/usr/share/maxima/5.41.0/src/algsys.lisp is in maxima-src 5.41.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 | ;;; -*- Mode: Lisp; Package: Maxima; Syntax: Common-Lisp; Base: 10 -*- ;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; The data in this file contains enhancments. ;;;;;
;;; ;;;;;
;;; Copyright (c) 1984,1987 by William Schelter,University of Texas ;;;;;
;;; All rights reserved ;;;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; (c) Copyright 1981 Massachusetts Institute of Technology ;;;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(in-package :maxima)
(macsyma-module algsys)
(load-macsyma-macros ratmac)
;;This is the algsys package.
;;It solves systems of polynomial equations by straight-forward
;;resultant hackery. Other possible methods seem worse:
;;the Buchberger-Spear canonical ideal basis algorithm is slow,
;;and the "resolvent" method (see van der Waerden, section 79)
;;blows up in time and space. The "resultant"
;;method (see the following sections of van der Waerden and
;;Macaulay's book - Algebraic Theory of Modular Systems) looks
;;good, but it requires the evaluation of large determinants.
;;Unless some hack (such as prs's for evaluating resultants of
;;two polynomials) is developed for multi-polynomial resultants,
;;this method will remain impractical.
;;Some other possible ideas: Keeping the total number of equations constant,
;;in an effort to reduce extraneous solutions, or Reducing to a linear
;;equation before taking resultants.
(declare-top (special $algdelta $ratepsilon $algepsilon $keepfloat
varlist genvar *roots *failures $ratprint $numer $ratfac
$rnum $solvefactors $dispflag $breakup
*tvarxlist* errorsw $programmode *ivar* errset $polyfactor
bindlist loclist $float $infeval))
;;note if $algepsilon is too large you may lose some roots.
(defmvar $algdelta 1e-5 )
(defmvar $%rnum_list '((mlist))
"Upon exit from ALGSYS this is bound to a list of the %RNUMS
which where introduced into the expression. Useful for mapping
over and using as an argument to SUBST.")
(defmvar $realonly nil "If t only real solutions are returned.")
(defmvar realonlyratnum nil
"A REALROOTS hack for RWG. Causes ALGSYS to retain rational numbers
returned by REALROOTS when REALONLY is TRUE."
in-core)
(defmvar $algexact nil "If t ALGSYS always calls SOLVE to try to MAXIMA-FIND exact
solutions.")
(defmvar algnotexact nil
"A hack for RWG for univariate polys. Causes SOLVE not to get called
so that sqrts and cube roots will not be generated."
in-core)
(defmacro merrset (l)
`(let ((errset 'errbreak1) (unbind (cons bindlist loclist)) val)
(setq val (errset ,l nil))
(when (null val) (errlfun1 unbind))
val))
(defmfun $algsys (lhslist varxlist &aux varlist genvar)
;; (declare (special varxlist)) ;;??
(setq $%rnum_list (list '(mlist)))
(cond ((not ($listp lhslist))
(merror (intl:gettext "algsys: first argument must be a list; found ~M") lhslist))
((not ($listp varxlist))
(merror (intl:gettext "algsys: second argument must be a list; found ~M") varxlist)))
(let ((tlhslist nil) (*tvarxlist* nil) (solnlist nil) ($ratprint nil)
;; GCL seems to read 1e-7 as zero, but only when compiling. Incantations
;; based on 1d-7, 1l-7 etc. don't seem to make any difference.
