/usr/include/polymake/next/SparseMatrix.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
/** @file SparseMatrix.h
@brief Implementation of pm::SparseMatrix class
*/
#ifndef POLYMAKE_SPARSE_MATRIX_H
#define POLYMAKE_SPARSE_MATRIX_H
#include "polymake/internal/sparse2d.h"
#include "polymake/Matrix.h"
#include "polymake/SparseVector.h"
#include "polymake/Array.h"
namespace pm {
template <typename Iterator=void>
class skew_negator {
protected:
int diag;
operations::neg<typename iterator_traits<Iterator>::reference> op;
public:
skew_negator(int diag_arg=-1) : diag(diag_arg) {}
typedef Iterator argument_type;
typedef typename iterator_traits<Iterator>::value_type result_type;
result_type operator() (const argument_type& it) const
{
if (it.index() > diag) return op(*it);
return *it;
}
};
template <>
class skew_negator<void> : operations::incomplete {
protected:
int diag;
public:
skew_negator(int diag_arg=-1) : diag(diag_arg) {}
operator int () const { return diag; }
};
template <typename Iterator, typename Reference>
struct unary_op_builder< skew_negator<void>, Iterator, Reference > {
typedef skew_negator<Iterator> operation;
static operation create(int diag_arg) { return operation(diag_arg); }
};
template <typename TreeRef, typename symmetric> class sparse_matrix_line;
template <bool rowwise, typename symmetric, typename BaseRef=void> class sparse_matrix_line_factory;
template <typename E, typename symmetric> class SparseMatrix_base;
template <typename TreeRef, typename symmetric>
struct sparse_matrix_line_params
: sparse2d::line_params<TreeRef> {};
template <typename TreeRef>
struct sparse_matrix_line_params<TreeRef, SkewSymmetric>
: mlist_concat< typename sparse2d::line_params<TreeRef>::type,
OperationTag< skew_negator<> > > {
public:
operations::identity<int> get_operation() const
{
return operations::identity<int>();
}
};
template <typename TreeRef, typename TSymmetric>
class sparse_matrix_line_ops
: public modified_tree< sparse_matrix_line<TreeRef, TSymmetric>,
typename sparse_matrix_line_params<TreeRef, TSymmetric>::type >,
public GenericVector< sparse_matrix_line<TreeRef, TSymmetric>,
typename deref<TreeRef>::type::mapped_type> {};
template <typename TreeRef>
class sparse_matrix_line_ops<TreeRef, SkewSymmetric>
: public modified_tree< sparse_matrix_line<TreeRef, SkewSymmetric>,
typename sparse_matrix_line_params<TreeRef, SkewSymmetric>::type >,
public GenericVector< sparse_matrix_line<TreeRef, SkewSymmetric>,
typename deref<TreeRef>::type::mapped_type> {
typedef modified_tree< sparse_matrix_line<TreeRef, SkewSymmetric>,
typename sparse_matrix_line_params<TreeRef, SkewSymmetric>::type > base_t;
public:
typedef typename deref<TreeRef>::type::mapped_type value_type;
skew_negator<> get_operation() const
{
return this->top().index();
}
protected:
template <typename TVector>
void assign(const TVector& v)
{
assign_sparse(this->top().get_container(), attach_operation(ensure(v, (pure_sparse*)0), get_operation()).begin());
}
template <typename Operation>
void assign_op(const Operation& op)
{
perform_assign(entire(this->top().get_container()), op);
}
template <typename TVector, typename Operation>
typename std::enable_if<!operations::is_partially_defined_for<Operation, sparse_matrix_line_ops, TVector>::value, void>::type
assign_op(const TVector& v, const Operation& op)
{
perform_assign(entire(this->top().get_container()), v.begin(), op);
}
template <typename TVector, typename Operation>
typename std::enable_if<operations::is_partially_defined_for<Operation, sparse_matrix_line_ops, TVector>::value, void>::type
assign_op(const TVector& v, const Operation& op)
{
perform_assign_sparse(this->top().get_container(), attach_operation(ensure(v, (pure_sparse*)0), get_operation()).begin(), op);
}
void fill_impl(typename function_argument<value_type>::type x, pure_sparse)
{
if (x)
fill_sparse(this->top().get_container(), attach_operation(ensure(constant(x), (indexed*)0), get_operation()).begin());
else
this->clear();
}
public:
typename base_t::iterator insert(int i, const value_type& x)
{
operations::neg<const value_type&> op;
return base_t::insert(i, i > this->top().index() ? op(x) : x);
}
typename base_t::iterator insert(const typename base_t::iterator& pos, int i)
{
return base_t::insert(pos, i);
}
typename base_t::iterator insert(const typename base_t::iterator& pos, int i, const value_type& x)
{
operations::neg<const value_type&> op;
return base_t::insert(pos, i, i > this->top().index() ? op(x) : x);
}
};
template <typename TreeRef, typename symmetric>
class sparse_matrix_line_base
: public sparse_matrix_line_ops<TreeRef, symmetric> {
protected:
typedef nothing first_arg_type;
typedef nothing second_arg_type;
