/usr/share/maxima/5.41.0/src/asum.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1982 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module asum)
(load-macsyma-macros rzmac)
(declare-top (special opers *a *n $factlim sum msump *i *opers-list opers-list $ratsimpexpons makef $factorial_expand))
(loop for (x y) on '(%cot %tan %csc %sin %sec %cos %coth %tanh %csch %sinh %sech %cosh)
by #'cddr do (putprop x y 'recip) (putprop y x 'recip))
(defmvar $zeta%pi t)
;; polynomial predicates and other such things
(defun poly? (exp var)
(cond ((or (atom exp) (free exp var)))
((member (caar exp) '(mtimes mplus) :test #'eq)
(do ((exp (cdr exp) (cdr exp)))
((null exp) t)
(and (null (poly? (car exp) var)) (return nil))))
((and (eq (caar exp) 'mexpt)
(integerp (caddr exp))
(> (caddr exp) 0))
(poly? (cadr exp) var))))
(defun smono (x var)
(smonogen x var t))
(defun smonop (x var)
(smonogen x var nil))
(defun smonogen (x var fl) ; fl indicates whether to return *a *n
(cond ((free x var) (and fl (setq *n 0 *a x)) t)
((atom x) (and fl (setq *n (setq *a 1))) t)
((and (listp (car x))
(eq (caar x) 'mtimes))
(do ((x (cdr x) (cdr x))
(a '(1)) (n '(0)))
((null x)
(and fl (setq *n (addn n nil) *a (muln a nil))) t)
(let (*a *n)
(if (smonogen (car x) var fl)
(and fl (setq a (cons *a a) n (cons *n n)))
(return nil)))))
((and (listp (car x))
(eq (caar x) 'mexpt))
(cond ((and (free (caddr x) var) (eq (cadr x) var))
(and fl (setq *n (caddr x) *a 1)) t)))))
;; factorial stuff
(defmvar $factlim 100000) ; set to a big integer which will work (not -1)
(defvar makef nil)
(defmfun $genfact (&rest l)
(cons '(%genfact) l))
(defun gfact (n %m i)
(cond ((minusp %m) (improper-arg-err %m '$genfact))
((= %m 0) 1)
(t (prog (ans)
(setq ans n)
a (if (= %m 1) (return ans))
(setq n (m- n i) %m (1- %m) ans (m* ans n))
(go a)))))
;; From Richard Fateman's paper, "Comments on Factorial Programs",
;; http://www.cs.berkeley.edu/~fateman/papers/factorial.pdf
;;
;; k(n,m) = n*(n-m)*(n-2*m)*...
;;
;; (k n 1) is n!
;;
;; This is much faster (3-4 times) than the original factorial
;; function.
(defun k (n m)
(if (<= n m)
n
(* (k n (* 2 m))
(k (- n m) (* 2 m)))))
(defun factorial (n)
(if (zerop n)
1
(k n 1)))
;;; Factorial has mirror symmetry
(defprop mfactorial t commutes-with-conjugate)
(defmfun simpfact (x y z)
(oneargcheck x)
(setq y (simpcheck (cadr x) z))
(cond ((and (mnump y)
(eq ($sign y) '$neg)
(zerop1 (sub (simplify (list '(%truncate) y)) y)))
;; Negative integer or a real representation of a negative integer.
(merror (intl:gettext "factorial: factorial of negative integer ~:M not defined.") y))
((or (floatp y)
($bfloatp y)
(and (not (integerp y))
(not (ratnump y))
(or (and (complex-number-p y 'float-or-rational-p)
(or $numer
(floatp ($realpart y))
(floatp ($imagpart y))))
(and (complex-number-p y 'bigfloat-or-number-p)
(or $numer
($bfloatp ($realpart y))
($bfloatp ($imagpart y))))))
(and (not makef) (ratnump y) (equal (caddr y) 2)))
;; Numerically evaluate for real or complex argument in float or
;; bigfloat precision using the Gamma function
(simplify (list '(%gamma) (add 1 y))))
((eq y '$inf) '$inf)
((and $factorial_expand
(mplusp y)
(integerp (cadr y)))
;; factorial(n+m) and m integer. Expand.
(let ((m (cadr y))
(n (simplify (cons '(mplus) (cddr y)))))
(cond ((>= m 0)
(mul
(simplify (list '($pochhammer) (add n 1) m))
(simplify (list '(mfactorial) n))))
((< m 0)
(setq m (- m))
(div
(mul (power -1 m) (simplify (list '(mfactorial) n)))
;; We factor to get the ordering (n-1)*(n-2)*...
($factor
(simplify (list '($pochhammer) (mul -1 n) m))))))))
((or (not (fixnump y)) (not (> y -1)))
(eqtest (list '(mfactorial) y) x))
((or (minusp $factlim) (not (> y $factlim)))
(factorial y))
(t (eqtest (list '(mfactorial) y) x))))
(defun makegamma1 (e)
(cond ((atom e) e)
((eq (caar e) 'mfactorial)
(list '(%gamma) (list '(mplus) 1 (makegamma1 (cadr e)))))
;; Begin code copied from orthopoly/orthopoly-init.lisp
;; Do pochhammer(x,n) ==> gamma(x+n)/gamma(x).
