This file is indexed.

/usr/include/polymake/next/SparseMatrix.h is in libpolymake-dev-common 3.2r2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
/* Copyright (c) 1997-2018
   Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
   http://www.polymake.org

   This program is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by the
   Free Software Foundation; either version 2, or (at your option) any
   later version: http://www.gnu.org/licenses/gpl.txt.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.
--------------------------------------------------------------------------------
*/

/** @file SparseMatrix.h
    @brief Implementation of pm::SparseMatrix class
 */

#ifndef POLYMAKE_SPARSE_MATRIX_H
#define POLYMAKE_SPARSE_MATRIX_H

#include "polymake/internal/sparse2d.h"
#include "polymake/Matrix.h"
#include "polymake/SparseVector.h"
#include "polymake/Array.h"

namespace pm {

template <typename Iterator=void>
class skew_negator {
protected:
   int diag;
   operations::neg<typename iterator_traits<Iterator>::reference> op;
public:
   skew_negator(int diag_arg=-1) : diag(diag_arg) {}

   typedef Iterator argument_type;
   typedef typename iterator_traits<Iterator>::value_type result_type;

   result_type operator() (const argument_type& it) const
   {
      if (it.index() > diag) return op(*it);
      return *it;
   }
};

template <>
class skew_negator<void> : operations::incomplete {
protected:
   int diag;
public:
   skew_negator(int diag_arg=-1) : diag(diag_arg) {}
   operator int () const { return diag; }
};

template <typename Iterator, typename Reference>
struct unary_op_builder< skew_negator<void>, Iterator, Reference > {
   typedef skew_negator<Iterator> operation;
   static operation create(int diag_arg) { return operation(diag_arg); }
};

template <typename TreeRef, typename symmetric> class sparse_matrix_line;
template <bool rowwise, typename symmetric, typename BaseRef=void> class sparse_matrix_line_factory;
template <typename E, typename symmetric> class SparseMatrix_base;

template <typename TreeRef, typename symmetric>
struct sparse_matrix_line_params
   : sparse2d::line_params<TreeRef> {};

template <typename TreeRef>
struct sparse_matrix_line_params<TreeRef, SkewSymmetric>
   : mlist_concat< typename sparse2d::line_params<TreeRef>::type,
                   OperationTag< skew_negator<> > > {
public:
   operations::identity<int> get_operation() const
   {
      return operations::identity<int>();
   }
};

template <typename TreeRef, typename TSymmetric>
class sparse_matrix_line_ops
   : public modified_tree< sparse_matrix_line<TreeRef, TSymmetric>,
                           typename sparse_matrix_line_params<TreeRef, TSymmetric>::type >,
     public GenericVector< sparse_matrix_line<TreeRef, TSymmetric>,
                           typename deref<TreeRef>::type::mapped_type> {};

template <typename TreeRef>
class sparse_matrix_line_ops<TreeRef, SkewSymmetric>
   : public modified_tree< sparse_matrix_line<TreeRef, SkewSymmetric>,
                           typename sparse_matrix_line_params<TreeRef, SkewSymmetric>::type >,
     public GenericVector< sparse_matrix_line<TreeRef, SkewSymmetric>,
                           typename deref<TreeRef>::type::mapped_type> {

   typedef modified_tree< sparse_matrix_line<TreeRef, SkewSymmetric>,
                          typename sparse_matrix_line_params<TreeRef, SkewSymmetric>::type > base_t;
public:
   typedef typename deref<TreeRef>::type::mapped_type value_type;

   skew_negator<> get_operation() const
   {
      return this->top().index();
   }

protected:
   template <typename TVector>
   void assign(const TVector& v)
   {
      assign_sparse(this->top().get_container(), attach_operation(ensure(v, (pure_sparse*)0), get_operation()).begin());
   }

   template <typename Operation>
   void assign_op(const Operation& op)
   {
      perform_assign(entire(this->top().get_container()), op);
   }

   template <typename TVector, typename Operation>
   typename std::enable_if<!operations::is_partially_defined_for<Operation, sparse_matrix_line_ops, TVector>::value, void>::type
   assign_op(const TVector& v, const Operation& op)
   {
      perform_assign(entire(this->top().get_container()), v.begin(), op);
   }

   template <typename TVector, typename Operation>
   typename std::enable_if<operations::is_partially_defined_for<Operation, sparse_matrix_line_ops, TVector>::value, void>::type
   assign_op(const TVector& v, const Operation& op)
   {
      perform_assign_sparse(this->top().get_container(), attach_operation(ensure(v, (pure_sparse*)0), get_operation()).begin(), op);
   }

   void fill_impl(typename function_argument<value_type>::type x, pure_sparse)
   {
      if (x)
         fill_sparse(this->top().get_container(), attach_operation(ensure(constant(x), (indexed*)0), get_operation()).begin());
      else
         this->clear();
   }

public:
   typename base_t::iterator insert(int i, const value_type& x)
   {
      operations::neg<const value_type&> op;
      return base_t::insert(i, i > this->top().index() ? op(x) : x);
   }

   typename base_t::iterator insert(const typename base_t::iterator& pos, int i)
   {
      return base_t::insert(pos, i);
   }

   typename base_t::iterator insert(const typename base_t::iterator& pos, int i, const value_type& x)
   {
      operations::neg<const value_type&> op;
      return base_t::insert(pos, i, i > this->top().index() ? op(x) : x);
   }
};

template <typename TreeRef, typename symmetric>
class sparse_matrix_line_base
   : public sparse_matrix_line_ops<TreeRef, symmetric> {
protected:
   typedef nothing first_arg_type;
   typedef nothing second_arg_type;
   ~sparse_matrix_line_base();
public:
   int index() const { return this->get_container().get_line_index(); }
};

