/usr/include/polymake/topaz/complex_tools.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
#ifndef POLYMAKE_TOPAZ_COMPLEX_TOOLS_H
#define POLYMAKE_TOPAZ_COMPLEX_TOOLS_H
#include "polymake/Array.h"
#include "polymake/PowerSet.h"
#include "polymake/graph/ShrinkingLattice.h"
#include "polymake/graph/LatticeTools.h"
#include "polymake/list"
#include <string>
/** Tools to treat simplicial complexes.
*
* A simplicial complex is represented as a list of its FACETS, encoded as their vertex sets.
* Therefore any container of GenericSet of int (template <typename Complex>) may be used to
* represent a complex. In the following std::list< polymake::Set<int> >, polymake::PowerSet<int>
* and polymake::Array< polymake::Set<int> > are used.
*/
namespace polymake { namespace topaz {
using graph::HasseDiagram_facet_iterator;
using graph::Lattice;
using graph::ShrinkingLattice;
using graph::lattice::BasicDecoration;
// Computes the k_skeleton of a simplicial complex.
template <typename Complex>
PowerSet<int> k_skeleton(const Complex& C, const int k);
template <typename Complex, typename Set>
struct link_helper {
typedef pm::constant_value_container<const Set&> same_set;
typedef pm::SelectedContainerPairSubset< const Complex&, same_set, operations::includes >
selected_facets;
typedef pm::SelectedContainerPairSubset< const Complex&, same_set,
operations::composed21<operations::includes, std::logical_not<bool> > >
deletion_type;
typedef pm::TransformedContainerPair< selected_facets, same_set, operations::sub >
result_type;
};
// Computes the star of a given face F.
template <typename Complex, typename Set> inline
typename link_helper<Complex,Set>::selected_facets
star(const Complex& C, const GenericSet< Set,int >& F)
{
return typename link_helper<Complex,Set>::selected_facets(C, F.top());
}
// Computes the deletion of a given face F.
template <typename Complex, typename Set> inline
typename link_helper<Complex,Set>::deletion_type
deletion(const Complex& C, const GenericSet< Set,int >& F)
{
return typename link_helper<Complex,Set>::deletion_type(C, F.top());
}
// Computes the link of a given face F.
template <typename Complex, typename Set> inline
typename link_helper<Complex,Set>::result_type
link(const Complex& C, const GenericSet< Set,int >& F)
{
return typename link_helper<Complex,Set>::result_type(star(C,F), F.top());
}
struct star_maker {
typedef HasseDiagram_facet_iterator<Lattice<BasicDecoration>> argument_type;
typedef const Set<int>& result_type;
result_type operator() (const argument_type& it) const { return it.face(); }
};
struct link_maker {
int start_face;
link_maker(int start_arg=-1) : start_face(start_arg) {}
typedef HasseDiagram_facet_iterator<Lattice<BasicDecoration>> argument_type;
typedef pm::LazySet2<const Set<int>&, const Set<int>&, pm::set_difference_zipper> result_type;
result_type operator() (const argument_type& it) const { return it.face()-it.face(start_face); }
};
// Enumerates the star of a face (specified by it's index in the HasseDiagram.
typedef pm::unary_transform_iterator<HasseDiagram_facet_iterator<Lattice<BasicDecoration> >, star_maker> star_enumerator;
inline
star_enumerator star_in_HD(const Lattice<BasicDecoration>& HD, const int f)
{
return HasseDiagram_facet_iterator<Lattice<BasicDecoration> >(HD,f);
}
// Enumerates the link of a face (specified by it's index in the HasseDiagram.
typedef pm::unary_transform_iterator<HasseDiagram_facet_iterator<Lattice<BasicDecoration>>, link_maker> link_enumerator;
inline
link_enumerator link_in_HD(const Lattice<BasicDecoration>& HD, const int f)
{
return link_enumerator(HasseDiagram_facet_iterator<Lattice<BasicDecoration>>(HD,f), f);
}
// Enumerates the vertex star of a complex represented as a Hasse Diagram and a given vertex v.
inline
star_enumerator vertex_star_in_HD(const Lattice<BasicDecoration>& HD, const int v)
{
return star_in_HD(HD, find_vertex_node(HD,v));
}
// Computes the vertex link of a complex represented as a Hasse Diagram and a given vertex v.
inline
link_enumerator vertex_link_in_HD(const Lattice<BasicDecoration>& HD, const int v)
{
return link_in_HD(HD, find_vertex_node(HD,v));
}
// Computes the vertex set of the link of the vertex v.
Set<int> vertices_of_vertex_link(const Lattice<BasicDecoration>& HD, const int v);
class out_degree_checker {
public:
typedef void argument_type;
typedef bool result_type;
out_degree_checker(int degree_arg=0) : degree(degree_arg) { }
template <typename Iterator>
result_type operator() (const Iterator& node_it) const
{
return node_it.out_degree()==degree;
}
protected:
int degree;
};
// Computes the boundary complex (= ridges contained in one facet only)
// of a PSEUDO_MANIFOLD. The complex is encoded as a Hasse Diagrams.
typedef pm::IndexedSubset<const NodeMap<Directed, BasicDecoration>&, Lattice<BasicDecoration>::nodes_of_rank_type> faces_of_dim_set;
typedef pm::SelectedSubset<faces_of_dim_set, out_degree_checker> Boundary_of_PseudoManifold;
inline
Boundary_of_PseudoManifold boundary_of_pseudo_manifold(const Lattice<BasicDecoration>& PM)
{
return Boundary_of_PseudoManifold(faces_of_dim_set(PM.decoration(), PM.nodes_of_rank(PM.rank()-2)), out_degree_checker(1));
}
// Removes the vertex star of v from a complex C, represented as a Hasse Diagram.
void remove_vertex_star(ShrinkingLattice<BasicDecoration>& HD, const int v);
// Removes a facet F from a simplicial complex, represented as a Hasse Diagram.
template <typename Set>
void remove_facet(ShrinkingLattice<BasicDecoration>& HD, const GenericSet< Set,int >& F);
// Checks whether a 1-complex (graph) is a 1-ball or 1-sphere.
// return values: 1=true, 0=false, -1=undef (does not occur here)
template <typename Complex, typename VertexSet>
int is_ball_or_sphere(const Complex& C, const GenericSet<VertexSet>& V, int_constant<1>);
// Checks whether a 2-complex is a 2-ball or 2-sphere.
// return values: 1=true, 0=false, -1=undef (does not occur here)
template <typename Complex, typename VertexSet>
int is_ball_or_sphere(const Complex& C, const GenericSet<VertexSet>& V, int_constant<2>);
// Checks whether a 1-complex (graph) is a manifold.
// return values: 1=true, 0=false, -1=undef (does not occur here)
template <typename Complex, typename VertexSet>
int is_manifold(const Complex& C, const GenericSet<VertexSet>& V, int_constant<1>, int *bad_link_p=0);
// Heuristic check whether a complex of arbitrary dimension d is a manifold.
// If not, *bad_link_p = vertex whose link is neither a ball nor a sphere
// return values: 1=true, 0=false, -1=undef
template <typename Complex, typename VertexSet, int d>
int is_manifold(const Complex& C, const GenericSet<VertexSet>& V, int_constant<d>, int *bad_link_p=0);
// heuristic sphere checking
// return values: 1=true, 0=false, -1=undef
template <typename Complex, int d>
int is_ball_or_sphere(const Complex& C, int_constant<d>);
// The same for a trusted complex (pure, without gaps in vertex numbering)
// return values: 1=true, 0=false, -1=undef
template <typename Complex, int d> inline
int is_ball_or_sphere(const Complex& C, int n_vertices, int_constant<d>)
{
return is_ball_or_sphere(C, sequence(0,n_vertices), int_constant<d>());
}
template <typename Complex, int d>
// return values: 1=true, 0=false, -1=undef
int is_manifold(const Complex& C, int_constant<d>, int* bad_link_p=nullptr);
// The same for a trusted complex (pure, without gaps in vertex numbering)
// return values: 1=true, 0=false, -1=undef
template <typename Complex, int d> inline
int is_manifold(const Complex& C, int n_vertices, int_constant<d>, int* bad_link_p=nullptr)
{
return is_manifold(C, sequence(0,n_vertices), int_constant<d>(), bad_link_p);
}
/// Adjusts the vertex numbers to 0..n-1.
/// @retval true if the numbering has been adjusted
template <typename Complex, typename Set>
bool adj_numbering(Complex& C, const Set& V);
// Checks whether a complex, represented as a Hasse Diagram, is a closed pseudo manifold.
bool is_closed_pseudo_manifold(const Lattice<BasicDecoration>& HD, bool known_pure);
// Checks whether a complex, represented as a Hasse Diagram, is a pseudo manifold
// and computes its boundary.
template <typename OutputIterator>
bool is_pseudo_manifold(const Lattice<BasicDecoration>& HD, bool known_pure, OutputIterator boundary_consumer, int *bad_face_p=0);
// Checks whether a complex, represented as a Hasse Diagram, is a pseudo manifold.
inline
bool is_pseudo_manifold(const Lattice<BasicDecoration>& HD, bool known_pure, int *bad_face_p=0)
{
return is_pseudo_manifold(HD, known_pure, black_hole< Set<int> >(), bad_face_p);
}
bool is_pure(const Lattice<BasicDecoration>& HD);
// The torus.
Array< Set<int> > torus_facets();
// The real projective plane.
Array< Set<int> > real_projective_plane_facets();
// The complex projective plane.
Array< Set<int> > complex_projective_plane_facets();
} }
#include "polymake/topaz/complex_tools.tcc"
#include "polymake/topaz/subcomplex_tools.tcc"
#include "polymake/topaz/1D_tools.tcc"
#include "polymake/topaz/2D_tools.tcc"
#endif // POLYMAKE_TOPAZ_COMPLEX_TOOLS_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|