((eq (caar e) '$pochhammer)
(let ((x (makegamma1 (nth 1 e)))
(n (makegamma1 (nth 2 e))))
(div (take '(%gamma) (add x n)) (take '(%gamma) x))))
;; (gamma(x/z+1)*z^floor(y))/gamma(x/z-floor(y)+1)
((eq (caar e) '%genfact)
(let ((x (makegamma1 (nth 1 e)))
(y (makegamma1 (nth 2 e)))
(z (makegamma1 (nth 3 e))))
(setq y (take '($floor) y))
(div
(mul
(take '(%gamma) (add (div x z) 1))
(power z y))
(take '(%gamma) (sub (add (div x z) 1) y)))))
;; End code copied from orthopoly/orthopoly-init.lisp
;; Double factorial
((eq (caar e) '%double_factorial)
(let ((x (makegamma1 (nth 1 e))))
(mul
(power
(div 2 '$%pi)
(mul
(div 1 4)
(sub 1 (simplify (list '(%cos) (mul '$%pi x))))))
(power 2 (div x 2))
(simplify (list '(%gamma) (add 1 (div x 2)))))))
((eq (caar e) '%elliptic_kc)
;; Complete elliptic integral of the first kind
(cond ((alike1 (cadr e) '((rat simp) 1 2))
;; K(1/2) = gamma(1/4)/4/sqrt(pi)
'((mtimes simp) ((rat simp) 1 4)
((mexpt simp) $%pi ((rat simp) -1 2))
((mexpt simp) ((%gamma simp) ((rat simp) 1 4)) 2)))
((or (alike1 (cadr e)
'((mtimes simp) ((rat simp) 1 4)
((mplus simp) 2
((mexpt simp) 3 ((rat simp) 1 2)))))
(alike1 (cadr e)
'((mplus simp) ((rat simp) 1 2)
((mtimes simp) ((rat simp) 1 4)
((mexpt simp) 3 ((rat simp) 1 2)))))
(alike1 (cadr e)
;; 1/(8-4*sqrt(3))
'((mexpt simp)
((mplus simp) 8
((mtimes simp) -4
((mexpt simp) 3 ((rat simp) 1 2))))
-1)))
;; K((2+sqrt(3)/4))
'((mtimes simp) ((rat simp) 1 4)
((mexpt simp) 3 ((rat simp) 1 4))
((mexpt simp) $%pi ((rat simp) -1 2))
((%gamma simp) ((rat simp) 1 6))
((%gamma simp) ((rat simp) 1 3))))
((or (alike1 (cadr e)
;; (2-sqrt(3))/4
'((mtimes simp) ((rat simp) 1 4)
((mplus simp) 2
((mtimes simp) -1
((mexpt simp) 3 ((rat simp) 1 2))))))
(alike1 (cadr e)
;; 1/2-sqrt(3)/4
'((mplus simp) ((rat simp) 1 2)
((mtimes simp) ((rat simp) -1 4)
((mexpt simp) 3 ((rat simp) 1 2)))))
(alike (cadr e)
;; 1/(4*sqrt(3)+8)
'((mexpt simp)
((mplus simp) 8
((mtimes simp) 4
((mexpt simp) 3 ((rat simp) 1 2))))
-1)))
;; K((2-sqrt(3))/4)
'((mtimes simp) ((rat simp) 1 4)
((mexpt simp) 3 ((rat simp) -1 4))
((mexpt simp) $%pi ((rat simp) -1 2))
((%gamma simp) ((rat simp) 1 6))
((%gamma simp) ((rat simp) 1 3))))
((or
;; (3-2*sqrt(2))/(3+2*sqrt(2))
(alike1 (cadr e)
'((mtimes simp)
((mplus simp) 3
((mtimes simp) -2
((mexpt simp) 2 ((rat simp) 1 2))))
((mexpt simp)
((mplus simp) 3
((mtimes simp) 2
((mexpt simp) 2 ((rat simp) 1 2)))) -1)))
;; 17 - 12*sqrt(2)
(alike1 (cadr e)
'((mplus simp) 17
((mtimes simp) -12
((mexpt simp) 2 ((rat simp) 1 2)))))
;; (2*SQRT(2) - 3)/(2*SQRT(2) + 3)
(alike1 (cadr e)
'((mtimes simp) -1
((mplus simp) -3
((mtimes simp) 2
((mexpt simp) 2 ((rat simp) 1 2))))
((mexpt simp)
((mplus simp) 3
((mtimes simp) 2
((mexpt simp) 2 ((rat simp) 1 2))))
-1))))
'((mtimes simp) ((rat simp) 1 8)
((mexpt simp) 2 ((rat simp) -1 2))
((mplus simp) 1 ((mexpt simp) 2 ((rat simp) 1 2)))
((mexpt simp) $%pi ((rat simp) -1 2))
((mexpt simp) ((%gamma simp) ((rat simp) 1 4)) 2)))
(t
;; Give up
e)))
((eq (caar e) '%elliptic_ec)
;; Complete elliptic integral of the second kind
(cond ((alike1 (cadr e) '((rat simp) 1 2))
;; 2*E(1/2) - K(1/2) = 2*%pi^(3/2)*gamma(1/4)^(-2)
'((mplus simp)
((mtimes simp) ((mexpt simp) $%pi ((rat simp) 3 2))
((mexpt simp)
((%gamma simp irreducible) ((rat simp) 1 4)) -2))
((mtimes simp) ((rat simp) 1 8)