($ratepsilon #-gcl 1e-7
#+gcl (float 1/10000000))
($keepfloat nil)
(varlist (reverse (cdr varxlist)))
(genvar nil) ($ratfac nil) ($breakup nil)
($solvefactors nil) (*roots nil) (*failures nil)
(*ivar* nil) ($polyfactor nil) (varxl nil)
($infeval nil) ($numer nil) ($float nil)
(numerflg $numer))
(dolist (var (cdr ($listofvars (list '(mlist simp) lhslist varxlist))))
(if (and (symbolp var) (not (constant var)))
(setq varxl (cons var varxl))))
(orderpointer varlist)
(setq tlhslist
(mapcar #'(lambda (q) (cadr (ratf (meqhk q))))
(cdr lhslist)))
(setq *ivar* (caadr (ratf '$%i)))
(setq *tvarxlist*
(mapcar #'(lambda (q)
(if (mnump q)
(merror (intl:gettext "algsys: variable cannot be a number; found ~M") q)
(caadr (ratf q))))
(cdr varxlist)))
(putorder *tvarxlist*)
(mbinding (varxl varxl)
(setq solnlist
(mapcar #'(lambda (q)
(addmlist
(bbsorteqns
(addparam (roundroots1 q) varxlist))))
(algsys tlhslist))))
(remorder *tvarxlist*)
(setq solnlist (addmlist solnlist))
(if numerflg
(let (($numer t) ($float t))
(resimplify solnlist))
solnlist)))
;;; (CONDENSESOLNL TEMPSOLNL)
;;;
;;; Condense a solution list, discarding any solution that is a special case of
;;; another one. (For example, if the list contained [x=1, y=1] as a solution,
;;; but also just [x=1], then the first solution would be discarded)
;;;
;;; Destructively modifies TEMPSOLNL
(defun condensesolnl (tempsolnl)
(let (solnl)
(mapl (lambda (q)
(unless (subsetl (cdr q) (car q))
(push (car q) solnl)))
(sort tempsolnl #'(lambda (a b) (> (length a) (length b)))))
solnl))
;;; (SUBSETL L1 S2)
;;;
;;; Check whether some element of L1 is a subset of S2 (comparing elements with
;;; ALIKE1). As a special case, if S2 is '(NIL) then return true.
(defun subsetl (l1 s2)
(or (equal s2 '(nil))
(member-if (lambda (x)
(subsetp x s2 :test #'alike1))
l1)))
(defun algsys (tlhslist)
(condensesolnl
(mapcan #'algsys0
(distrep (mapcar #'lofactors tlhslist)))))
(defun algsys0 (tlhslist)
(cond ((null tlhslist) (list nil))
((equal tlhslist (list nil)) nil)
(t (algsys1 tlhslist))))
(defun algsys1 (tlhslist)
(destructuring-bind (resulteq . vartorid) (findleastvar tlhslist)
(bakalevel (algsys
(mapcar #'(lambda (q)
(if (among vartorid q)
(presultant q resulteq vartorid)
q))
(remove resulteq tlhslist :test #'equal)))
tlhslist vartorid)))
(defun addmlist (l)
(cons '(mlist) l))
(defmacro what-the-$ev (&rest l)
;; macro for calling $EV when you are not really
;; sure why you are calling it, but you want the
;; features of multiple evaluations and unpredictabiltiy
;; anyway.
`(meval (list '($ev) ,@l)))
(defun rootsp (asolnset eqn) ;eqn is ((MLIST) eq deriv)
(let (rr ($keepfloat t) ($numer t) ($float t))
(setq rr (what-the-$ev eqn asolnset)) ; ratsimp?