~sparse_matrix_line_base();
public:
int index() const { return this->get_container().get_line_index(); }
};
template <typename Tree, typename symmetric>
class sparse_matrix_line_base<Tree&, symmetric>
: public sparse_matrix_line_ops<Tree&, symmetric> {
protected:
typedef typename deref<Tree>::type tree_type;
typedef typename inherit_ref<SparseMatrix_base<typename sparse_matrix_line_base::element_type, symmetric>, Tree&>::type matrix_ref;
typedef typename attrib<matrix_ref>::plus_const const_matrix_ref;
alias<matrix_ref> matrix;
int line_index;
typedef typename alias<matrix_ref>::arg_type first_arg_type;
typedef int second_arg_type;
sparse_matrix_line_base(first_arg_type arg1, second_arg_type arg2)
: matrix(arg1), line_index(arg2) {}
public:
typename inherit_const<typename sparse_matrix_line_base::container, Tree>::type& get_container()
{
return matrix->get_table().get_line(line_index, (tree_type*)0);
}
const typename sparse_matrix_line_base::container& get_container() const
{
return matrix->get_table().get_line(line_index, (tree_type*)0);
}
int index() const { return line_index; }
};
template <typename TreeRef, typename symmetric>
class sparse_matrix_line
: public sparse_matrix_line_base<TreeRef, symmetric> {
typedef sparse_matrix_line_base<TreeRef, symmetric> base_t;
friend class GenericVector<sparse_matrix_line>;
template <typename,typename> friend class SparseMatrix;
template <typename,typename> friend class GenericMatrix;
public:
sparse_matrix_line(typename base_t::first_arg_type arg1, typename base_t::second_arg_type arg2)
: base_t(arg1, arg2) {}
static const bool is_skew_symmetric=std::is_same<symmetric, SkewSymmetric>::value;
typedef typename std::conditional<std::is_same<symmetric, NonSymmetric>::value, nothing, symmetric>::type operate_on_lower;
protected:
using base_t::assign_op;
template <typename TVector, typename Operation>
typename std::enable_if<!operations::is_partially_defined_for<Operation, sparse_matrix_line, TVector>::value, void>::type
assign_op(const TVector& v, const Operation& op, operate_on_lower)
{
perform_assign(entire(sparse2d::select_lower_triangle(this->get_container())), v.begin(), op);
}
template <typename TVector, typename Operation>
typename std::enable_if<operations::is_partially_defined_for<Operation, sparse_matrix_line, TVector>::value, void>::type
assign_op(const TVector& v, const Operation& op, operate_on_lower)
{
perform_assign_sparse(sparse2d::select_lower_triangle(this->get_container()),
attach_truncator(ensure(v, (pure_sparse*)0), index_truncator(this->index())).begin(), op);
}
public:
sparse_matrix_line& operator= (sparse_matrix_line& other)
{
return sparse_matrix_line::generic_type::operator=(other);
}
using sparse_matrix_line::generic_type::operator=;
typedef typename deref<TreeRef>::type::mapped_type value_type;
protected:
typedef sparse_proxy_base< sparse2d::line<typename deref<TreeRef>::type> > proxy_base;
public:
typedef typename std::conditional<is_skew_symmetric, const value_type, const value_type&>::type const_reference;
typedef typename std::conditional<attrib<TreeRef>::is_const,
const_reference, sparse_elem_proxy<proxy_base, value_type, symmetric>>::type
reference;
typedef random_access_iterator_tag container_category;
const_reference operator[] (int i) const
{
return deref_sparse_iterator(this->find(i));
}
protected:
reference random_impl(int i, std::false_type) { return proxy_base(this->get_container(),i); }
reference random_impl(int i, std::true_type) const { return operator[](i); }
public:
reference operator[] (int i)
{
return random_impl(i, bool_constant<attrib<TreeRef>::is_const>());
}
int dim() const { return this->get_container().dim(); }
protected:
typedef typename std::conditional<std::is_same<symmetric, NonSymmetric>::value, maximal<int>, int>::type input_limit_type;
maximal<int> _get_input_limit(type2type< maximal<int> >) const { return maximal<int>(); }
int _get_input_limit(type2type<int>) const { return this->index(); }
friend
input_limit_type get_input_limit(sparse_matrix_line& me)
{
return me._get_input_limit(type2type<input_limit_type>());
}
};
template <typename TreeRef, typename symmetric>
struct check_container_feature<sparse_matrix_line<TreeRef,symmetric>, pure_sparse> : std::true_type {};
template <typename TreeRef, typename symmetric>
struct spec_object_traits< sparse_matrix_line<TreeRef,symmetric> >
: spec_object_traits<is_container> {
static const bool is_temporary=attrib<TreeRef>::is_reference,
is_always_const=attrib<TreeRef>::is_const;
typedef typename std::conditional<is_temporary, void, typename deref<TreeRef>::type>::type masquerade_for;
static const int is_resizeable= deref<TreeRef>::type::fixed_dim ? 0 : -1;
};