((mexpt simp) $%pi ((rat simp) -1 2))
((mexpt simp) ((%gamma simp) ((rat simp) 1 4)) 2))))
((or (alike1 (cadr e)
'((mtimes simp) ((rat simp) 1 4)
((mplus simp) 2
((mtimes simp) -1
((mexpt simp) 3 ((rat simp) 1 2))))))
(alike1 (cadr e)
'((mplus simp) ((rat simp) 1 2)
((mtimes simp) ((rat simp) -1 4)
((mexpt simp) 3 ((rat simp) 1 2))))))
;; E((2-sqrt(3))/4)
;;
;; %pi/4/sqrt(3) = K*(E-(sqrt(3)+1)/2/sqrt(3)*K)
'((mplus simp)
((mtimes simp) ((mexpt simp) 3 ((rat simp) -1 4))
((mexpt simp) $%pi ((rat simp) 3 2))
((mexpt simp) ((%gamma simp) ((rat simp) 1 6)) -1)
((mexpt simp) ((%gamma simp) ((rat simp) 1 3)) -1))
((mtimes simp) ((rat simp) 1 8)
((mexpt simp) 3 ((rat simp) -3 4))
((mexpt simp) $%pi ((rat simp) -1 2))
((%gamma simp) ((rat simp) 1 6))
((%gamma simp) ((rat simp) 1 3)))
((mtimes simp) ((rat simp) 1 8)
((mexpt simp) 3 ((rat simp) -1 4))
((mexpt simp) $%pi ((rat simp) -1 2))
((%gamma simp) ((rat simp) 1 6))
((%gamma simp) ((rat simp) 1 3)))))
((or (alike1 (cadr e)
'((mtimes simp) ((rat simp) 1 4)
((mplus simp) 2
((mexpt simp) 3 ((rat simp) 1 2)))))
(alike1 (cadr e)
'((mplus simp) ((rat simp) 1 2)
((mtimes simp) ((rat simp) 1 4)
((mexpt simp) 3 ((rat simp) 1 2))))))
;; E((2+sqrt(3))/4)
;;
;; %pi*sqrt(3)/4 = K1*(E1-(sqrt(3)-1)/2/sqrt(3)*K1)
'((mplus simp)
((mtimes simp) 3 ((mexpt simp) 3 ((rat simp) -3 4))
((mexpt simp) $%pi ((rat simp) 3 2))
((mexpt simp) ((%gamma simp) ((rat simp) 1 6)) -1)
((mexpt simp) ((%gamma simp) ((rat simp) 1 3)) -1))
((mtimes simp) ((rat simp) 3 8)
((mexpt simp) 3 ((rat simp) -3 4))
((mexpt simp) $%pi ((rat simp) -1 2))
((%gamma simp) ((rat simp) 1 6))
((%gamma simp) ((rat simp) 1 3)))
((mtimes simp) ((rat simp) -1 8)
((mexpt simp) 3 ((rat simp) -1 4))
((mexpt simp) $%pi ((rat simp) -1 2))
((%gamma simp) ((rat simp) 1 6))
((%gamma simp) ((rat simp) 1 3)))))
(t
e)))
(t (recur-apply #'makegamma1 e))))
(defmfun simpgfact (x vestigial z)
(declare (ignore vestigial))
(if (not (= (length x) 4)) (wna-err '$genfact))
(setq z (mapcar #'(lambda (q) (simpcheck q z)) (cdr x)))
(let ((a (car z)) (b (take '($floor) (cadr z))) (c (caddr z)))
(cond ((and (fixnump a)
(fixnump b)
(fixnump c))
(if (and (> a -1)
(> b -1)
(or (<= c a) (= b 0))
(<= b (/ a c)))
(gfact a b c)
(merror (intl:gettext "genfact: generalized factorial not defined for given arguments."))))
(t (eqtest (list '(%genfact) a
(if (and (not (atom b))
(eq (caar b) '$floor))
(cadr b)
b)
c)
x)))))
;; sum begins
(defmvar $cauchysum nil
"When multiplying together sums with INF as their upper limit,
causes the Cauchy product to be used rather than the usual product.
In the Cauchy product the index of the inner summation is a function of
the index of the outer one rather than varying independently."
modified-commands '$sum)
(defmvar $gensumnum 0
"The numeric suffix used to generate the next variable of
summation. If it is set to FALSE then the index will consist only of
GENINDEX with no numeric suffix."
modified-commands '$sum
setting-predicate #'(lambda (x) (or (null x) (integerp x))))
(defmvar $genindex '$i
"The alphabetic prefix used to generate the next variable of
summation when necessary."
modified-commands '$sum
setting-predicate #'symbolp)
(defmvar $zerobern t)
(defmvar $simpsum nil)
(defmvar $simpproduct nil)
(defvar *infsumsimp t)
;; These variables should be initialized where they belong.