(cond ((and (complexnump (cadr rr)) (complexnump (caddr rr)))
(< (cabs (cadr rr))
(* $algdelta (max 1 (cabs (caddr rr))))))
(t nil))))
(defun round1 (a)
(cond ((floatp a)
(setq a (maxima-rationalize a))
(fpcofrat1 (car a) (cdr a)))
(t a)))
(defun roundrhs (eqn)
(list (car eqn) (cadr eqn) (round1 (caddr eqn))))
(defun roundroots1 (lsoln)
(mapcar #'roundrhs lsoln))
(defun bbsorteqns (l)
(sort (copy-list l) #'orderlessp))
(defun putorder (tempvarl)
(do ((n 1 (1+ n))
(tempvarl tempvarl (cdr tempvarl)))
((null tempvarl) nil)
(putprop (car tempvarl) n 'varorder)))
(defun remorder (gvarl)
(mapc #'(lambda (x) (remprop x 'varorder)) gvarl))
(defun orderlessp (eqn1 eqn2)
(< (get (caadr (ratf (cadr eqn1))) 'varorder)
(get (caadr (ratf (cadr eqn2))) 'varorder)))
(defun addparam (asolnsetl varxlist)
(cond ((= (length asolnsetl) (length *tvarxlist*))
asolnsetl)
(t
(do ((tvarxl (cdr varxlist) (cdr tvarxl))
(defvar (mapcar #'cadr asolnsetl))
(var) (param))
((null tvarxl) asolnsetl)
(setq var (car tvarxl))
(cond ((memalike var defvar) nil)
(t (setq param (make-param)
asolnsetl (cons (list '(mequal) var param)
(cdr (maxima-substitute
param var
(addmlist asolnsetl)))))))))))
(declare-top (special *vardegs*))
;;; (FINDLEASTVAR LHSL)
;;;
;;; Iterate over the polynomials in LHSL, trying to find a "least var", which is
;;; a variable that will hopefully be easiest to solve for. Variables from
;;; *TVARXLIST* and their products are considered.
;;;
;;; For example, if *TVARXLIST* contains x, y and we only considered the
;;; polynomial x^3 + y^2 + x then we'd have a least var of y with degree 2. If c
;;; is not in *TVARXLIST* then we'd get the same answer from x^3 + c*y^2 + x
;;; because such variables are just ignored. However, x^3 + x^2*y^2 would yield
;;; x with degree 3 because the mixed term x^2*y^2 has higher total degree.
;;;
;;; The function returns the polynomial with the variable with minimal maximum
;;; degree (as described above), together with that variable.
;;;
;;; Mixed terms are mostly ignored, but consider this pair of polynomials:
;;; [x*y+1, x^3+1]. In the first polynomial, the only non-constant term is
;;; mixed. Its degree in the first polynomial is 2 which is less than 3, so that
;;; first polynomial is returned along with its leading variable.
(defun findleastvar (lhsl)
(let ((*vardegs*)
(leasteq) (leastvar)
;; most-positive-fixnum is larger than any polynomial degree, so we can
;; initialise with this and be certain to replace it on the first
;; iteration.
(leastdeg most-positive-fixnum))
(declare (special *vardegs*))
(loop
for teq in lhsl
for *vardegs* = (getvardegs teq)
for tdeg = (killvardegsc teq)
do (loop
for q in *vardegs*
if (<= (cdr q) leastdeg)
do (setq leastdeg (cdr q)
leasteq teq
leastvar (car q)))
if (< tdeg leastdeg)
do (setq leastdeg tdeg
leasteq teq
leastvar (car teq)))
(cons leasteq leastvar)))
;;; DO-POLY-TERMS
;;;
;;; Iterate over the terms in a polynomial, POLY, executing BODY with LE and LC
;;; bound to the exponent and coefficient respectively of each term. If RESULT
;;; is non-NIL, it is evaluated to give a result when the iteration finishes.
(defmacro do-poly-terms ((le lc poly &optional result) &body body)
(let ((pt (gensym)))
`(do ((,pt (p-terms ,poly) (pt-red ,pt)))
((null ,pt) ,result)
(let ((,le (pt-le ,pt))
(,lc (pt-lc ,pt)))
,@body))))
;;; (KILLVARDEGSC POLY)
;;;
;;; For each monomial in POLY that is mixed in the variables in *VARDEGS*
;;; (i.e. has more than one variable from *VARDEGS* with positive exponent),
;;; iterate over all but the first variable, checking to see whether its degree
;;; in the monomial is at least as high as that in *VARDEGS*. If so, delete that
;;; variable and its degree from *VARDEGS*.
;;;
;;; Returns the maximum total degree of any term in the polynomial, summing
;;; degrees over the variables in *VARDEGS*.