template <typename E, sparse2d::restriction_kind restriction=sparse2d::only_rows>
class RestrictedSparseMatrix
: public matrix_methods<RestrictedSparseMatrix<E,restriction>, E> {
protected:
typedef sparse2d::Table<E, false, restriction> table_type;
table_type data;
table_type& get_table() { return data; }
const table_type& get_table() const { return data; }
template <typename Iterator, typename TLines>
static
void copy_linewise(Iterator&& src, TLines& lines, std::true_type)
{
copy_range(std::forward<Iterator>(src), entire(lines));
}
template <typename Iterator, typename TLines>
void copy_linewise(Iterator&& src, TLines& lines, std::false_type)
{
for (int i=0; !src.at_end(); ++src, ++i)
append(lines, *src, i);
}
template <typename TLines, typename TVector>
void append(TLines& lines, const TVector& vec, int i)
{
for (auto v=ensure(vec, (sparse_compatible*)0).begin(); !v.at_end(); ++v)
lines[v.index()].push_back(i, *v);
}
typedef sparse_matrix_line<typename table_type::primary_tree_type, NonSymmetric> line_t;
public:
typedef E value_type;
typedef typename line_t::reference reference;
typedef const E& const_reference;
explicit RestrictedSparseMatrix(int n=0) : data(n) {}
RestrictedSparseMatrix(int r, int c) : data(r,c) {}
template <typename Iterator, typename Dir,
typename=typename std::enable_if<is_among<Dir, sparse2d::rowwise, sparse2d::columnwise>::value &&
assess_iterator_value<Iterator, can_initialize, Vector<E>>::value &&
(Dir::value==restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>::type>
RestrictedSparseMatrix(int n, Dir, Iterator&& src)
: data(n)
{
copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, sparse2d::restriction_const<restriction>()),
bool_constant<Dir::value==restriction>());
}
template <typename Iterator, typename Dir,
typename=typename std::enable_if<is_among<Dir, sparse2d::rowwise, sparse2d::columnwise>::value &&
assess_iterator_value<Iterator, can_initialize, Vector<E>>::value &&
(Dir::value==restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>::type>
RestrictedSparseMatrix(int r, int c, Dir, Iterator&& src)
: data(r, c)
{
copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, sparse2d::restriction_const<restriction>()),
bool_constant<Dir::value==restriction>());
}
RestrictedSparseMatrix(RestrictedSparseMatrix&& M)
: data(std::move(M.data)) {}
template <typename Container, typename=typename std::enable_if<isomorphic_to_container_of<Container, Vector<E>, allow_conversion>::value &&
restriction==sparse2d::only_rows>::type>
RestrictedSparseMatrix(const Container& src)
: data(src.size())
{
copy_linewise(src.begin(), pm::rows(*this), std::true_type());
}
void swap(RestrictedSparseMatrix& M)
{
data.swap(M.data);
}
void clear() { data.clear(); }
protected:
reference random_impl(int i, int j, std::false_type)
{
return this->row(i)[j];
}
reference random_impl(int i, int j, std::true_type)
{
return this->col(j)[i];
}
const_reference random_impl(int i, int j, std::false_type) const
{
return this->row(i)[j];
}
const_reference random_impl(int i, int j, std::true_type) const
{
return this->col(j)[i];
}
public:
reference operator() (int i, int j)
{
return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
}
const_reference operator() (int i, int j) const
{
return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
}
private:
template <typename Iterator>
void append_rows_impl(int n, Iterator src, std::true_type)
{
int oldrows=data.rows();
data.resize_rows(oldrows+n);
for (auto dst=pm::rows(*this).begin()+oldrows; n>0; ++src, ++dst, --n)
*dst=*src;
}
template <typename Iterator>
void append_rows_impl(int n, Iterator src, std::false_type)
{
for (int r=data.rows(); n>0; ++src, ++r, --n)
append(pm::cols(*this), *src, r);
}
template <typename Iterator>
void append_cols_impl(int n, Iterator src, std::true_type)
{
int oldcols=data.cols();
data.resize_cols(oldcols+n);
for (auto dst=pm::cols(*this).begin()+oldcols; n>0; ++src, ++dst, --n)
*dst=*src;
}
template <typename Iterator>
void append_cols_impl(int n, Iterator src, std::false_type)
{
for (int c=data.cols(); n>0; ++src, ++c, --n)
append(pm::rows(*this), *src, c);
}
public:
template <typename Matrix>
RestrictedSparseMatrix& operator/= (const GenericMatrix<Matrix>& m)
{
append_rows_impl(m.rows(), pm::rows(m).begin(), bool_constant<restriction==sparse2d::only_rows>());
return *this;
}
template <typename Vector>
RestrictedSparseMatrix& operator/= (const GenericVector<Vector>& v)
{
append_rows_impl(1, &v.top(), bool_constant<restriction==sparse2d::only_rows>());
return *this;
}
template <typename Matrix>
RestrictedSparseMatrix& operator|= (const GenericMatrix<Matrix>& m)
{
append_cols_impl(m.cols(), pm::cols(m).begin(), bool_constant<restriction==sparse2d::only_cols>());