(defmvar $cflength 1)
(defmvar $taylordepth 3)
(defmvar $maxtaydiff 4)
(defmvar $verbose nil)
(defvar *trunclist nil)
(defvar ps-bmt-disrep t)
(defvar silent-taylor-flag nil)
(defmacro sum-arg (sum)
`(cadr ,sum))
(defmacro sum-index (sum)
`(caddr ,sum))
(defmacro sum-lower (sum)
`(cadddr ,sum))
(defmacro sum-upper (sum)
`(cadr (cdddr ,sum)))
(defmspec $sum (l)
(setq l (cdr l))
(if (= (length l) 4)
(dosum (car l) (cadr l) (meval (caddr l)) (meval (cadddr l)) t :evaluate-summand t)
(wna-err '$sum)))
(defmspec $lsum (l)
(setq l (cdr l))
(or (= (length l) 3) (wna-err '$lsum))
(let ((form (car l))
(ind (cadr l))
(lis (meval (caddr l)))
(ans 0))
(or (symbolp ind) (merror (intl:gettext "lsum: second argument must be a variable; found ~M") ind))
(cond (($listp lis)
(loop for v in (cdr lis)
with lind = (cons ind nil)
for w = (cons v nil)
do
(setq ans (add* ans (mbinding (lind w) (meval form)))))
ans)
(t `((%lsum) ,form ,ind ,lis)))))
(defmfun simpsum (x y z)
(let (($ratsimpexpons t))
(setq y (simplifya (sum-arg x) z)))
(simpsum1 y (sum-index x) (simplifya (sum-lower x) z)
(simplifya (sum-upper x) z)))
; This function was SIMPSUM1 until the sum/product code was revised Nov 2005.
; The revised code punts back to this function since this code knows
; some simplifications not handled by the revised code. -- Robert Dodier
(defun simpsum1-save (exp i lo hi)
(cond ((not (symbolp i)) (merror (intl:gettext "sum: index must be a symbol; found ~M") i))
((equal lo hi) (mbinding ((list i) (list hi)) (meval exp)))
((and (atom exp)
(not (eq exp i))
(getl '%sum '($outative $linear)))
(freesum exp lo hi 1))
((null $simpsum) (list (get '%sum 'msimpind) exp i lo hi))
((and (or (eq lo '$minf)
(alike1 lo '((mtimes simp) -1 $inf)))
(equal hi '$inf))
(let ((pos-part (simpsum2 exp i 0 '$inf))
(neg-part (simpsum2 (maxima-substitute (m- i) i exp) i 1 '$inf)))
(cond
((or (eq neg-part '$und)
(eq pos-part '$und))
'$und)
((eq pos-part '$inf)
(if (eq neg-part '$minf) '$und '$inf))
((eq pos-part '$minf)
(if (eq neg-part '$inf) '$und '$minf))
((or (eq neg-part '$inf) (eq neg-part '$minf))
neg-part)
(t (m+ neg-part pos-part)))))
((or (eq lo '$minf)
(alike1 lo '((mtimes simp) -1 '$inf)))
(simpsum2 (maxima-substitute (m- i) i exp) i (m- hi) '$inf))
(t (simpsum2 exp i lo hi))))
;; DOSUM, MEVALSUMARG, DO%SUM -- general principles
;; - evaluate the summand/productand
;; - substitute a gensym for the index variable and make assertions (via assume) about the gensym index
;; - return 0/1 for empty sum/product. sumhack/prodhack are ignored
;; - distribute sum/product over mbags when listarith = true
(defun dosum (expr ind low hi sump &key (evaluate-summand t))
(setq low (ratdisrep low) hi (ratdisrep hi)) ;; UGH, GAG WITH ME A SPOON
(if (not (symbolp ind))
(merror (intl:gettext "~:M: index must be a symbol; found ~M") (if sump '$sum '$product) ind))
(unwind-protect
(prog (u *i lind l*i *hl)
(setq lind (cons ind nil))
(cond
((not (fixnump (setq *hl (mfuncall '$floor (m- hi low)))))
(if evaluate-summand (setq expr (mevalsumarg expr ind low hi)))
(return (cons (if sump '(%sum) '(%product))
(list expr ind low hi))))
((signp l *hl)
(return (if sump 0 1))))
(setq *i low l*i (list *i) u (if sump 0 1))
lo (setq u
(if sump
(add u (resimplify (let* ((foo (mbinding (lind l*i) (meval expr)))
(bar (subst-if-not-freeof *i ind foo)))
bar)))
(mul u (resimplify (let* ((foo (mbinding (lind l*i) (meval expr)))
(bar (subst-if-not-freeof *i ind foo)))
bar)))))
(when (zerop *hl) (return u))
(setq *hl (1- *hl))
(setq *i (car (rplaca l*i (m+ *i 1))))
(go lo))))
(defun subst-if-not-freeof (x y expr)
(if ($freeof y expr)
expr
(if (atom expr)
x
(let* ((args (cdr expr))
(L (eval `(mapcar (lambda (a) (subst-if-not-freeof ',x ',y a)) ',args))))
(cons (car expr) L)))))
(defun mevalsumarg (expr ind low hi)
(if (let (($prederror nil))
(eq (mevalp `((mlessp) ,hi ,low)) t))
0)
(let ((gensym-ind (gensym)))
(if (apparently-integer low)
(meval `(($declare) ,gensym-ind $integer)))
(assume (list '(mgeqp) gensym-ind low))
(if (not (eq hi '$inf))
(assume (list '(mgeqp) hi gensym-ind)))
(let ((msump t) (foo) (summand))
(setq summand
(if (and (not (atom expr)) (get (caar expr) 'mevalsumarg-macro))
(funcall (get (caar expr) 'mevalsumarg-macro) expr)
expr))
(let (($simp nil))
(setq summand ($substitute gensym-ind ind summand)))
(setq foo (mbinding ((list gensym-ind) (list gensym-ind))
(resimplify (meval summand))))
;; At this point we do not switch off simplification to preserve
;; the achieved simplification of the summand (DK 02/2010).
