This file is indexed.

/usr/include/polymake/tropical/arithmetic.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/* Copyright (c) 1997-2018
	Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

/** @file TropicalArithmetic.h
  @brief Implementation of classes relevant for tropical computations.
  */

#ifndef POLYMAKE_TROPICAL_ARITHMETIC_H
#define POLYMAKE_TROPICAL_ARITHMETIC_H

#include "polymake/Rational.h"
#include "polymake/TropicalNumber.h"
#include "polymake/Array.h"
#include "polymake/Matrix.h"
#include "polymake/Vector.h"
#include "polymake/Set.h"
#include "polymake/graph/hungarian_method.h"


namespace pm {
   namespace operations {
      template <typename Addition, typename Scalar>
      struct div_skip_zero {
         typedef TropicalNumber<Addition, Scalar> first_argument_type;
         typedef TropicalNumber<Addition, Scalar> second_argument_type;
         typedef const TropicalNumber<Addition, Scalar> result_type;

         result_type operator() (typename function_argument<first_argument_type>::type a, typename function_argument<second_argument_type>::type b) const
         {
            if (is_zero(b)) {
               if (is_zero(a))
                  return TropicalNumber<Addition, Scalar>::zero();
               else if (std::is_same<Addition, Max>::value)
                  return TropicalNumber<Addition, Scalar>(std::numeric_limits<Scalar>::infinity());
               else
                  return TropicalNumber<Addition, Scalar>::dual_zero();
            }
            return a/b;
         }

         template <typename Iterator2>
         const first_argument_type& operator() (partial_left, typename function_argument<first_argument_type>::type a, const Iterator2&) const
         {
            if (is_zero(a))
               return zero_value<TropicalNumber<Addition, Scalar> >();
            else if (std::is_same<Addition, Max>::value)
               return TropicalNumber<Addition, Scalar>::zero();
            else
               return TropicalNumber<Addition, Scalar>::dual_zero();
         }

         template <typename Iterator1>
         const second_argument_type& operator() (partial_right, const Iterator1&, typename function_argument<second_argument_type>::type b) const
         {
            return zero_value<TropicalNumber<Addition, Scalar> >();
         }

      };
   }  }

namespace polymake {
   namespace operations {
      using pm::operations::div_skip_zero; }

   namespace tropical {


     /*
     *
     * @brief compute the tropical sum w.r.t. Addition and the entries where the extremum is attained
     */
        template <typename Addition, typename Scalar, typename VectorTop>
      std::pair< TropicalNumber<Addition, Scalar>, Set<int> > extreme_value_and_index (const GenericVector<VectorTop, TropicalNumber<Addition,Scalar> >& vector)
      {
	typedef TropicalNumber<Addition, Scalar> TNumber;
	TNumber extremum = accumulate(vector.top(), operations::add());
	Set<int> extremal_entries;
	int td_index = 0;
	for(auto td = entire(vector.top()); !td.at_end(); td++, td_index++) {
	  if(*td == extremum) extremal_entries += td_index;
	}
	return std::make_pair(extremum,extremal_entries);
	}

      /*
       * @brief coordinatewise tropical quotient of two vectors with special treatment for 
       * inf entries
       */

      template <typename Vector1, typename Vector2, typename Addition, typename Scalar>
      pm::LazyVector2<const Vector1&, const Vector2&, operations::div_skip_zero<Addition, Scalar> > 
      rel_coord(const GenericVector<Vector1, TropicalNumber<Addition, Scalar> > &point, 
                const GenericVector<Vector2, TropicalNumber<Addition, Scalar> > &apex) {
         return pm::LazyVector2<const Vector1&, const Vector2&, operations::div_skip_zero<Addition, Scalar> >(point.top(), apex.top());
      }