template <typename Tree, typename symmetric>
class sparse_matrix_line_base<Tree&, symmetric>
   : public sparse_matrix_line_ops<Tree&, symmetric> {
protected:
   typedef typename deref<Tree>::type tree_type;
   typedef typename inherit_ref<SparseMatrix_base<typename sparse_matrix_line_base::element_type, symmetric>, Tree&>::type matrix_ref;
   typedef typename attrib<matrix_ref>::plus_const const_matrix_ref;

   alias<matrix_ref> matrix;
   int line_index;

   typedef typename alias<matrix_ref>::arg_type first_arg_type;
   typedef int second_arg_type;

   sparse_matrix_line_base(first_arg_type arg1, second_arg_type arg2)
      : matrix(arg1), line_index(arg2)  {}
public:
   typename inherit_const<typename sparse_matrix_line_base::container, Tree>::type& get_container()
   {
      return matrix->get_table().get_line(line_index, (tree_type*)0);
   }
   const typename sparse_matrix_line_base::container& get_container() const
   {
      return matrix->get_table().get_line(line_index, (tree_type*)0);
   }

   int index() const { return line_index; }
};

template <typename TreeRef, typename symmetric>
class sparse_matrix_line
   : public sparse_matrix_line_base<TreeRef, symmetric> {
   typedef sparse_matrix_line_base<TreeRef, symmetric> base_t;

   friend class GenericVector<sparse_matrix_line>;
   template <typename,typename> friend class SparseMatrix;
   template <typename,typename> friend class GenericMatrix;

public:
   sparse_matrix_line(typename base_t::first_arg_type arg1, typename base_t::second_arg_type arg2)
      : base_t(arg1, arg2) {}

   static const bool is_skew_symmetric=std::is_same<symmetric, SkewSymmetric>::value;
   typedef typename std::conditional<std::is_same<symmetric, NonSymmetric>::value, nothing, symmetric>::type operate_on_lower;

protected:
   using base_t::assign_op;

   template <typename TVector, typename Operation>
   typename std::enable_if<!operations::is_partially_defined_for<Operation, sparse_matrix_line, TVector>::value, void>::type
   assign_op(const TVector& v, const Operation& op, operate_on_lower)
   {
      perform_assign(entire(sparse2d::select_lower_triangle(this->get_container())), v.begin(), op);
   }

   template <typename TVector, typename Operation>
   typename std::enable_if<operations::is_partially_defined_for<Operation, sparse_matrix_line, TVector>::value, void>::type
   assign_op(const TVector& v, const Operation& op, operate_on_lower)
   {
      perform_assign_sparse(sparse2d::select_lower_triangle(this->get_container()),
                            attach_truncator(ensure(v, (pure_sparse*)0), index_truncator(this->index())).begin(), op);
   }

public:
   sparse_matrix_line& operator= (sparse_matrix_line& other)
   {
      return sparse_matrix_line::generic_type::operator=(other);
   }
   using sparse_matrix_line::generic_type::operator=;

   typedef typename deref<TreeRef>::type::mapped_type value_type;
protected:
   typedef sparse_proxy_base< sparse2d::line<typename deref<TreeRef>::type> > proxy_base;
public:
   typedef typename std::conditional<is_skew_symmetric, const value_type, const value_type&>::type const_reference;
   typedef typename std::conditional<attrib<TreeRef>::is_const,
                                     const_reference, sparse_elem_proxy<proxy_base, value_type, symmetric>>::type
      reference;
   typedef random_access_iterator_tag container_category;

   const_reference operator[] (int i) const
   {
      return deref_sparse_iterator(this->find(i));
   }

protected:
   reference random_impl(int i, std::false_type) { return proxy_base(this->get_container(),i); }
   reference random_impl(int i, std::true_type) const { return operator[](i); }
public:
   reference operator[] (int i)
   {
      return random_impl(i, bool_constant<attrib<TreeRef>::is_const>());
   }

   int dim() const { return this->get_container().dim(); }

protected:
   typedef typename std::conditional<std::is_same<symmetric, NonSymmetric>::value, maximal<int>, int>::type input_limit_type;

   maximal<int> _get_input_limit(type2type< maximal<int> >) const { return maximal<int>(); }

   int _get_input_limit(type2type<int>) const { return this->index(); }

   friend
   input_limit_type get_input_limit(sparse_matrix_line& me)
   {
      return me._get_input_limit(type2type<input_limit_type>());
   }
};

template <typename TreeRef, typename symmetric>
struct check_container_feature<sparse_matrix_line<TreeRef,symmetric>, pure_sparse> : std::true_type {};

template <typename TreeRef, typename symmetric>
struct spec_object_traits< sparse_matrix_line<TreeRef,symmetric> >
   : spec_object_traits<is_container> {
   static const bool is_temporary=attrib<TreeRef>::is_reference,
                     is_always_const=attrib<TreeRef>::is_const;
   typedef typename std::conditional<is_temporary, void, typename deref<TreeRef>::type>::type masquerade_for;
   static const int is_resizeable= deref<TreeRef>::type::fixed_dim ? 0 : -1;
};

template <typename E, sparse2d::restriction_kind restriction=sparse2d::only_rows>
class RestrictedSparseMatrix
   : public matrix_methods<RestrictedSparseMatrix<E,restriction>, E> {
protected:
   typedef sparse2d::Table<E, false, restriction> table_type;
   table_type data;

   table_type& get_table() { return data; }
   const table_type& get_table() const { return data; }

   template <typename Iterator, typename TLines>
   static
   void copy_linewise(Iterator&& src, TLines& lines, std::true_type)
   {
      copy_range(std::forward<Iterator>(src), entire(lines));
   }