(let (($simp t))
(setq foo ($substitute ind gensym-ind foo)))
(if (not (eq hi '$inf))
(forget (list '(mgeqp) hi gensym-ind)))
(forget (list '(mgeqp) gensym-ind low))
(if (apparently-integer low)
(meval `(($remove) ,gensym-ind $integer)))
foo)))
(defun apparently-integer (x)
(or ($integerp x) ($featurep x '$integer)))
(defun do%sum (l op)
(if (not (= (length l) 4)) (wna-err op))
(let ((ind (cadr l)))
(if (mquotep ind) (setq ind (cadr ind)))
(if (not (symbolp ind))
(merror (intl:gettext "~:M: index must be a symbol; found ~M") op ind))
(let ((low (caddr l))
(hi (cadddr l)))
(list (mevalsumarg (car l) ind low hi)
ind (meval (caddr l)) (meval (cadddr l))))))
(defun simpsum1 (e k lo hi)
(with-new-context (context)
(let ((acc 0) (n) (sgn) ($prederror nil) (i (gensym)) (ex))
(setq lo ($ratdisrep lo))
(setq hi ($ratdisrep hi))
(setq n ($limit (add 1 (sub hi lo))))
(setq sgn ($sign n))
(if (not (eq t (csign lo))) (mfuncall '$assume `((mgeqp) ,i ,lo)))
(if (not (eq t (csign hi))) (mfuncall '$assume `((mgeqp) ,hi ,i)))
(setq ex (subst i k e))
(setq ex (subst i k ex))
(setq acc
(cond ((and (eq n '$inf) ($freeof i ex))
(setq sgn (csign ex))
(cond ((eq sgn '$pos) '$inf)
((eq sgn '$neg) '$minf)
((eq sgn '$zero) 0)
(t `((%sum simp) ,ex ,i ,lo ,hi))))
((and (mbagp e) $listarith)
(simplifya
`((,(caar e)) ,@(mapcar #'(lambda (s) (mfuncall '$sum s k lo hi)) (margs e))) t))
((or (eq sgn '$neg) (eq sgn '$zero) (eq sgn '$nz)) 0)
((like ex 0) 0)
(($freeof i ex) (mult n ex))
((and (integerp n) (eq sgn '$pos) $simpsum)
(dotimes (j n acc)
(setq acc (add acc (resimplify (subst (add j lo) i ex))))))
(t
(setq ex (subst '%sum '$sum ex))
`((%sum simp) ,(subst k i ex) ,k ,lo ,hi))))
(setq acc (subst k i acc))
;; If expression is still a summation,
;; punt to previous simplification code.
(if (and $simpsum (op-equalp acc '$sum '%sum))
(let* ((args (cdr acc)) (e (first args)) (i (second args)) (i0 (third args)) (i1 (fourth args)))
(setq acc (simpsum1-save e i i0 i1))))
acc)))
(defun simpprod1 (e k lo hi)
(with-new-context (context)
(let ((acc 1) (n) (sgn) ($prederror nil) (i (gensym)) (ex) (ex-mag) (realp))
(setq lo ($ratdisrep lo))
(setq hi ($ratdisrep hi))
(setq n ($limit (add 1 (sub hi lo))))
(setq sgn ($sign n))
(if (not (eq t (csign lo))) (mfuncall '$assume `((mgeqp) ,i ,lo)))
(if (not (eq t (csign hi))) (mfuncall '$assume `((mgeqp) ,hi ,i)))
(setq ex (subst i k e))
(setq ex (subst i k ex))
(setq acc
(cond
((like ex 1) 1)
((and (eq n '$inf) ($freeof i ex))
(setq ex-mag (mfuncall '$cabs ex))
(setq realp (mfuncall '$imagpart ex))
(setq realp (mevalp `((mequal) 0 ,realp)))
(cond ((eq t (mevalp `((mlessp) ,ex-mag 1))) 0)
((and (eq realp t) (eq t (mevalp `((mgreaterp) ,ex 1)))) '$inf)
((eq t (mevalp `((mgreaterp) ,ex-mag 1))) '$infinity)
((eq t (mevalp `((mequal) 1 ,ex-mag))) '$und)
(t `((%product) ,e ,k ,lo ,hi))))
((or (eq sgn '$neg) (eq sgn '$zero) (eq sgn '$nz))
1)
((and (mbagp e) $listarith)
(simplifya
`((,(caar e)) ,@(mapcar #'(lambda (s) (mfuncall '$product s k lo hi)) (margs e))) t))
(($freeof i ex) (power ex n))
((and (integerp n) (eq sgn '$pos) $simpproduct)
(dotimes (j n acc)
(setq acc (mult acc (resimplify (subst (add j lo) i ex))))))
(t
(setq ex (subst '%product '$product ex))
`((%product simp) ,(subst k i ex) ,k ,lo ,hi))))
;; Hmm, this is curious... don't call existing product simplifications
;; if index range is infinite -- what's up with that??
(if (and $simpproduct (op-equalp acc '$product '%product) (not (like n '$inf)))
(let* ((args (cdr acc)) (e (first args)) (i (second args)) (i0 (third args)) (i1 (fourth args)))
(setq acc (simpprod1-save e i i0 i1))))
(setq acc (subst k i acc))
(setq acc (subst '%product '$product acc))
acc)))
; This function was SIMPPROD1 until the sum/product code was revised Nov 2005.
; The revised code punts back to this function since this code knows
; some simplifications not handled by the revised code. -- Robert Dodier
(defun simpprod1-save (exp i lo hi)
(let (u)
(cond ((not (symbolp i)) (merror (intl:gettext "product: index must be a symbol; found ~M") i))
((alike1 lo hi)
(let ((valist (list i)))
(mbinding (valist (list hi))
(meval exp))))
((eq ($sign (setq u (m- hi lo))) '$neg)
(cond ((eq ($sign (add2 u 1)) '$zero) 1)
(t (merror (intl:gettext "product: lower bound ~M greater than upper bound ~M") lo hi))))
((atom exp)
(cond ((null (eq exp i))
(power* exp (list '(mplus) hi 1 (list '(mtimes) -1 lo))))
((let ((lot (asksign lo)))
(cond ((equal lot '$zero) 0)
((eq lot '$positive)
(m// (list '(mfactorial) hi)
(list '(mfactorial) (list '(mplus) lo -1))))
((m* (list '(mfactorial)
(list '(mabs) lo))
(cond ((member (asksign hi) '($zero $positive) :test #'eq)
0)
(t (prog2 0
(m^ -1 (m+ hi lo 1))
(setq hi (list '(mabs) hi)))))
(list '(mfactorial) hi))))))))
((list '(%product simp) exp i lo hi)))))
;; multiplication of sums
(defun gensumindex ()
(intern (format nil "~S~D" $genindex (incf $gensumnum))))
(defun sumtimes (x y)
(cond ((null x) y)
((null y) x)
((or (safe-zerop x) (safe-zerop y)) 0)
((or (atom x) (not (eq (caar x) '%sum))) (sumultin x y))
((or (atom y) (not (eq (caar y) '%sum))) (sumultin y x))
(t (let (u v i j)
(if (great (sum-arg x) (sum-arg y)) (setq u y v x) (setq u x v y))
(setq i (let ((ind (gensumindex)))
(setq u (subst ind (sum-index u) u)) ind))
(setq j (let ((ind (gensumindex)))
(setq v (subst ind (sum-index v) v)) ind))
(if (and $cauchysum (eq (sum-upper u) '$inf)
(eq (sum-upper v) '$inf))
(list '(%sum)
(list '(%sum)
(sumtimes (maxima-substitute j i (sum-arg u))
(maxima-substitute (m- i j) j (sum-arg v)))
j (sum-lower u) (m- i (sum-lower v)))
i (m+ (sum-lower u) (sum-lower v)) '$inf)
(list '(%sum)
(list '(%sum) (sumtimes (sum-arg u) (sum-arg v))
j (sum-lower v) (sum-upper v))
i (sum-lower u) (sum-upper u)))))))
(defun sumultin (x s) ; Multiplies x into a sum adjusting indices.
(cond ((or (atom s) (not (eq (caar s) '%sum))) (m* x s))
((free x (sum-index s))
(list* (car s) (sumultin x (sum-arg s)) (cddr s)))
(t (let ((ind (gensumindex)))
(list* (car s)
(sumultin x (subst ind (sum-index s) (sum-arg s)))
ind
(cdddr s))))))
;; addition of sums
(defun sumpls (sum out)
(prog (l)
(if (null out) (return (cons sum nil)))
(setq out (setq l (cons nil out)))
a (if (null (cdr out)) (return (cons sum (cdr l))))
(and (not (atom (cadr out)))
(consp (caadr out))
(eq (caar (cadr out)) '%sum)
(alike1 (sum-arg (cadr out)) (sum-arg sum))
(alike1 (sum-index (cadr out)) (sum-index sum))
(cond ((onediff (sum-upper (cadr out)) (sum-lower sum))
(setq sum (list (car sum)
(sum-arg sum)
(sum-index sum)
(sum-lower (cadr out))
(sum-upper sum)))
(rplacd out (cddr out))
(go a))
((onediff (sum-upper sum) (sum-lower (cadr out)))
(setq sum (list (car sum)
(sum-arg sum)
(sum-index sum)
(sum-lower sum)
(sum-upper (cadr out))))
(rplacd out (cddr out))
(go a))))
(setq out (cdr out))
(go a)))
(defun onediff (x y)
(equal 1 (m- y x)))
(defun freesum (e b a q)
(m* e q (m- (m+ a 1) b)))
;; linear operator stuff
(defparameter *opers-list '(($linear . linearize1)))
(defparameter opers (list '$linear))
(defun oper-apply (e z)
(cond ((null opers-list)
(let ((w (get (caar e) 'operators)))
(if w (funcall w e 1 z) (simpargs e z))))
((get (caar e) (caar opers-list))
(let ((opers-list (cdr opers-list))
(fun (cdar opers-list)))
(funcall fun e z)))
(t (let ((opers-list (cdr opers-list)))
(oper-apply e z)))))
(defun linearize1 (e z) ; z = t means args already simplified.