(defun killvardegsc (poly)
(if (pconstp poly)
0
(let ((tdeg 0))
(do-poly-terms (le lc poly tdeg)
(setf tdeg (max tdeg (+ le
(if (= le 0)
(killvardegsc lc)
(killvardegsn lc)))))))))
;;; (KILLVARDEGSN POLY)
;;;
;;; For each monomial in POLY, look at its degree in each variable in
;;; *TVARXLIST*. If the degree is at least as high as that recorded in
;;; *VARDEGS*, delete that variable and its degree from *VARDEGS*.
;;;
;;; Returns the maximum total degree of any term in the polynomial, summing
;;; degrees over the variables in *VARDEGS*.
(defun killvardegsn (poly)
(declare (special *vardegs*))
(cond
((pconstp poly) 0)
(t
(let ((x (assoc (p-var poly) *vardegs* :test #'eq)))
(when (and x (<= (cdr x) (p-le poly)))
(setq *vardegs* (delete x *vardegs* :test #'equal))))
(let ((tdeg 0))
(do-poly-terms (le lc poly tdeg)
(setf tdeg (max tdeg (+ le (killvardegsn lc)))))))))
;;; (GETVARDEGS POLY)
;;;
;;; Return degrees of POLY's monomials in the variables for which we're
;;; solving. Ignores mixed terms (like x*y). Results are returned as an alist
;;; with elements (VAR . DEGREE).
;;;
;;; For example, if *TVARXLIST* is '(x y) and we are looking at the polynomial
;;; x^2 + y^2, we have
;;;
;;; (GETVARDEGS '(X 2 1 0 (Y 2 1))) => ((X . 2) (Y . 2))
;;;
;;; Variables that aren't in *TVARXLIST* are assumed to come after those that
;;; are. For example c*x^2 would look like
;;;
;;; (GETVARDEGS '(X 2 (C 1 1))) => ((X . 2))
;;;
;;; Mixed powers are ignored, so x*y + y looks like:
;;;
;;; (GETVARDEGS '(X 1 (Y 1 1) 0 (Y 1 1))) => ((Y . 1))
(defun getvardegs (poly)
(cond ((pconstp poly) nil)
((pconstp (caddr poly))
(cons (cons (car poly) (cadr poly))
(getvardegs (ptterm (cdr poly) 0))))
(t (getvardegs (ptterm (cdr poly) 0)))))
(declare-top (unspecial *vardegs*))
(defun pconstp (poly)
(or (atom poly) (not (member (car poly) *tvarxlist* :test #'eq))))
;;; (PFREEOFMAINVARSP POLY)
;;;
;;; If POLY isn't a polynomial in the variables for which we're solving,
;;; disrep it and simplify appropriately.
(defun pfreeofmainvarsp (poly)
(if (or (atom poly)
(member (car poly) *tvarxlist* :test #'eq))
poly
(simplify-after-subst (pdis poly))))
;;; (LOFACTORS POLY)
;;;
;;; If POLY is a polynomial in one of the variables for which we're solving,
;;; then factor it into a list of factors (where the result returns factors
;;; alternating with their multiplicity in the same way as PFACTOR).
;;;
;;; If POLY is not a polynomial in one of the solution variables, return NIL.
(defun lofactors (poly)
(let ((main-var-poly (pfreeofmainvarsp poly)))
(cond
((pzerop main-var-poly) '(0))
;; If POLY isn't a polynomial in our chosen variables, RADCAN will return
;; something whose CAR is a cons. In that case, or if the polynomial is
;; something like a number, there are no factors to extract.
((or (atom main-var-poly)
(not (atom (car main-var-poly))))
nil)
(t
(do ((tfactors (pfactor main-var-poly) (cddr tfactors))
(lfactors))
((null tfactors) lfactors)
(let ((main-var-factor (pfreeofmainvarsp (car tfactors))))
(cond
((pzerop main-var-factor)
(return (list 0)))
((and (not (atom main-var-factor))
(atom (car main-var-factor)))
(push (pabs main-var-factor) lfactors)))))))))
;;; (COMBINEY LISTOFL)
;;;
;;; Combine "independent" lists in LISTOFL. If all the lists have empty pairwise
;;; intersections, this returns all selections of items, one from each
;;; list. Destructively modifies LISTOFL.
;;;
;;; Selections are built up starting at the last list. When building, if there
;;; would be a repeated element because the list we're about to select from has
;;; nonempty intersection with an existing partial selections then elements from
;;; the current list aren't added to this selection.
;;;
;;; COMBINEY guarantees that no list in the result has two elements that are
;;; ALIKE1 each other.
;;;
;;; This is used to enumerate combinations of solutions from multiple
;;; equations. Each entry in LISTOFL is a list of possible solutions for an
;;; equation. A solution for the set of equations is found by looking at
;;; (compatible) combinations of solutions.
;;;
;;; (I don't know why the non-disjoint behaviour works like this. RJS 1/2015)
(defun combiney (listofl)
(unless (member nil listofl)
(combiney1 (delete '(0) listofl :test #'equal))))
;;; DB (2016-09-13) Commit a158b1547 introduced a regression (SF bug 3210)
;;; It: - restructured combiney
;;; - used ":test #'alike1" in place of "test #'equal" in combiney1
;;; Reverting the change to combiney1 restores previous behaviour.
;;; I don't understand algsys internals and haven't analysed this further.
(defun combiney1 (listofl)
(cond ((null listofl) (list nil))
(t (mapcan #'(lambda (r)
(if (intersection (car listofl) r :test #'equal)
(list r)
(mapcar #'(lambda (q) (cons q r)) (car listofl))))
(combiney1 (cdr listofl))))))
(defun midpnt (l)
(rhalf (rplus* (car l) (cadr l))))
(defun rflot (l)
(let ((rr (midpnt l)))
(if realonlyratnum (list '(rat) (car rr) (cdr rr))
(/ (+ 0.0 (car rr)) (cdr rr)))))
(defun memberroot (a x eps)
(cond ((null x) nil)
((< (abs (- a (car x)))
(/ (+ 0.0 (car eps)) (cdr eps)))
t)
(t (memberroot a (cdr x) eps))))
(defun commonroots (eps solnl1 solnl2)
(cond ((null solnl1) nil)
((memberroot (car solnl1) solnl2 eps)
(cons (car solnl1) (commonroots eps (cdr solnl1) solnl2)))
(t (commonroots eps (cdr solnl1) solnl2))))
;; (REMOVE-MULT L)
;;
;; Return a copy of L with all elements in odd positions removed. This is so
;; named because some code returns roots and multiplicities in the format
;;
;; (ROOT0 MULT0 ROOT1 MULT1 ... ROOTN MULTN)
;;
;; Calling REMOVE-MULT on such a list removes the multiplicities.
(defun remove-mult (l)
(and l (cons (car l) (remove-mult (cddr l)))))
(defun punivarp (poly)
;; Check if called with the number zero, return nil.
;; Related bugs: SF[609466], SF[1430379], SF[1663399]
(when (and (numberp poly) (= poly 0)) (return-from punivarp nil))
(do ((l (cdr poly) (cddr l)))
((null l) t)
(or (numberp (cadr l))
(and (eq (caadr l) *ivar*)
(punivarp (cadr l)))
(return nil))))
;; (REALONLY ROOTSL)
;;
;; Return only the elements of ROOTSL whose $IMAGPART simplifies to zero with
;; SRATSIMP. (Note that this a subset of "the real roots", because SRATSIMP may
;; not be able to check that a given expression is zero)
(defun realonly (rootsl)
(remove-if-not (lambda (root)
(equal 0 (sratsimp ($imagpart (caddr root)))))
rootsl))
(defun presultant (p1 p2 var)
(cadr (ratf (simplify ($resultant (pdis p1) (pdis p2) (pdis (list var 1 1)))))))
(defun ptimeftrs (l)
(prog (ll)
(setq ll (cddr l))
(cond ((null ll) (return (car l)))
(t (return (ptimes (car l) (ptimeftrs ll)))))))
;; (EBAKSUBST SOLNL LHSL)
;;
;; Substitute a solution for one variable back into the "left hand side
;; list". If the equation had to be solved for multiple variables, this allows
;; us to use the solution for a first variable to feed in to the equation for
;; the next one along.
;;
;; As well as doing the obvious substitution, EBAKSUBST also simplifies with
;; $RADCAN (presumably, E stands for Exponential)
(defun ebaksubst (solnl lhsl)
(mapcar #'(lambda (q) (ebaksubst1 solnl q)) lhsl))
(defun ebaksubst1 (solnl q)
(let ((e ($substitute `((mlist) ,@solnl) (pdis q))))
(setq e (simplify-after-subst e))
(cadr (ratf e))))
(defun baksubst (solnl lhsl)
(setq lhsl (delete 't (mapcar #'(lambda (q) (car (merrset (baksubst1 solnl q))))
lhsl)
:test #'eq)) ;catches arith. ovfl
(if (member nil lhsl :test #'eq)
(list nil)
lhsl))
(defun baksubst1 (solnl poly)
(let* (($keepfloat (not $realonly)) ;sturm1 needs poly with
(poly1 ;integer coefs
(cdr (ratf (what-the-$ev (pdis poly)
(cons '(mlist) solnl)
'$numer)))))
(cond ((and (complexnump (pdis (car poly1)))
(numberp (cdr poly1)))
(rootsp (cons '(mlist) solnl)
(list '(mlist) (pdis poly) (tayapprox poly))))
(t (car poly1)))))
(defun complexnump (p)
(let ((p (cadr (ratf ($ratsimp p)))))
(or (numberp p)
(eq (pdis (pget (car p))) '$%i))))
;; (SIMPLIFY-AFTER-SUBST EXPR)
;;
;; Simplify EXPR after substitution of a partial solution.
;;
;; Focus is on constant expressions:
;; o failure to reduce a constant expression that is equivalent
;; to zero causes solutions to be falsely rejected
;; o some operations, such as the reduction of nested square roots,
;; requires known sign and ordering of all terms
;; o inappropriate simplification by $RADCAN introduced errors
;; $radcan(sqrt(-1/(1+%i))) => exhausts heap
;; $radcan(sqrt(6-3^(3/2))) > 0 => sqrt(sqrt(3)-2)*sqrt(3)*%i < 0
;;
;; Problems from bug reports showed that further simplification of
;; non-constant terms, with incomplete information, could lead to
;; missed roots or unwanted complexity.
;;
;; $ratsimp with algebraic:true can transform
;; sqrt(2)*sqrt(-1/(sqrt(3)*%i+1)) => (sqrt(3)*%i)/2+1/2
;; but $rectform is required for
;; sqrt(sqrt(3)*%i-1)) => (sqrt(3)*%i)/sqrt(2)+1/sqrt(2)
;; and $rootscontract is required for
;; sqrt(34)-sqrt(2)*sqrt(17) => 0
(defun simplify-after-subst (expr)
"Simplify expression after substitution"
(let (($keepfloat t) ($algebraic t) (e expr)
e2 (growth-factor 1.2)
($rootsconmode t) ($radexpand t))
(when ($constantp e)
(progn
(setq e (sqrtdenest e))
;; Rectform does more than is wanted. A function that denests and
;; rationalizes nested complex radicals would be better.
;; Limit expression growth. The factor is based on trials.
(setq e2 ($rectform e))
(when (< (conssize e2) (* growth-factor (conssize e)))
(setq e e2))
(setq e ($rootscontract e))))
($ratsimp e)))
;; (BAKALEVEL SOLNL LHSL VAR)
;;
;;; Recursively try to find a solution to the list of polynomials in LHSL. SOLNL
;;; should be a non-empty list of partial solutions (for example, these might be
;;; solutions we've already found for x when we're solving for x and y).