   template <typename Iterator, typename TLines>
   void copy_linewise(Iterator&& src, TLines& lines, std::false_type)
   {
      for (int i=0; !src.at_end(); ++src, ++i)
         append(lines, *src, i);
   }

   template <typename TLines, typename TVector>
   void append(TLines& lines, const TVector& vec, int i)
   {
      for (auto v=ensure(vec, (sparse_compatible*)0).begin(); !v.at_end(); ++v)
         lines[v.index()].push_back(i, *v);
   }

   typedef sparse_matrix_line<typename table_type::primary_tree_type, NonSymmetric> line_t;
public:
   typedef E value_type;
   typedef typename line_t::reference reference;
   typedef const E& const_reference;

   explicit RestrictedSparseMatrix(int n=0) : data(n) {}

   RestrictedSparseMatrix(int r, int c) : data(r,c) {}

   template <typename Iterator, typename Dir,
             typename=typename std::enable_if<is_among<Dir, sparse2d::rowwise, sparse2d::columnwise>::value &&
                                              assess_iterator_value<Iterator, can_initialize, Vector<E>>::value &&
                                              (Dir::value==restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>::type>
   RestrictedSparseMatrix(int n, Dir, Iterator&& src)
      : data(n)
   {
      copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, sparse2d::restriction_const<restriction>()),
                    bool_constant<Dir::value==restriction>());
   }

   template <typename Iterator, typename Dir,
             typename=typename std::enable_if<is_among<Dir, sparse2d::rowwise, sparse2d::columnwise>::value &&
                                              assess_iterator_value<Iterator, can_initialize, Vector<E>>::value &&
                                              (Dir::value==restriction || assess_iterator<Iterator, check_iterator_feature, end_sensitive>::value)>::type>
   RestrictedSparseMatrix(int r, int c, Dir, Iterator&& src)
      : data(r, c)
   {
      copy_linewise(ensure_private_mutable(std::forward<Iterator>(src)), lines(*this, sparse2d::restriction_const<restriction>()),
                    bool_constant<Dir::value==restriction>());
   }

   RestrictedSparseMatrix(RestrictedSparseMatrix&& M)
      : data(std::move(M.data)) {}

   template <typename Container, typename=typename std::enable_if<isomorphic_to_container_of<Container, Vector<E>, allow_conversion>::value &&
                                                                  restriction==sparse2d::only_rows>::type>
   RestrictedSparseMatrix(const Container& src)
      : data(src.size())
   {
      copy_linewise(src.begin(), pm::rows(*this), std::true_type());
   }

   void swap(RestrictedSparseMatrix& M)
   {
      data.swap(M.data);
   }

   void clear() { data.clear(); }

protected:
   reference random_impl(int i, int j, std::false_type)
   {
      return this->row(i)[j];
   }
   reference random_impl(int i, int j, std::true_type)
   {
      return this->col(j)[i];
   }
   const_reference random_impl(int i, int j, std::false_type) const
   {
      return this->row(i)[j];
   }
   const_reference random_impl(int i, int j, std::true_type) const
   {
      return this->col(j)[i];
   }
public:
   reference operator() (int i, int j)
   {
      return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
   }
   const_reference operator() (int i, int j) const
   {
      return random_impl(i, j, bool_constant<restriction==sparse2d::only_cols>());
   }

private:
   template <typename Iterator>
   void append_rows_impl(int n, Iterator src, std::true_type)
   {
      int oldrows=data.rows();
      data.resize_rows(oldrows+n);
      for (auto dst=pm::rows(*this).begin()+oldrows;  n>0;  ++src, ++dst, --n)
         *dst=*src;
   }

   template <typename Iterator>
   void append_rows_impl(int n, Iterator src, std::false_type)
   {
      for (int r=data.rows(); n>0; ++src, ++r, --n)
         append(pm::cols(*this), *src, r);
   }

   template <typename Iterator>
   void append_cols_impl(int n, Iterator src, std::true_type)
   {
      int oldcols=data.cols();
      data.resize_cols(oldcols+n);
      for (auto dst=pm::cols(*this).begin()+oldcols;  n>0;  ++src, ++dst, --n)
         *dst=*src;
   }

   template <typename Iterator>
   void append_cols_impl(int n, Iterator src, std::false_type)
   {
      for (int c=data.cols();  n>0;  ++src, ++c, --n)
         append(pm::rows(*this), *src, c);
   }

public:
   template <typename Matrix>
   RestrictedSparseMatrix& operator/= (const GenericMatrix<Matrix>& m)
   {
      append_rows_impl(m.rows(), pm::rows(m).begin(), bool_constant<restriction==sparse2d::only_rows>());
      return *this;
   }

   template <typename Vector>
   RestrictedSparseMatrix& operator/= (const GenericVector<Vector>& v)
   {
      append_rows_impl(1, &v.top(), bool_constant<restriction==sparse2d::only_rows>());
      return *this;
   }

   template <typename Matrix>
   RestrictedSparseMatrix& operator|= (const GenericMatrix<Matrix>& m)
   {
      append_cols_impl(m.cols(), pm::cols(m).begin(), bool_constant<restriction==sparse2d::only_cols>());
      return *this;
   }

   template <typename Vector>
   RestrictedSparseMatrix& operator|= (const GenericVector<Vector>& v)
   {
      append_cols_impl(1, &v.top(), bool_constant<restriction==sparse2d::only_cols>());
      return *this;
   }

   void squeeze() { data.squeeze(); }

   template <typename TPerm>
   typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
   permute_rows(const TPerm& perm)
   {
      data.permute_rows(perm, std::false_type());
   }

   template <typename TPerm>
   typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
   permute_cols(const TPerm& perm)
   {
      data.permute_cols(perm, std::false_type());
   }

   template <typename TInvPerm>
   typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
   permute_inv_rows(const TInvPerm& inv_perm)
   {
      data.permute_rows(inv_perm, std::true_type());
   }

   template <typename TInvPerm>
   typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
   permute_inv_cols(const TInvPerm& inv_perm)
   {
      data.permute_cols(inv_perm, std::true_type());
   }

#if POLYMAKE_DEBUG
   void check() const { data.check(); }
#endif
   friend class Rows<RestrictedSparseMatrix>;
   friend class Cols<RestrictedSparseMatrix>;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
   template <typename,typename> friend class SparseMatrix;
};

template <typename E, sparse2d::restriction_kind restriction>
struct spec_object_traits< RestrictedSparseMatrix<E, restriction> >
   : spec_object_traits<is_container> {
   static const int dimension=2;

   typedef typename std::conditional<restriction==sparse2d::only_rows,
                                     Rows< RestrictedSparseMatrix<E, restriction> >,
                                     Cols< RestrictedSparseMatrix<E, restriction> > >::type serialized;

   static serialized& serialize(RestrictedSparseMatrix<E, restriction>& M)
   {
      return reinterpret_cast<serialized&>(M);
   }
   static const serialized& serialize(const RestrictedSparseMatrix<E, restriction>& M)
   {
      return reinterpret_cast<const serialized&>(M);
   }
};

template <typename E, sparse2d::restriction_kind restriction>
class Rows< RestrictedSparseMatrix<E, restriction> >
   : public sparse2d::Rows< RestrictedSparseMatrix<E, restriction>, E, false, restriction,
                            operations::masquerade2<sparse_matrix_line, NonSymmetric> > {
protected:
   ~Rows();
public:
   typedef typename std::conditional<restriction==sparse2d::only_rows, random_access_iterator_tag, output_iterator_tag>::type
      container_category;
};

template <typename E, sparse2d::restriction_kind restriction>
class Cols< RestrictedSparseMatrix<E, restriction> >
   : public sparse2d::Cols< RestrictedSparseMatrix<E, restriction>, E, false, restriction,
                            operations::masquerade2<sparse_matrix_line, NonSymmetric> > {
protected:
   ~Cols();
public:
   typedef typename std::conditional<restriction==sparse2d::only_cols, random_access_iterator_tag, output_iterator_tag>::type
      container_category;
};

template <typename E, typename symmetric>
class SparseMatrix_base {
protected:
   typedef sparse2d::Table<E, symmetric::value> table_type;
   shared_object<table_type, AliasHandlerTag<shared_alias_handler>> data;

   table_type& get_table() { return *data; }
   const table_type& get_table() const { return *data; }

   friend SparseMatrix_base& make_mutable_alias(SparseMatrix_base& alias, SparseMatrix_base& owner)
   {
      alias.data.make_mutable_alias(owner.data);
      return alias;
   }

   SparseMatrix_base() = default;

   SparseMatrix_base(int r, int c)
      : data(r, c) {}

   template <sparse2d::restriction_kind restriction>
   SparseMatrix_base(sparse2d::Table<E, symmetric::value, restriction>&& input_data)
      : data(std::move(input_data)) {}

   template <typename> friend class Rows;
   template <typename> friend class Cols;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
   template <bool, typename, typename> friend class sparse_matrix_line_factory;
   template <typename, typename> friend class sparse_matrix_line_base;
   template <typename, int> friend class alias;
};

template <typename E, typename symmetric>
class Rows< SparseMatrix_base<E,symmetric> >
   : public sparse2d::Rows< SparseMatrix_base<E,symmetric>, E, symmetric::value, sparse2d::full,
                            operations::masquerade2<sparse_matrix_line, symmetric> > {
protected:
   ~Rows();
};

template <typename E, typename symmetric>
class Cols< SparseMatrix_base<E,symmetric> >
   : public sparse2d::Cols< SparseMatrix_base<E,symmetric>, E, symmetric::value, sparse2d::full,
                            operations::masquerade2<sparse_matrix_line, symmetric> > {
protected:
   ~Cols();
};

/** @class SparseMatrix
    @brief A two-dimensional associative array with row and column indices as keys.  
	
     A two-dimensional associative array with row and column indices as keys; elements equal to the default value (ElementType(), 
     which is 0 for most numerical types) are not stored, but implicitly encoded by the gaps in the key set. 
     Each row and column is organized as a balanced binary search (%AVL) tree. 
*/
template <typename E, typename symmetric>
class SparseMatrix
   : public SparseMatrix_base<E, symmetric>
   , public GenericMatrix< SparseMatrix<E,symmetric>, E> {
protected:
   typedef SparseMatrix_base<E, symmetric> base_t;
   friend SparseMatrix& make_mutable_alias(SparseMatrix& alias, SparseMatrix& owner)
   {
      return static_cast<SparseMatrix&>(make_mutable_alias(static_cast<base_t&>(alias), static_cast<base_t&>(owner)));
   }

   // elementwise, non-symmetric
   template <typename Iterator>
   void init_impl(Iterator&& src_elem, std::true_type, std::false_type)
   {
      auto&& src=make_converting_iterator<E>(std::forward<Iterator>(src_elem));
      const int n=this->cols();
      for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i)
         for (int i=0; i<n; ++i, ++src)
            if (!is_zero(*src))
               r_i->push_back(i, *src);
   }

   // elementwise, symmetric
   template <typename Iterator>
   void init_impl(Iterator&& src_elem, std::true_type, std::true_type)
   {
      auto&& src=make_converting_iterator<E>(std::forward<Iterator>(src_elem));
      const int n=this->cols();
      int d=0;
      for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i) {
         for (int i=0; i<=d; ++i, ++src)
            if (!is_zero(*src))
               r_i->push_back(i, *src);
         ++d; std::advance(src, n-d);
      }
   }

   // rowwise, non-symmetric
   template <typename Iterator>
   void init_impl(Iterator&& src_rows, std::false_type, std::false_type)
   {
      for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i, ++src_rows)
         *r_i = convert_lazily<E>(*src_rows);
   }

   // rowwise, symmetric
   template <typename Iterator>
   void init_impl(Iterator&& src_rows, std::false_type, std::true_type)
   {
      int d=0;
      for (auto r_i=entire(pm::rows(static_cast<base_t&>(*this))); !r_i.at_end(); ++r_i, ++d, ++src_rows) {
         int i;
         for (auto src=make_converting_iterator<E>(ensure(*src_rows, (pure_sparse*)0).begin()); !src.at_end() && (i=src.index())<=d; ++src)
            r_i->push_back(i, *src);
      }
   }

   typedef sparse_matrix_line<typename base_t::table_type::primary_tree_type, symmetric> line_t;
public:
   typedef typename std::conditional<symmetric::value, void, RestrictedSparseMatrix<E>>::type unknown_columns_type;
   typedef E value_type;
   typedef typename line_t::reference reference;
   typedef typename line_t::const_reference const_reference;

   /// create as empty
   SparseMatrix() {}

   /// Create a matrix with r rows and c columns, (implicitly) initialize all elements to 0. 
   SparseMatrix(int r, int c)
      : base_t(r, c) {}

   /**
     Create a matrix with r rows and c columns, initialize the elements from a data sequence. 
     src should iterate either over r*c scalar values, corresponding to the elements in the row order 
     (the column index changes first,) or over r vectors of dimension c, corresponding to the matrix rows. 
     Zero input elements are filtered out. 
   */
   template <typename Iterator>
   SparseMatrix(int r, int c, Iterator&& src)
      : base_t(r, c)
   {
      init_impl(ensure_private_mutable(std::forward<Iterator>(src)),
                bool_constant<object_traits<typename iterator_traits<Iterator>::value_type>::total_dimension == object_traits<E>::total_dimension>(),
                symmetric());
   }

   /// Copy of a disguised Matrix object. 
   SparseMatrix(const GenericMatrix<SparseMatrix>& M)
      : base_t(M.top()) {}

   /// Copy of an abstract matrix of the same element type. 
   template <typename TMatrix2>
   SparseMatrix(const GenericMatrix<TMatrix2, E>& M,
                typename std::enable_if<SparseMatrix::template compatible_symmetry_types<TMatrix2>(), void**>::type=nullptr)
      : base_t(M.rows(), M.cols())
   {
      init_impl(pm::rows(M).begin(), std::false_type(), symmetric());
   }

   /// Copy of an abstract matrix with element conversion. 
   template <typename TMatrix2, typename E2>
   explicit SparseMatrix(const GenericMatrix<TMatrix2, E2>& M,
                         typename std::enable_if<(SparseMatrix::template compatible_symmetry_types<TMatrix2>() &&
                                                  can_initialize<E2, E>::value), void**>::type=nullptr)
      : base_t(M.rows(), M.cols())
   {
      init_impl(pm::rows(M).begin(), std::false_type(), symmetric());
   }

   template <sparse2d::restriction_kind restriction, typename enabled=typename std::enable_if<!symmetric::value && restriction!=sparse2d::full>::type>
   explicit SparseMatrix(RestrictedSparseMatrix<E, restriction>&& M)
      : base_t(std::move(M.data)) {}

   template <typename Container>
   SparseMatrix(const Container& src,
                typename std::enable_if<(isomorphic_to_container_of<Container, Vector<E>, allow_conversion>::value &&
                                         !symmetric::value), void**>::type=nullptr)
      : base_t(src.size(), src.empty() ? 0 : get_dim(src.front()))
   {
      init_impl(src.begin(), std::false_type(), symmetric());
   }

   /// Persistent matrix objects have after the assignment the same dimensions as the right hand side operand. 
   /// Alias objects, such as matrix minor or block matrix, cannot be resized, thus must have the same dimensions as on the right hand side.
   SparseMatrix& operator= (const SparseMatrix& other) { assign(other); return *this; }
   using SparseMatrix::generic_type::operator=;

   template <sparse2d::restriction_kind restriction, typename enabled=typename std::enable_if<!symmetric::value && restriction!=sparse2d::full>::type>
   SparseMatrix& operator= (RestrictedSparseMatrix<E, restriction>&& M)
   {
      this->data.replace(std::move(M.data));
      return *this;
   }

   /// Exchange the contents of two matrices in a most efficient way. 
   /// If at least one non-persistent object is involved, the operands must have equal dimensions. 
   void swap(SparseMatrix& M) { this->data.swap(M.data); }

   friend void relocate(SparseMatrix* from, SparseMatrix* to)
   {
      relocate(&from->data, &to->data);
   }

   /// Resize to new dimensions, added elements initialized with default constructor.
   void resize(int r, int c) { this->data->resize(r,c); }

   /// Truncate to 0x0 matrix. 
   void clear() { this->data.apply(shared_clear()); }

   void clear(int r, int c) { this->data.apply(typename base_t::table_type::shared_clear(r,c)); }

   reference operator() (int i, int j)
   {
      if (POLYMAKE_DEBUG) {
         if (i<0 || i>this->rows() || j<0 || j>= this->cols())
            throw std::runtime_error("SparseMatrix::operator() - index out of range");
      }
      return pm::rows(static_cast<base_t&>(*this))[i][j];
   }

   const_reference operator() (int i, int j) const
   {
      if (POLYMAKE_DEBUG) {
         if (i<0 || i>this->rows() || j<0 || j>= this->cols())
            throw std::runtime_error("SparseMatrix::operator() - index out of range");
      }
      return pm::rows(static_cast<const base_t&>(*this))[i][j];
   }

   /// Physically remove all zero elements that might have creeped in by some previous operation. 
   void remove0s()
   {
      for (auto r=entire(pm::rows(static_cast<base_t&>(*this))); !r.at_end(); ++r)
         r->remove0s();
   }

   template <typename row_number_consumer, typename col_number_consumer>
   void squeeze(const row_number_consumer& rnc, const col_number_consumer& cnc) { this->data->squeeze(rnc,cnc); }

   template <typename row_number_consumer>
   void squeeze(const row_number_consumer& rnc) { this->data->squeeze(rnc); }

   /// Remove all empty (i.e., consisting entirely of implicit zeroes,) rows, renumber the rest, and reduce the dimensions.
   void squeeze() { this->data->squeeze(); }

   template <typename row_number_consumer>
   void squeeze_rows(const row_number_consumer& rnc) { this->data->squeeze_rows(rnc); }

   void squeeze_rows() { this->data->squeeze_rows(); }

   template <typename col_number_consumer>
   void squeeze_cols(const col_number_consumer& cnc) { this->data->squeeze_cols(cnc); }

   /// Remove all empty (i.e., consisting entirely of implicit zeroes,) columns, renumber the rest, and reduce the dimensions.
   void squeeze_cols() { this->data->squeeze_cols(); }

   /// Permute the rows of the matrix without copying the elements.
   /// These operations are nevertheless expensive, as they need to visit each element and adjust its indices.
   template <typename TPerm>
   typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
   permute_rows(const TPerm& perm)
   {
      this->data->permute_rows(perm, std::false_type());
   }

   /// Permute the columns of the matrix without copying the elements.
   /// These operations are nevetherless expensive, as they need to visit each element and adjust its indices.
   template <typename TPerm>
   typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
   permute_cols(const TPerm& perm)
   {
      this->data->permute_cols(perm, std::false_type());
   }

   template <typename TInvPerm>
   typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
   permute_inv_rows(const TInvPerm& inv_perm)
   {
      this->data->permute_rows(inv_perm, std::true_type());
   }

   template <typename TInvPerm>
   typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
   permute_inv_cols(const TInvPerm& inv_perm)
   {
      this->data->permute_cols(inv_perm, std::true_type());
   }

   template <typename Perm, typename InvPerm>
   SparseMatrix copy_permuted(const Perm& perm, const InvPerm& inv_perm,
                              typename std::enable_if<symmetric::value, mlist<Perm>*>::type=nullptr) const
   {
      const int n=this->rows();
      SparseMatrix result(n,n);
      result.data.get()->copy_permuted(*this->data, perm, inv_perm);
      return result;
   }

#if POLYMAKE_DEBUG
   void check() const { this->data->check(); }
#endif

protected:
   void assign(const GenericMatrix<SparseMatrix>& m) { this->data=m.top().data; }

   template <typename Matrix2>
   void assign(const GenericMatrix<Matrix2>& m)
   {
      if (this->data.is_shared() || this->rows() != m.rows() || this->cols() != m.cols())
         *this=SparseMatrix(m);
      else
         SparseMatrix::generic_type::assign(m);
   }

   template <typename Operation>
   void assign_op(const Operation& op)
   {
      if (this->data.is_shared())
         *this=SparseMatrix(LazyMatrix1<const SparseMatrix&, Operation>(*this,op));
      else
         SparseMatrix::generic_type::assign_op(op);
   }

   template <typename Matrix2, typename Operation>
   void assign_op(const Matrix2& m, const Operation& op)
   {
      if (this->data.is_shared())
         *this=SparseMatrix(LazyMatrix2<const SparseMatrix&, const Matrix2&, Operation>(*this,m,op));
      else
         SparseMatrix::generic_type::assign_op(m,op);
   }

   template <typename Matrix2>
   void append_rows(const Matrix2& m)
   {
      const int old_rows=this->rows();
      this->data.apply(typename base_t::table_type::shared_add_rows(m.rows()));
      copy_range(entire(pm::rows(m)), pm::rows(static_cast<base_t&>(*this)).begin()+old_rows);
   }

   template <typename Vector2>
   void append_row(const Vector2& v)
   {
      const int old_rows=this->rows();
      this->data.apply(typename base_t::table_type::shared_add_rows(1));
      this->row(old_rows)=v;
   }

   template <typename Matrix2>
   void append_cols(const Matrix2& m)
   {
      const int old_cols=this->cols();
      this->data.apply(typename base_t::table_type::shared_add_cols(m.cols()));
      copy_range(entire(pm::cols(m)), pm::cols(static_cast<base_t&>(*this)).begin()+old_cols);
   }

   template <typename Vector2>
   void append_col(const Vector2& v)
   {
      const int old_cols=this->cols();
      this->data.apply(typename base_t::table_type::shared_add_cols(1));
      this->col(old_cols)=v;
   }

   template <typename E2>
   void fill_impl(const E2& x, std::false_type)
   {
      if (this->data.is_shared())
         clear(this->rows(), this->cols());
      if (!is_zero(x))
         SparseMatrix::generic_type::fill_impl(x, std::false_type());
   }