      /*
       * @brief compute a solution of a tropical linear equality as the tropical
       * nearest point projection on the tropical cone generated by the columns of the matrix
       * @param Matrix A 
       * @param Vector b
       * @return solution of the tropical linear equality if existent;
       * if there is no solution the result yields a 'nearest non-solution'
       */
      template <typename Addition, typename Scalar, typename MatrixTop, typename VectorTop>
      Vector<TropicalNumber<Addition, Scalar> > principal_solution(const GenericMatrix<MatrixTop, TropicalNumber<Addition, Scalar> > &A, const GenericVector<VectorTop, TropicalNumber<Addition, Scalar> > &b) {
         typedef TropicalNumber<Addition, Scalar> TNumber;
         int n(A.cols());
         Vector<TNumber> x(n);
         TNumber t_one(TNumber::one());
         for(typename pm::ensure_features<Cols <MatrixTop >, pm::cons<pm::end_sensitive, pm::indexed> >::const_iterator col=entire(ensure(cols(A.top()),(pm::indexed*)0)); !col.at_end(); col++) {
            x[col.index()] = t_one/accumulate(rel_coord(*col, b.top()), operations::add());
         }
         return x;
      }
     
         
      template <typename Addition, typename Scalar, typename MatrixTop>
      std::pair< TropicalNumber<Addition, Scalar>, Array<int> > tdet_and_perm(const GenericMatrix<MatrixTop, TropicalNumber<Addition,Scalar> >& matrix)
      {
         Scalar value(zero_value<Scalar>()); // empty matrix has tropical determinant zero
         const int d(matrix.rows());
         if (d != matrix.cols())
            throw std::runtime_error("input matrix has to be quadratic");
         
         // Checking for zero columns or rows
         for(typename Entire<Cols <MatrixTop > >::const_iterator c = entire(cols(matrix.top())); !c.at_end(); c++) {
            if (is_zero(*c)) return std::make_pair(zero_value<TropicalNumber<Addition, Scalar> >(), Array<int>(sequence(0,d)));
         }
         for(typename Entire<Rows <MatrixTop > >::const_iterator r = entire(rows(matrix.top())); !r.at_end(); r++) {
            if (is_zero(*r)) return std::make_pair(zero_value<TropicalNumber<Addition, Scalar> >(), Array<int>(sequence(0,d)));
         }

         graph::HungarianMethod<Scalar> HM(Addition::orientation()*Matrix<Scalar>(matrix.top()));
         HM.stage();
         return std::make_pair(TropicalNumber<Addition, Scalar>(Addition::orientation()*HM.get_value()), HM.get_matching());
         //return std::make_pair(TropicalNumber<Addition,Scalar>(value),perm);
      }

      template <typename Addition, typename Scalar, typename MatrixTop>
      TropicalNumber<Addition, Scalar> tdet(const GenericMatrix<MatrixTop, TropicalNumber<Addition,Scalar> >& matrix)
      {
         return tdet_and_perm(matrix).first;
      }

      
      template <typename Addition, typename Scalar, typename MatrixTop>
      std::pair< TropicalNumber<Addition, Scalar>, Array<int> > second_tdet_and_perm(const GenericMatrix<MatrixTop, TropicalNumber<Addition,Scalar> >& matrix)
      {
         typedef TropicalNumber<Addition,Scalar> TNumber;
         TNumber value(zero_value<TNumber>()); // empty matrix has tropical determinant zero
         const int d(matrix.rows());
         if (d != matrix.cols())
            throw std::runtime_error("input matrix has to be quadratic");
         
         // Checking for zero columns or rows
         for(typename Entire<Cols <MatrixTop > >::const_iterator c = entire(cols(matrix.top())); !c.at_end(); c++) {
            if (is_zero(*c)) return std::make_pair(zero_value<TNumber >(), Array<int>(sequence(0,d)));
         }
         for(typename Entire<Rows <MatrixTop > >::const_iterator r = entire(rows(matrix.top())); !r.at_end(); r++) {
            if (is_zero(*r)) return std::make_pair(zero_value<TNumber >(), Array<int>(sequence(0,d)));
         }

         const Array<int> perm(tdet_and_perm(matrix).second);//perm(graph::HungarianMethod<Scalar>(Addition::orientation()*Matrix<Scalar>(matrix.top())).stage());