return *this;
}
template <typename Vector>
RestrictedSparseMatrix& operator|= (const GenericVector<Vector>& v)
{
append_cols_impl(1, &v.top(), bool_constant<restriction==sparse2d::only_cols>());
return *this;
}
void squeeze() { data.squeeze(); }
template <typename TPerm>
typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
permute_rows(const TPerm& perm)
{
data.permute_rows(perm, std::false_type());
}
template <typename TPerm>
typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
permute_cols(const TPerm& perm)
{
data.permute_cols(perm, std::false_type());
}
template <typename TInvPerm>
typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
permute_inv_rows(const TInvPerm& inv_perm)
{
data.permute_rows(inv_perm, std::true_type());
}
template <typename TInvPerm>
typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
permute_inv_cols(const TInvPerm& inv_perm)
{
data.permute_cols(inv_perm, std::true_type());
}
#if POLYMAKE_DEBUG
void check() const { data.check(); }
#endif
friend class Rows<RestrictedSparseMatrix>;
friend class Cols<RestrictedSparseMatrix>;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
template <typename,typename> friend class SparseMatrix;
};
template <typename E, sparse2d::restriction_kind restriction>
struct spec_object_traits< RestrictedSparseMatrix<E, restriction> >
: spec_object_traits<is_container> {
static const int dimension=2;
typedef typename std::conditional<restriction==sparse2d::only_rows,
Rows< RestrictedSparseMatrix<E, restriction> >,
Cols< RestrictedSparseMatrix<E, restriction> > >::type serialized;
static serialized& serialize(RestrictedSparseMatrix<E, restriction>& M)
{
return reinterpret_cast<serialized&>(M);
}
static const serialized& serialize(const RestrictedSparseMatrix<E, restriction>& M)
{
return reinterpret_cast<const serialized&>(M);
}
};
template <typename E, sparse2d::restriction_kind restriction>
class Rows< RestrictedSparseMatrix<E, restriction> >
: public sparse2d::Rows< RestrictedSparseMatrix<E, restriction>, E, false, restriction,
operations::masquerade2<sparse_matrix_line, NonSymmetric> > {
protected:
~Rows();
public:
typedef typename std::conditional<restriction==sparse2d::only_rows, random_access_iterator_tag, output_iterator_tag>::type
container_category;
};
template <typename E, sparse2d::restriction_kind restriction>
class Cols< RestrictedSparseMatrix<E, restriction> >
: public sparse2d::Cols< RestrictedSparseMatrix<E, restriction>, E, false, restriction,
operations::masquerade2<sparse_matrix_line, NonSymmetric> > {
protected:
~Cols();
public:
typedef typename std::conditional<restriction==sparse2d::only_cols, random_access_iterator_tag, output_iterator_tag>::type
container_category;
};
template <typename E, typename symmetric>
class SparseMatrix_base {
protected:
typedef sparse2d::Table<E, symmetric::value> table_type;
shared_object<table_type, AliasHandlerTag<shared_alias_handler>> data;
table_type& get_table() { return *data; }
const table_type& get_table() const { return *data; }
friend SparseMatrix_base& make_mutable_alias(SparseMatrix_base& alias, SparseMatrix_base& owner)
{
alias.data.make_mutable_alias(owner.data);
return alias;
}
SparseMatrix_base() = default;
SparseMatrix_base(int r, int c)
: data(r, c) {}
template <sparse2d::restriction_kind restriction>
SparseMatrix_base(sparse2d::Table<E, symmetric::value, restriction>&& input_data)
: data(std::move(input_data)) {}
template <typename> friend class Rows;
template <typename> friend class Cols;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
template <bool, typename, typename> friend class sparse_matrix_line_factory;
template <typename, typename> friend class sparse_matrix_line_base;
template <typename, int> friend class alias;
};
template <typename E, typename symmetric>
class Rows< SparseMatrix_base<E,symmetric> >
: public sparse2d::Rows< SparseMatrix_base<E,symmetric>, E, symmetric::value, sparse2d::full,
operations::masquerade2<sparse_matrix_line, symmetric> > {
protected:
~Rows();
};
template <typename E, typename symmetric>
class Cols< SparseMatrix_base<E,symmetric> >
: public sparse2d::Cols< SparseMatrix_base<E,symmetric>, E, symmetric::value, sparse2d::full,
operations::masquerade2<sparse_matrix_line, symmetric> > {
protected:
~Cols();
};
/** @class SparseMatrix
@brief A two-dimensional associative array with row and column indices as keys.
A two-dimensional associative array with row and column indices as keys; elements equal to the default value (ElementType(),
which is 0 for most numerical types) are not stored, but implicitly encoded by the gaps in the key set.
Each row and column is organized as a balanced binary search (%AVL) tree.
*/
template <typename E, typename symmetric>
class SparseMatrix
: public SparseMatrix_base<E, symmetric>
, public GenericMatrix< SparseMatrix<E,symmetric>, E> {
protected:
typedef SparseMatrix_base<E, symmetric> base_t;
friend SparseMatrix& make_mutable_alias(SparseMatrix& alias, SparseMatrix& owner)
{
return static_cast<SparseMatrix&>(make_mutable_alias(static_cast<base_t&>(alias), static_cast<base_t&>(owner)));
}
// elementwise, non-symmetric
template <typename Iterator>
void init_impl(Iterator&& src_elem, std::true_type, std::false_type)
{
auto&& src=make_converting_iterator<E>(std::forward<Iterator>(src_elem));
const int n=this->cols();
for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i)
for (int i=0; i<n; ++i, ++src)
if (!is_zero(*src))
r_i->push_back(i, *src);
}
// elementwise, symmetric
template <typename Iterator>
void init_impl(Iterator&& src_elem, std::true_type, std::true_type)
{
auto&& src=make_converting_iterator<E>(std::forward<Iterator>(src_elem));
const int n=this->cols();
int d=0;
for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i) {
for (int i=0; i<=d; ++i, ++src)
if (!is_zero(*src))
r_i->push_back(i, *src);
++d; std::advance(src, n-d);
}
}
// rowwise, non-symmetric
template <typename Iterator>
void init_impl(Iterator&& src_rows, std::false_type, std::false_type)
{
for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i, ++src_rows)
*r_i = convert_lazily<E>(*src_rows);
}
// rowwise, symmetric
template <typename Iterator>
void init_impl(Iterator&& src_rows, std::false_type, std::true_type)
{
int d=0;
for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i, ++d, ++src_rows) {
int i;
for (auto src=make_converting_iterator<E>(ensure(*src_rows, (pure_sparse*)0).begin()); !src.at_end() && (i=src.index())<=d; ++src)
r_i->push_back(i, *src);
}
}
typedef sparse_matrix_line<typename base_t::table_type::primary_tree_type, symmetric> line_t;
public:
typedef typename std::conditional<symmetric::value, void, RestrictedSparseMatrix<E>>::type unknown_columns_type;
typedef E value_type;
typedef typename line_t::reference reference;
typedef typename line_t::const_reference const_reference;
/// create as empty
SparseMatrix() {}
/// Create a matrix with r rows and c columns, (implicitly) initialize all elements to 0.
SparseMatrix(int r, int c)
: base_t(r, c) {}
/**
Create a matrix with r rows and c columns, initialize the elements from a data sequence.
src should iterate either over r*c scalar values, corresponding to the elements in the row order
(the column index changes first,) or over r vectors of dimension c, corresponding to the matrix rows.
Zero input elements are filtered out.
*/
template <typename Iterator>
SparseMatrix(int r, int c, Iterator&& src)
: base_t(r, c)
{
init_impl(ensure_private_mutable(std::forward<Iterator>(src)),
bool_constant<object_traits<typename iterator_traits<Iterator>::value_type>::total_dimension == object_traits<E>::total_dimension>(),
symmetric());
}
/// Copy of a disguised Matrix object.
SparseMatrix(const GenericMatrix<SparseMatrix>& M)
: base_t(M.top()) {}
/// Copy of an abstract matrix of the same element type.
template <typename TMatrix2>
SparseMatrix(const GenericMatrix<TMatrix2, E>& M,
typename std::enable_if<SparseMatrix::template compatible_symmetry_types<TMatrix2>(), void**>::type=nullptr)
: base_t(M.rows(), M.cols())
{
init_impl(pm::rows(M).begin(), std::false_type(), symmetric());
}
/// Copy of an abstract matrix with element conversion.
template <typename TMatrix2, typename E2>
explicit SparseMatrix(const GenericMatrix<TMatrix2, E2>& M,
typename std::enable_if<(SparseMatrix::template compatible_symmetry_types<TMatrix2>() &&
can_initialize<E2, E>::value), void**>::type=nullptr)
: base_t(M.rows(), M.cols())
{
init_impl(pm::rows(M).begin(), std::false_type(), symmetric());
}
template <sparse2d::restriction_kind restriction, typename enabled=typename std::enable_if<!symmetric::value && restriction!=sparse2d::full>::type>
explicit SparseMatrix(RestrictedSparseMatrix<E, restriction>&& M)
: base_t(std::move(M.data)) {}
template <typename Container>
SparseMatrix(const Container& src,
typename std::enable_if<(isomorphic_to_container_of<Container, Vector<E>, allow_conversion>::value &&
!symmetric::value), void**>::type=nullptr)
: base_t(src.size(), src.empty() ? 0 : get_dim(src.front()))
{
init_impl(src.begin(), std::false_type(), symmetric());
}
/// Persistent matrix objects have after the assignment the same dimensions as the right hand side operand.
/// Alias objects, such as matrix minor or block matrix, cannot be resized, thus must have the same dimensions as on the right hand side.
SparseMatrix& operator= (const SparseMatrix& other) { assign(other); return *this; }
using SparseMatrix::generic_type::operator=;
template <sparse2d::restriction_kind restriction, typename enabled=typename std::enable_if<!symmetric::value && restriction!=sparse2d::full>::type>
SparseMatrix& operator= (RestrictedSparseMatrix<E, restriction>&& M)
{
this->data.replace(std::move(M.data));
return *this;
}
/// Exchange the contents of two matrices in a most efficient way.
/// If at least one non-persistent object is involved, the operands must have equal dimensions.
void swap(SparseMatrix& M) { this->data.swap(M.data); }
friend void relocate(SparseMatrix* from, SparseMatrix* to)
{
relocate(&from->data, &to->data);
}
/// Resize to new dimensions, added elements initialized with default constructor.
void resize(int r, int c) { this->data->resize(r,c); }
/// Truncate to 0x0 matrix.
void clear() { this->data.apply(shared_clear()); }
void clear(int r, int c) { this->data.apply(typename base_t::table_type::shared_clear(r,c)); }
reference operator() (int i, int j)
{
if (POLYMAKE_DEBUG) {
if (i<0 || i>this->rows() || j<0 || j>= this->cols())
throw std::runtime_error("SparseMatrix::operator() - index out of range");
}
return pm::rows(static_cast<base_t&>(*this))[i][j];
}
const_reference operator() (int i, int j) const
{
if (POLYMAKE_DEBUG) {
if (i<0 || i>this->rows() || j<0 || j>= this->cols())
throw std::runtime_error("SparseMatrix::operator() - index out of range");
}
return pm::rows(static_cast<const base_t&>(*this))[i][j];
}
/// Physically remove all zero elements that might have creeped in by some previous operation.
void remove0s()
{
for (auto r=entire(pm::rows(static_cast<base_t&>(*this))); !r.at_end(); ++r)
r->remove0s();
}
template <typename row_number_consumer, typename col_number_consumer>
void squeeze(const row_number_consumer& rnc, const col_number_consumer& cnc) { this->data->squeeze(rnc,cnc); }
template <typename row_number_consumer>
void squeeze(const row_number_consumer& rnc) { this->data->squeeze(rnc); }
/// Remove all empty (i.e., consisting entirely of implicit zeroes,) rows, renumber the rest, and reduce the dimensions.
void squeeze() { this->data->squeeze(); }
template <typename row_number_consumer>
void squeeze_rows(const row_number_consumer& rnc) { this->data->squeeze_rows(rnc); }
void squeeze_rows() { this->data->squeeze_rows(); }
template <typename col_number_consumer>
void squeeze_cols(const col_number_consumer& cnc) { this->data->squeeze_cols(cnc); }
/// Remove all empty (i.e., consisting entirely of implicit zeroes,) columns, renumber the rest, and reduce the dimensions.
void squeeze_cols() { this->data->squeeze_cols(); }
/// Permute the rows of the matrix without copying the elements.
/// These operations are nevertheless expensive, as they need to visit each element and adjust its indices.
template <typename TPerm>
typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
permute_rows(const TPerm& perm)
{
this->data->permute_rows(perm, std::false_type());
}
/// Permute the columns of the matrix without copying the elements.
/// These operations are nevetherless expensive, as they need to visit each element and adjust its indices.
template <typename TPerm>
typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
permute_cols(const TPerm& perm)
{
this->data->permute_cols(perm, std::false_type());
}
template <typename TInvPerm>
typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
permute_inv_rows(const TInvPerm& inv_perm)
{
this->data->permute_rows(inv_perm, std::true_type());
}
template <typename TInvPerm>
typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
permute_inv_cols(const TInvPerm& inv_perm)
{
this->data->permute_cols(inv_perm, std::true_type());
}
template <typename Perm, typename InvPerm>
SparseMatrix copy_permuted(const Perm& perm, const InvPerm& inv_perm,
typename std::enable_if<symmetric::value, mlist<Perm>*>::type=nullptr) const
{
const int n=this->rows();
SparseMatrix result(n,n);
result.data.get()->copy_permuted(*this->data, perm, inv_perm);
return result;
}
#if POLYMAKE_DEBUG
void check() const { this->data->check(); }
#endif
protected:
void assign(const GenericMatrix<SparseMatrix>& m) { this->data=m.top().data; }
template <typename Matrix2>
void assign(const GenericMatrix<Matrix2>& m)
{
if (this->data.is_shared() || this->rows() != m.rows() || this->cols() != m.cols())
*this=SparseMatrix(m);
else
SparseMatrix::generic_type::assign(m);
}
template <typename Operation>
void assign_op(const Operation& op)
{
if (this->data.is_shared())
*this=SparseMatrix(LazyMatrix1<const SparseMatrix&, Operation>(*this,op));
else
SparseMatrix::generic_type::assign_op(op);
}
template <typename Matrix2, typename Operation>
void assign_op(const Matrix2& m, const Operation& op)
{
if (this->data.is_shared())
*this=SparseMatrix(LazyMatrix2<const SparseMatrix&, const Matrix2&, Operation>(*this,m,op));
else
SparseMatrix::generic_type::assign_op(m,op);
}
template <typename Matrix2>
void append_rows(const Matrix2& m)
{
const int old_rows=this->rows();
this->data.apply(typename base_t::table_type::shared_add_rows(m.rows()));
copy_range(entire(pm::rows(m)), pm::rows(static_cast<base_t&>(*this)).begin()+old_rows);
}
template <typename Vector2>
void append_row(const Vector2& v)
{
const int old_rows=this->rows();
this->data.apply(typename base_t::table_type::shared_add_rows(1));
this->row(old_rows)=v;
}
template <typename Matrix2>
void append_cols(const Matrix2& m)
{
const int old_cols=this->cols();
this->data.apply(typename base_t::table_type::shared_add_cols(m.cols()));