   void stretch_rows(int r)
   {
      this->data->resize_rows(r);
   }

   void stretch_cols(int c)
   {
      this->data->resize_cols(c);
   }

   template <typename, typename> friend class GenericMatrix;
   friend class Rows<SparseMatrix>;
   friend class Cols<SparseMatrix>;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Rows;
   template <typename, typename, bool, sparse2d::restriction_kind, typename> friend class sparse2d::Cols;
   template <typename, typename> friend class RowChain;
   template <typename, typename> friend class ColChain;
};

template <typename E, typename symmetric>
struct check_container_feature< SparseMatrix<E,symmetric>, pure_sparse > : std::true_type {};

template <typename E, typename symmetric>
struct check_container_feature< SparseMatrix<E,symmetric>, Symmetric > : std::is_same<symmetric, Symmetric> {};

template <typename E, typename symmetric>
struct check_container_feature< SparseMatrix<E,symmetric>, SkewSymmetric > : std::is_same<symmetric,SkewSymmetric> {};

template <bool rowwise, typename symmetric, typename BaseRef>
class sparse_matrix_line_factory {
public:
   typedef BaseRef first_argument_type;
   typedef int second_argument_type;
   typedef typename std::conditional<rowwise, typename deref<BaseRef>::type::table_type::row_tree_type,
                                              typename deref<BaseRef>::type::table_type::col_tree_type>::type
      tree_type;
   typedef sparse_matrix_line<typename inherit_ref<tree_type, BaseRef>::type, symmetric> result_type;

   result_type operator() (BaseRef matrix, int index) const
   {
      return result_type(matrix,index);
   }
};

template <bool rowwise, typename symmetric>
class sparse_matrix_line_factory<rowwise, symmetric, void> : public operations::incomplete {};

template <bool rowwise, typename symmetric, typename BaseRef>
struct operation_cross_const_helper< sparse_matrix_line_factory<rowwise, symmetric, BaseRef> > {
   typedef sparse_matrix_line_factory<rowwise, symmetric, typename attrib<BaseRef>::minus_const> operation;
   typedef sparse_matrix_line_factory<rowwise, symmetric, typename attrib<BaseRef>::plus_const> const_operation;
};

template <bool rowwise, typename symmetric, typename Iterator1, typename Iterator2, typename Reference1, typename Reference2>
struct binary_op_builder< sparse_matrix_line_factory<rowwise,symmetric>, Iterator1, Iterator2, Reference1, Reference2>
   : empty_op_builder< sparse_matrix_line_factory<rowwise,symmetric,Reference1> > {};

template <typename E, typename TSymmetric>
class Rows< SparseMatrix<E, TSymmetric> >
   : public modified_container_pair_impl< Rows< SparseMatrix<E, TSymmetric> >,
                                          mlist< Container1Tag< constant_value_container< SparseMatrix_base<E, TSymmetric>& > >,
                                                 Container2Tag< sequence >,
                                                 OperationTag< pair< sparse_matrix_line_factory<true, TSymmetric>,
                                                                     BuildBinaryIt<operations::dereference2> > >,
                                                 MasqueradedTop > > {
protected:
   ~Rows();
public:
   constant_value_container< SparseMatrix_base<E, TSymmetric>& > get_container1()
   {
      return this->hidden();
   }
   const constant_value_container< const SparseMatrix_base<E, TSymmetric>& > get_container1() const
   {
      return this->hidden();
   }
   sequence get_container2() const
   {
      return sequence(0, this->hidden().get_table().rows());
   }
   void resize(int n)
   {
      this->hidden().get_table().resize_rows(n);
   }
};

template <typename E, typename TSymmetric>
class Cols< SparseMatrix<E, TSymmetric> >
   : public modified_container_pair_impl< Cols< SparseMatrix<E, TSymmetric> >,
                                          mlist< Container1Tag< constant_value_container< SparseMatrix_base<E, TSymmetric>& > >,
                                                 Container2Tag< sequence >,
                                                 OperationTag< pair< sparse_matrix_line_factory<false, TSymmetric>,
                                                                     BuildBinaryIt<operations::dereference2> > >,
                                                 MasqueradedTop > > {
protected:
   ~Cols();
public:
   constant_value_container< SparseMatrix_base<E, TSymmetric>& > get_container1()
   {
      return this->hidden();
   }
   const constant_value_container< const SparseMatrix_base<E, TSymmetric>& > get_container1() const
   {
      return this->hidden();
   }
   sequence get_container2() const
   {
      return sequence(0, this->hidden().get_table().cols());
   }
   void resize(int n)
   {
      this->hidden().get_table().resize_cols(n);
   }
};

template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_rows(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != perm.size())
         throw std::runtime_error("permuted_rows - dimension mismatch");
   }
   return SparseMatrix<E>(RestrictedSparseMatrix<E, sparse2d::only_rows>(m.rows(), m.cols(), sparse2d::rowwise(), select(rows(m),perm).begin()));
}

template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_cols(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.cols() != perm.size())
         throw std::runtime_error("permuted_cols - dimension mismatch");
   }
   return SparseMatrix<E>(RestrictedSparseMatrix<E, sparse2d::only_cols>(m.rows(), m.cols(), sparse2d::columnwise(), select(cols(m),perm).begin()));
}

template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_inv_rows(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != perm.size())
         throw std::runtime_error("permuted_inv_rows - dimension mismatch");
   }
   RestrictedSparseMatrix<E, sparse2d::only_rows> result(m.rows(), m.cols());
   copy_range(entire(rows(m)), select(rows(result),perm).begin());
   return SparseMatrix<E>(std::move(result));
}