;;;
;;; BAKALEVEL works over each partial solution. This should itself be a list. If
;;; it is non-nil, it is a list of equations for the variables we're trying to
;;; solve for ("x = 3 + y" etc.). In this case, BAKALEVEL substitutes these
;;; solutions into the system of equations and then tries to solve the
;;; result. On success, it merges the partial solutions in SOLNL with those it
;;; gets recursively.
;;;
;;; If a partial solution is nil, we don't yet have any partial information. If
;;; there is only a single polynomial to solve in LHSL, we try to solve it in
;;; the given variable, VAR. Otherwise we choose a variable of lowest degree
;;; (with FINDLEASTVAR), solve for that (with CALLSOLVE) and then recurse.
(defun bakalevel (solnl lhsl var)
(loop for q in solnl nconcing (bakalevel1 q lhsl var)))
(defun bakalevel1 (solnl lhsl var)
(cond
((not (exactonly solnl))
(mergesoln solnl (apprsys (baksubst solnl lhsl))))
(solnl
(mergesoln solnl (algsys (ebaksubst solnl lhsl))))
((cdr lhsl)
(let ((poly-and-var (findleastvar lhsl)))
(bakalevel (callsolve poly-and-var)
(remove (car poly-and-var) lhsl :test #'equal)
var)))
(t (callsolve (cons (car lhsl) var)))))
;; (EVERY-ATOM PRED X)
;;
;; Evaluates to true if (PRED Y) is true for every atom Y in the cons tree X.
(defun every-atom (pred x)
(if (atom x)
(funcall pred x)
(and (every-atom pred (car x))
(every-atom pred (cdr x)))))
;; (EXACTONLY SOLNL)
;;
;; True if the list of solutions doesn't contain any terms that look inexact
;; (just floating point numbers, unless realonlyratnum is true)
(defun exactonly (solnl)
(every-atom (lambda (x)
(and (not (floatp x))
(or (null realonlyratnum)
(not (eq x 'rat)))))
solnl))
;; (MERGESOLN ASOLN SOLNL)
;;
;; For each solution S in SOLNL, evaluate each element of ASOLN in light of S
;; and, collecting up the results and prepending them to S. If evaluating an
;; element in light of S caused an error, ignore the combination of ASOLN and S.
(defun mergesoln (asoln solnl)
(let ((unbind (cons bindlist loclist))
(errorsw t))
(macrolet ((catch-error-t (&body body)
`(let ((result (catch 'errorsw ,@body)))
(when (eq result t)
(errlfun1 unbind))
result)))
(loop
for q in solnl
for result =
(catch-error-t
(append (mapcar (lambda (r)
(what-the-$ev r (cons '(mlist) q)))
asoln)
q))
if (not (eq result t)) collect result))))
;; (CALLSOLVE PV)
;;
;; Try to solve a polynomial with respect to the given variable. PV is a cons
;; pair (POLY . VAR). On success, return a list of solutions. Each solution is
;; itself a list, whose elements are equalities (one for each variable in the
;; equation). If we determine that there aren't any solutions, return '(NIL).
;;
;; If POLY is in more than one variable or if it can clearly be solved by the
;; quadratic formula (BIQUADRATICP), we always call SOLVE to try to get an exact
;; solution. Similarly if the user has set the $ALGEXACT variable to true.
;;
;; Otherwise, or if SOLVE fails, we try to find an approximate solution with a
;; call to CALLAPPRS.
;;
;; SOLVE introduces solutions with nested radicals, which causes problems
;; in EBAKSUBST1. Try to clean up the solutions now.
(defun callsolve (pv)
(mapcar #'callsolve2 (callsolve1 pv)))
(defun callsolve1 (pv)
(let ((poly (car pv))
(var (cdr pv))
(varlist varlist)
(genvar genvar)
(*roots nil)
(*failures nil)
($programmode t))
(cond ((or $algexact
(not (punivarp poly))
(biquadraticp poly))
;; Call SOLVE to try to solve POLY. When it returns, the solutions it
;; found end up in *ROOTS. *FAILURES contains expressions that, if
;; solved, would lead to further solutions.
(solve (pdis poly) (pdis (list var 1 1)) 1)
(if (null (or *roots *failures))
;; We're certain there are no solutions
(list nil)
;; Try to find approximate solutions to the terms that SOLVE gave
;; up on (in *FAILURES) and remove any roots from SOLVE that
;; aren't known to be real if $REALONLY is true.
(append (mapcan (lambda (q)
(callapprs (cadr (ratf (meqhk q)))))
(remove-mult *failures))
(mapcar #'list
(if $realonly
(realonly (remove-mult *roots))
(remove-mult *roots))))))
(t (callapprs poly)))))
(defun callsolve2 (l)
"Simplify solution returned by callsolve1"
;; l is a single element list '((mequal simp) var expr)
(let ((e (first l)))
`(((,(mop e)) ,(second e) ,(simplify-after-subst (third e))))))
;;; (BIQUADRATICP POLY)
;;;
;;; Check whether POLY is biquadratic in its main variable: either of degree at
;;; most two or of degree four and with only even powers.
(defun biquadraticp (poly)
(or (atom poly)
(if algnotexact
(< (p-le poly) 2)
(or (< (p-le poly) 3)
(and (= (p-le poly) 4) (biquadp1 (p-red poly)))))))
(defun biquadp1 (terms)
(or (null terms)
(and (or (= (pt-le terms) 2) (= (pt-le terms) 0))
(biquadp1 (pt-red terms)))))
;;; (CALLAPPRS POLY)
;;;
;;; Try to find approximate solutions to POLY, which should be a polynomial in a
;;; single variable. Uses STURM1 if we're only after real roots (because
;;; $REALONLY is set). Otherwise, calls $ALLROOTS.
(defun callapprs (poly)
(unless (punivarp poly)
(merror (intl:gettext "algsys: Couldn't reduce system to a polynomial in one variable.")))
(let ($dispflag)
(if $realonly
(let ((dis-var (pdis (list (car poly) 1 1))))
(mapcar #'(lambda (q)
(list (list '(mequal) dis-var (rflot q))))
(sturm1 poly (cons 1 $algepsilon))))
(mapcar #'list
(let* (($programmode t)
(roots (cdr ($allroots (pdis poly)))))
(if (eq (caaar roots) 'mequal)
roots
(cdr roots)))))))
(defun apprsys (lhsl)
(cond ((null lhsl) (list nil))
(t
(do ((tlhsl lhsl (cdr tlhsl))) (nil)
(cond ((null tlhsl)
;; SHOULD TRY TO BE MORE SPECIFIC: "TOO COMPLICATED" IN WHAT SENSE??
(merror (intl:gettext "algsys: system too complicated; give up.")))
((pconstp (car tlhsl)) (return nil))
((punivarp (car tlhsl))
(return (bakalevel (callapprs (car tlhsl))
lhsl nil))))))))
(defun tayapprox (p)
(cons '(mplus)
(mapcar #'(lambda (x)
(list '(mycabs) (pdis (ptimes (list x 1 1)
(pderivative p x)))))
(listovars p))))
(defmfun mycabs (x)
(and (complexnump x) (cabs x)))
;;; (DISTREP LOL)
;;;
;;; Take selections from LOL, a list of lists, using COMBINEY. When used by
;;; ALGSYS, the elements of the lists are per-equation solutions for some system
;;; of equations. COMBINEY combines the per-equation solutions into prospective
;;; solutions for the entire system.
;;;
;;; These prospective solutions are then filtered with CONDENSESOLNL, which
;;; discards special cases of more general solutions.
;;;
;;; (I don't understand why this reversal has to be here, but we get properly
;;; wrong solutions to some of the testsuite functions without it. Come back to
;;; this... RJS 1/2015)
(defun distrep (lol)
(condensesolnl (mapcar #'reverse (combiney lol))))
(defun exclude (l1 l2)
(cond ((null l2)
nil)
((member (car l2) l1 :test #'equal)
(exclude l1 (cdr l2)))
(t
(cons (car l2) (exclude l1 (cdr l2))))))
|