copy_range(entire(pm::cols(m)), pm::cols(static_cast<base_t&>(*this)).begin()+old_cols);
}
template <typename Vector2>
void append_col(const Vector2& v)
{
const int old_cols=this->cols();
this->data.apply(typename base_t::table_type::shared_add_cols(1));
this->col(old_cols)=v;
}
template <typename E2>
void fill_impl(const E2& x, std::false_type)
{
if (this->data.is_shared())
clear(this->rows(), this->cols());
if (!is_zero(x))
SparseMatrix::generic_type::fill_impl(x, std::false_type());
}
void stretch_rows(int r)
{
this->data->resize_rows(r);
}
void stretch_cols(int c)
{
this->data->resize_cols(c);
}
template <typename, typename> friend class GenericMatrix;
friend class Rows<SparseMatrix>;
friend class Cols<SparseMatrix>;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
template <typename, typename> friend class RowChain;
template <typename, typename> friend class ColChain;
};
template <typename E, typename symmetric>
struct check_container_feature< SparseMatrix<E,symmetric>, pure_sparse > : std::true_type {};
template <typename E, typename symmetric>
struct check_container_feature< SparseMatrix<E,symmetric>, Symmetric > : std::is_same<symmetric, Symmetric> {};
template <typename E, typename symmetric>
struct check_container_feature< SparseMatrix<E,symmetric>, SkewSymmetric > : std::is_same<symmetric,SkewSymmetric> {};
template <bool rowwise, typename symmetric, typename BaseRef>
class sparse_matrix_line_factory {
public:
typedef BaseRef first_argument_type;
typedef int second_argument_type;
typedef typename std::conditional<rowwise, typename deref<BaseRef>::type::table_type::row_tree_type,
typename deref<BaseRef>::type::table_type::col_tree_type>::type
tree_type;
typedef sparse_matrix_line<typename inherit_ref<tree_type, BaseRef>::type, symmetric> result_type;
result_type operator() (BaseRef matrix, int index) const
{
return result_type(matrix,index);
}
};
template <bool rowwise, typename symmetric>
class sparse_matrix_line_factory<rowwise, symmetric, void> : public operations::incomplete {};
template <bool rowwise, typename symmetric, typename BaseRef>
struct operation_cross_const_helper< sparse_matrix_line_factory<rowwise, symmetric, BaseRef> > {
typedef sparse_matrix_line_factory<rowwise, symmetric, typename attrib<BaseRef>::minus_const> operation;
typedef sparse_matrix_line_factory<rowwise, symmetric, typename attrib<BaseRef>::plus_const> const_operation;
};
template <bool rowwise, typename symmetric, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< sparse_matrix_line_factory<rowwise,symmetric>, Iterator1, Iterator2, Reference1, Reference2>
: empty_op_builder< sparse_matrix_line_factory<rowwise,symmetric,Reference1> > {};
template <typename E, typename TSymmetric>
class Rows< SparseMatrix<E, TSymmetric> >
: public modified_container_pair_impl< Rows< SparseMatrix<E, TSymmetric> >,
mlist< Container1Tag< constant_value_container< SparseMatrix_base<E, TSymmetric>& > >,
Container2Tag< sequence >,
OperationTag< pair< sparse_matrix_line_factory<true, TSymmetric>,
BuildBinaryIt<operations::dereference2> > >,
MasqueradedTop > > {
protected:
~Rows();
public:
constant_value_container< SparseMatrix_base<E, TSymmetric>& > get_container1()
{
return this->hidden();
}
const constant_value_container< const SparseMatrix_base<E, TSymmetric>& > get_container1() const
{
return this->hidden();
}
sequence get_container2() const
{
return sequence(0, this->hidden().get_table().rows());
}
void resize(int n)
{
this->hidden().get_table().resize_rows(n);
}
};
template <typename E, typename TSymmetric>
class Cols< SparseMatrix<E, TSymmetric> >
: public modified_container_pair_impl< Cols< SparseMatrix<E, TSymmetric> >,
mlist< Container1Tag< constant_value_container< SparseMatrix_base<E, TSymmetric>& > >,
Container2Tag< sequence >,
OperationTag< pair< sparse_matrix_line_factory<false, TSymmetric>,
BuildBinaryIt<operations::dereference2> > >,
MasqueradedTop > > {
protected:
~Cols();
public:
constant_value_container< SparseMatrix_base<E, TSymmetric>& > get_container1()
{
return this->hidden();
}
const constant_value_container< const SparseMatrix_base<E, TSymmetric>& > get_container1() const
{
return this->hidden();
}
sequence get_container2() const
{
return sequence(0, this->hidden().get_table().cols());
}
void resize(int n)
{
this->hidden().get_table().resize_cols(n);
}
};
template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_rows(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.rows() != perm.size())
throw std::runtime_error("permuted_rows - dimension mismatch");
}
return SparseMatrix<E>(RestrictedSparseMatrix<E, sparse2d::only_rows>(m.rows(), m.cols(), sparse2d::rowwise(), select(rows(m),perm).begin()));
}
template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_cols(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.cols() != perm.size())
throw std::runtime_error("permuted_cols - dimension mismatch");
}
return SparseMatrix<E>(RestrictedSparseMatrix<E, sparse2d::only_cols>(m.rows(), m.cols(), sparse2d::columnwise(), select(cols(m),perm).begin()));
}
template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_inv_rows(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.rows() != perm.size())
throw std::runtime_error("permuted_inv_rows - dimension mismatch");
}
RestrictedSparseMatrix<E, sparse2d::only_rows> result(m.rows(), m.cols());
copy_range(entire(rows(m)), select(rows(result),perm).begin());
return SparseMatrix<E>(std::move(result));
}
template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_inv_cols(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.cols() != perm.size())
throw std::runtime_error("permuted_inv_cols - dimension mismatch");
}
RestrictedSparseMatrix<E, sparse2d::only_cols> result(m.rows(), m.cols());
copy_range(entire(cols(m)), select(cols(result),perm).begin());
return SparseMatrix<E>(std::move(result));
}
template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse, typename TMatrix::persistent_type>::type
permuted_rows(const GenericMatrix<TMatrix>& m, const Permutation& perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.rows() != perm.size())
throw std::runtime_error("permuted_rows - dimension mismatch");
}
std::vector<int> inv_perm(m.rows());
inverse_permutation(perm,inv_perm);
return m.top().copy_permuted(perm,inv_perm);
}
template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse && container_traits<Permutation>::is_random,
typename TMatrix::persistent_type>::type
permuted_inv_rows(const GenericMatrix<TMatrix>& m, const Permutation& inv_perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.rows() != inv_perm.size())
throw std::runtime_error("permuted_inv_rows - dimension mismatch");
}
std::vector<int> perm(m.rows());
inverse_permutation(inv_perm,perm);
return m.top().copy_permuted(perm,inv_perm);
}
template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse && !container_traits<Permutation>::is_random,
typename TMatrix::persistent_type>::type
permuted_inv_rows(const GenericMatrix<TMatrix>& m, const Permutation& inv_perm)
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (m.rows() != inv_perm.size())
throw std::runtime_error("permuted_inv_rows - dimension mismatch");
}
std::vector<int> inv_perm_copy(inv_perm.size());
copy_range(entire(inv_perm), inv_perm_copy.begin());
return permuted_inv_rows(m,inv_perm_copy);
}
template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse,
typename TMatrix::persistent_type>::type
permuted_cols(const GenericMatrix<TMatrix>& m, const Permutation& perm)
{
return permuted_rows(m,perm);
}
template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse,
typename TMatrix::persistent_type>::type
permuted_inv_cols(const GenericMatrix<TMatrix>& m, const Permutation& inv_perm)
{
return permuted_inv_rows(m,inv_perm);
}
/// sparse matrix statistics collection
template <typename E>
class SparseMatrixStatistics {
public:
unsigned int maxnon0s, maxrowsize, maxcolsize;
E maxabs;
Array<unsigned int> row_support_sizes;
SparseMatrixStatistics()
: maxnon0s(0), maxrowsize(0), maxcolsize(0), maxabs(0) {}
void gather(const SparseMatrix<E>& m)
{
unsigned int non0s=0;
int row_ct(0);
row_support_sizes = Array<unsigned int>(m.rows());
for (typename Entire< Rows< SparseMatrix<E> > >::const_iterator r=entire(rows(m)); !r.at_end(); ++r, ++row_ct) {
if (unsigned int s=r->size()) {
for (typename Entire< typename SparseMatrix<E>::row_type >::const_iterator e=entire(*r); !e.at_end(); ++e) {
maxabs=std::max(maxabs, abs(*e));
}
maxrowsize=std::max(maxrowsize, s);
non0s+=s;
row_support_sizes[row_ct] = s;
}
}
maxnon0s=std::max(maxnon0s, non0s);
for (typename Entire< Cols< SparseMatrix<E> > >::const_iterator c=entire(cols(m)); !c.at_end(); ++c) {
if (unsigned int s=c->size()) {
maxcolsize=std::max(maxcolsize, s);
}
}
}
void gather(const Transposed< SparseMatrix<E> >& m)
{
gather(m.hidden());
}
// statistics at two various moments can be glued together
SparseMatrixStatistics& operator+= (const SparseMatrixStatistics& s)
{
maxnon0s=std::max(maxnon0s,s.maxnon0s);
maxabs=std::max(maxabs,s.maxabs);
maxrowsize=std::max(maxrowsize,s.maxrowsize);
maxcolsize=std::max(maxcolsize,s.maxcolsize);
// FIXME: also take component-wise max of the row_support_sizes
return *this;
}
template <typename Traits> friend
std::basic_ostream<char, Traits>&
operator<< (std::basic_ostream<char, Traits>& os, const SparseMatrixStatistics& s)
{
wrap(os) << ">>> " << s.maxnon0s << " nonzeroes, max abs(element)=" << s.maxabs
<< "\n>>> max row size=" << s.maxrowsize << ", max col size=" << s.maxcolsize
<< "\n>>> row support sizes=" << s.row_support_sizes
<< endl;
return os;
}
};
} // end namespace pm
namespace polymake {
using pm::SparseMatrix;
using pm::RestrictedSparseMatrix;
}
namespace std {
template <typename E, typename symmetric> inline
void swap(pm::SparseMatrix<E,symmetric>& M1, pm::SparseMatrix<E,symmetric>& M2)
{
M1.swap(M2);
}
template <typename E, pm::sparse2d::restriction_kind restriction> inline
void swap(pm::RestrictedSparseMatrix<E,restriction>& M1,
pm::RestrictedSparseMatrix<E,restriction>& M2)
{
M1.swap(M2);
}
template <typename Tree, typename symmetric> inline
void swap(pm::sparse_matrix_line<Tree&,symmetric> l1, pm::sparse_matrix_line<Tree&,symmetric> l2)
{
l1.swap(l2);
}
}
#endif // POLYMAKE_SPARSE_MATRIX_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|