(linearize2 (cons (car e) (mapcar #'(lambda (q) (simpcheck q z)) (cdr e)))
nil))
(defun opident (op)
(cond ((eq op 'mplus) 0)
((eq op 'mtimes) 1)))
(defun rem-const (e) ;removes constantp stuff
(do ((l (cdr e) (cdr l))
(a (list (opident (caar e))))
(b (list (opident (caar e)))))
((null l)
(cons (simplifya (cons (list (caar e)) a) nil)
(simplifya (cons (list (caar e)) b) nil)))
(if ($constantp (car l))
(setq a (cons (car l) a))
(setq b (cons (car l) b)))))
(defun linearize2 (e times)
(cond ((linearconst e))
((atom (cadr e)) (oper-apply e t))
((eq (caar (cadr e)) 'mplus)
(addn (mapcar #'(lambda (q)
(linearize2 (list* (car e) q (cddr e)) nil))
(cdr (cadr e)))
t))
((and (eq (caar (cadr e)) 'mtimes) (null times))
(let ((z (if (and (cddr e)
(or (atom (caddr e))
($subvarp (caddr e))))
(partition (cadr e) (caddr e) 1)
(rem-const (cadr e))))
(w))
(setq w (linearize2 (list* (car e)
(simplifya (cdr z) t)
(cddr e))
t))
(linearize3 w e (car z))))
(t (oper-apply e t))))
(defun linearconst (e)
(if (or (mnump (cadr e))
(constant (cadr e))
(and (cddr e)
(or (atom (caddr e)) (member 'array (cdar (caddr e)) :test #'eq))
(free (cadr e) (caddr e))))
(if (or (zerop1 (cadr e))
(and (member (caar e) '(%sum %integrate) :test #'eq)
(= (length e) 5)
(or (eq (cadddr e) '$minf)
(member (car (cddddr e)) '($inf $infinity) :test #'eq))
(eq ($asksign (cadr e)) '$zero)))
0
(let ((w (oper-apply (list* (car e) 1 (cddr e)) t)))
(linearize3 w e (cadr e))))))
(defun linearize3 (w e x)
(let (w1)
(if (and (member w '($inf $minf $infinity) :test #'eq) (safe-zerop x))
(merror (intl:gettext "LINEARIZE3: undefined form 0*inf: ~M") e))
(setq w (mul2 (simplifya x t) w))
(cond ((or (atom w) (getl (caar w) '($outative $linear))) (setq w1 1))
((eq (caar w) 'mtimes)
(setq w1 (cons '(mtimes) nil))
(do ((w2 (cdr w) (cdr w2)))
((null w2) (setq w1 (nreverse w1)))
(if (or (atom (car w2))
(not (getl (caaar w2) '($outative $linear))))
(setq w1 (cons (car w2) w1)))))
(t (setq w1 w)))
(if (and (not (atom w1)) (or (among '$inf w1) (among '$minf w1)))
(infsimp w)
w)))
(setq opers (cons '$additive opers)
*opers-list (cons '($additive . additive) *opers-list))
(defun rem-opers-p (p)
(cond ((eq (caar opers-list) p)
(setq opers-list (cdr p)))
((do ((l opers-list (cdr l)))
((null l))
(if (eq (caar (cdr l)) p)
(return (rplacd l (cddr l))))))))
(defun additive (e z)
(cond ((get (caar e) '$outative) ; Really a linearize!