         // successively setting the entries which form the optimal permutation to tropical zero
         // -- this should be replaced by an incremental change of entries resulting in
         // O(n^2) operations per changed entry and O(n^3) in total --
         Matrix<TNumber> modmatrix(matrix.top());
         Array< Array<int> > modperm(d);
         Vector<TNumber> modval(ones_vector<TNumber>(d));
         TNumber oldentry;
         for(int j = 0; j < d; ++j) {
            oldentry = modmatrix(j, perm[j]);
            modmatrix(j, perm[j]) = zero_value<TNumber>();
            modperm[j] = tdet_and_perm(modmatrix).second; //graph::HungarianMethod<Scalar>(Addition::orientation()*Matrix<Scalar>(modmatrix)).stage();
            for(int k = 0; k < d; ++k) modval[j] *= modmatrix(k,modperm[j][k]);
            modmatrix(j, perm[j]) = oldentry;
         }
         value = extreme_value_and_index(modval).first;
         int index = (extreme_value_and_index(modval).second).front();
         return std::make_pair(value,modperm[index]);
      }

      
      template <typename Addition, typename Scalar, typename MatrixTop>
      Vector<TropicalNumber<Addition, Scalar> > cramer(const GenericMatrix<MatrixTop, TropicalNumber<Addition,Scalar> >& matrix)
      {
         // The runtime of the implementation is about O(d^4). 
         // It could be improved to O(d^3) by an incremental approach which does not also
         // recompute the whole tropical determinant.

         const int d(matrix.cols());
         if (d != matrix.rows()+1)
            throw std::runtime_error("input matrix has to have one row less than the column number");

         
         Vector<TropicalNumber<Addition,Scalar> > solvec(d);
         for(int k = 0; k < d; ++k) {
            solvec[k] = tdet(matrix.top().minor(All, ~scalar2set(k)));
         }
         return solvec;
      }


      template <typename Addition, typename Scalar, typename MatrixTop>
      Vector<TropicalNumber<Addition, Scalar> > subcramer(const GenericMatrix<MatrixTop, TropicalNumber<Addition,Scalar> >& matrix, Set<int> J, Set<int> I)
      {
         if (I.size() != J.size()+1)
            throw std::runtime_error("|I| = |J| + 1 is required.");

         Vector<TropicalNumber<Addition,Scalar> > solvec(matrix.cols());
         for(auto i : I) {
            solvec[i] = tdet(matrix.top().minor(J, (I-scalar2set(i))));
         }
         return solvec;
      }


      // tropical distance function; notice that the tropical Addition is not relevant
      template <typename Addition, typename Scalar, typename VectorTop>
      Scalar tdist(const GenericVector< VectorTop, TropicalNumber<Addition, Scalar> >& v, const GenericVector< VectorTop, TropicalNumber<Addition, Scalar> >& w) {
         Vector<Scalar> diff(Vector<Scalar>(v) - Vector<Scalar>(w)); // this is ordinary subtraction
         Scalar min,max;
         for (int i=0; i<diff.dim(); ++i)
            assign_min_max(min,max,diff[i]);
         return max-min;
      }

      // tropical diameter of a simplex; notice that the tropical Addition is not relevant
      template <typename Addition, typename Scalar, typename MatrixTop>
      Scalar tdiam(const GenericMatrix< MatrixTop, TropicalNumber<Addition,Scalar> >& matrix) {
         const int d(matrix.cols());
         Scalar td(zero_value<Scalar>());
         for (int i=0; i<d-1; ++i) {
            for (int k=i+1; k<d; ++k)
               assign_max(td,tdist(matrix.col(i),matrix.col(k)));
         }
         return td;
      }

      
} }

#endif // POLYMAKE_TROPICAL_ARITHMETIC_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: