(defmacro rcinv (r) `(ratinvert ,r))
|