(setq opers-list (copy-list opers-list))
(rem-opers-p '$outative)
(linearize1 e z))
((mplusp (cadr e))
(addn (mapcar #'(lambda (q)
(let ((opers-list *opers-list))
(oper-apply (list* (car e) q (cddr e)) z)))
(cdr (cadr e)))
z))
(t (oper-apply e z))))
(setq opers (cons '$multiplicative opers)
*opers-list (cons '($multiplicative . multiplicative) *opers-list))
(defun multiplicative (e z)
(cond ((mtimesp (cadr e))
(muln (mapcar #'(lambda (q)
(let ((opers-list *opers-list))
(oper-apply (list* (car e) q (cddr e)) z)))
(cdr (cadr e)))
z))
(t (oper-apply e z))))
(setq opers (cons '$outative opers)
*opers-list (cons '($outative . outative) *opers-list))
(defun outative (e z)
(setq e (cons (car e) (mapcar #'(lambda (q) (simpcheck q z)) (cdr e))))
(cond ((get (caar e) '$additive)
(setq opers-list (copy-list opers-list ))
(rem-opers-p '$additive)
(linearize1 e t))
((linearconst e))
((mtimesp (cadr e))
(let ((u (if (and (cddr e)
(or (atom (caddr e))
($subvarp (caddr e))))
(partition (cadr e) (caddr e) 1)
(rem-const (cadr e))))
(w))
(setq w (oper-apply (list* (car e)
(simplifya (cdr u) t)
(cddr e))
t))
(linearize3 w e (car u))))
(t (oper-apply e t))))
(defprop %sum t $outative)
(defprop %sum t opers)
(defprop %integrate t $outative)
(defprop %integrate t opers)
(defprop %limit t $outative)
(defprop %limit t opers)
(setq opers (cons '$evenfun opers)
*opers-list (cons '($evenfun . evenfun) *opers-list))
(setq opers (cons '$oddfun opers)
*opers-list (cons '($oddfun . oddfun) *opers-list))
(defmfun evenfun (e z)
(if (or (null (cdr e)) (cddr e))
(merror (intl:gettext "Function declared 'even' takes exactly one argument; found ~M") e))
(let ((arg (simpcheck (cadr e) z)))
(oper-apply (list (car e) (if (mminusp arg) (neg arg) arg)) t)))
(defmfun oddfun (e z)
(if (or (null (cdr e)) (cddr e))
(merror (intl:gettext "Function declared 'odd' takes exactly one argument; found ~M") e))
(let ((arg (simpcheck (cadr e) z)))
(if (mminusp arg) (neg (oper-apply (list (car e) (neg arg)) t))
(oper-apply (list (car e) arg) t))))
(setq opers (cons '$commutative opers)
*opers-list (cons '($commutative . commutative1) *opers-list))
(setq opers (cons '$symmetric opers)
*opers-list (cons '($symmetric . commutative1) *opers-list))
(defmfun commutative1 (e z)
(oper-apply (cons (car e)
(reverse
(sort (mapcar #'(lambda (q) (simpcheck q z))
(cdr e))
'great)))
t))
(setq opers (cons '$antisymmetric opers)
*opers-list (cons '($antisymmetric . antisym) *opers-list))
(defmfun antisym (e z)
(when (and $dotscrules (mnctimesp e))
(let ($dotexptsimp)
(setq e (simpnct e 1 nil))))
(if ($atom e) e (antisym1 e z)))
(defun antisym1 (e z)
(let ((antisym-sign nil)
(l (mapcar #'(lambda (q) (simpcheck q z)) (cdr e))))
(when (or (not (eq (caar e) 'mnctimes)) (freel l 'mnctimes))
(multiple-value-setq (l antisym-sign) (bbsort1 l)))
(cond ((equal l 0) 0)
((prog1
(null antisym-sign)
(setq e (oper-apply (cons (car e) l) t)))
e)
(t (neg e)))))
(defun bbsort1 (l)
(prog (sl sl1 antisym-sign)
(if (or (null l) (null (cdr l))) (return (values l antisym-sign))
(setq sl (list nil (car l))))
loop (setq l (cdr l))
(if (null l) (return (values (nreverse (cdr sl)) antisym-sign)))
(setq sl1 sl)
loop1(cond ((null (cdr sl1)) (rplacd sl1 (cons (car l) nil)))
((alike1 (car l) (cadr sl1)) (return (values 0 nil)))
((great (car l) (cadr sl1)) (rplacd sl1 (cons (car l) (cdr sl1))))
(t (setq antisym-sign (not antisym-sign) sl1 (cdr sl1)) (go loop1)))
(go loop)))
(setq opers (cons '$nary opers)
*opers-list (cons '($nary . nary1) *opers-list))
(defun nary1 (e z)
(oper-apply (nary2 e z) z))
(defun nary2 (e z)
(do
((l (cdr e) (cdr l)) (ans) (some-change))
((null l)
(if some-change
(nary2 (cons (car e) (nreverse ans)) z)
(simpargs e z)))
(setq
ans (if (and (not (atom (car l))) (eq (caaar l) (caar e)))
(progn
(setq some-change t)
(nconc (reverse (cdar l)) ans))
(cons (car l) ans)))))
(setq opers (cons '$lassociative opers)
*opers-list (cons '($lassociative . lassociative) *opers-list))
(defmfun lassociative (e z)
(let*
((ans0 (oper-apply (cons (car e) (total-nary e)) z))
(ans (if (consp ans0) (cdr ans0))))
(cond ((or (null (cddr ans)) (not (eq (caar ans0) (caar e)))) ans0)
((do ((newans (list (car e) (car ans) (cadr ans))
(list (car e) newans (car ans)))
(ans (cddr ans) (cdr ans)))
((null ans) newans))))))
(setq opers (cons '$rassociative opers)
*opers-list (cons '($rassociative . rassociative) *opers-list))
(defmfun rassociative (e z)
(let*
((ans0 (oper-apply (cons (car e) (total-nary e)) z))
(ans (if (consp ans0) (cdr ans0))))
(cond ((or (null (cddr ans)) (not (eq (caar ans0) (caar e)))) ans0)
(t (setq ans (nreverse ans))
(do ((newans (list (car e) (cadr ans) (car ans))
(list (car e) (car ans) newans))
(ans (cddr ans) (cdr ans)))
((null ans) newans))))))
(defmfun total-nary (e)
(do ((l (cdr e) (cdr l)) (ans))
((null l) (nreverse ans))
(setq ans (if (and (not (atom (car l))) (eq (caaar l) (caar e)))
(nconc (reverse (total-nary (car l))) ans)
(cons (car l) ans)))))
(defparameter $opproperties (cons '(mlist simp) (reverse opers)))
|