template <typename TMatrix, typename E, typename Permutation> inline
typename std::enable_if<TMatrix::is_nonsymmetric && TMatrix::is_sparse, SparseMatrix<E>>::type
permuted_inv_cols(const GenericMatrix<TMatrix, E>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.cols() != perm.size())
         throw std::runtime_error("permuted_inv_cols - dimension mismatch");
   }
   RestrictedSparseMatrix<E, sparse2d::only_cols> result(m.rows(), m.cols());
   copy_range(entire(cols(m)), select(cols(result),perm).begin());
   return SparseMatrix<E>(std::move(result));
}

template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse, typename TMatrix::persistent_type>::type
permuted_rows(const GenericMatrix<TMatrix>& m, const Permutation& perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != perm.size())
         throw std::runtime_error("permuted_rows - dimension mismatch");
   }
   std::vector<int> inv_perm(m.rows());
   inverse_permutation(perm,inv_perm);
   return m.top().copy_permuted(perm,inv_perm);
}

template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse && container_traits<Permutation>::is_random,
                        typename TMatrix::persistent_type>::type
permuted_inv_rows(const GenericMatrix<TMatrix>& m, const Permutation& inv_perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != inv_perm.size())
         throw std::runtime_error("permuted_inv_rows - dimension mismatch");
   }
   std::vector<int> perm(m.rows());
   inverse_permutation(inv_perm,perm);
   return m.top().copy_permuted(perm,inv_perm);
}

template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse && !container_traits<Permutation>::is_random,
                        typename TMatrix::persistent_type>::type
permuted_inv_rows(const GenericMatrix<TMatrix>& m, const Permutation& inv_perm)
{
   if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
      if (m.rows() != inv_perm.size())
         throw std::runtime_error("permuted_inv_rows - dimension mismatch");
   }
   std::vector<int> inv_perm_copy(inv_perm.size());
   copy_range(entire(inv_perm), inv_perm_copy.begin());
   return permuted_inv_rows(m,inv_perm_copy);
}

template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse,
                        typename TMatrix::persistent_type>::type
permuted_cols(const GenericMatrix<TMatrix>& m, const Permutation& perm)
{
   return permuted_rows(m,perm);
}

template <typename TMatrix, typename Permutation> inline
typename std::enable_if<!TMatrix::is_nonsymmetric && TMatrix::is_sparse,
                        typename TMatrix::persistent_type>::type
permuted_inv_cols(const GenericMatrix<TMatrix>& m, const Permutation& inv_perm)
{
   return permuted_inv_rows(m,inv_perm);
}

/// sparse matrix statistics collection
template <typename E>
class SparseMatrixStatistics {
public:
   unsigned int maxnon0s, maxrowsize, maxcolsize;
   E maxabs;
   Array<unsigned int> row_support_sizes;

   SparseMatrixStatistics()
      : maxnon0s(0), maxrowsize(0), maxcolsize(0), maxabs(0) {}

   void gather(const SparseMatrix<E>& m)
   {
      unsigned int non0s=0;

      int row_ct(0);
      row_support_sizes = Array<unsigned int>(m.rows());
      for (typename Entire< Rows< SparseMatrix<E> > >::const_iterator r=entire(rows(m)); !r.at_end(); ++r, ++row_ct) {
         if (unsigned int s=r->size()) {
            for (typename Entire< typename SparseMatrix<E>::row_type >::const_iterator e=entire(*r); !e.at_end(); ++e) {
               maxabs=std::max(maxabs, abs(*e));
            }
            maxrowsize=std::max(maxrowsize, s);
            non0s+=s;
            row_support_sizes[row_ct] = s;
         }
      }

      maxnon0s=std::max(maxnon0s, non0s);
      for (typename Entire< Cols< SparseMatrix<E> > >::const_iterator c=entire(cols(m)); !c.at_end(); ++c) {
         if (unsigned int s=c->size()) {
            maxcolsize=std::max(maxcolsize, s);
         }
      }
   }

   void gather(const Transposed< SparseMatrix<E> >& m)
   {
      gather(m.hidden());
   }

   // statistics at two various moments can be glued together
   SparseMatrixStatistics& operator+= (const SparseMatrixStatistics& s)
   {
      maxnon0s=std::max(maxnon0s,s.maxnon0s);
      maxabs=std::max(maxabs,s.maxabs);
      maxrowsize=std::max(maxrowsize,s.maxrowsize);
      maxcolsize=std::max(maxcolsize,s.maxcolsize);
      // FIXME: also take component-wise max of the row_support_sizes
      return *this;
   }

   template <typename Traits> friend
   std::basic_ostream<char, Traits>&
   operator<< (std::basic_ostream<char, Traits>& os, const SparseMatrixStatistics& s)
   {
      wrap(os) << ">>> " << s.maxnon0s << " nonzeroes,  max abs(element)=" << s.maxabs
               << "\n>>> max row size=" << s.maxrowsize << ",  max col size=" << s.maxcolsize 
               << "\n>>> row support sizes=" << s.row_support_sizes
               << endl;
      return os;
   }
};

} // end namespace pm

namespace polymake {
   using pm::SparseMatrix;
   using pm::RestrictedSparseMatrix;
}

namespace std {
   template <typename E, typename symmetric> inline
   void swap(pm::SparseMatrix<E,symmetric>& M1, pm::SparseMatrix<E,symmetric>& M2)
   {
      M1.swap(M2);
   }

   template <typename E, pm::sparse2d::restriction_kind restriction> inline
   void swap(pm::RestrictedSparseMatrix<E,restriction>& M1,
             pm::RestrictedSparseMatrix<E,restriction>& M2)
   {
      M1.swap(M2);
   }

   template <typename Tree, typename symmetric> inline
   void swap(pm::sparse_matrix_line<Tree&,symmetric> l1, pm::sparse_matrix_line<Tree&,symmetric> l2)
   {
      l1.swap(l2);
   }
}

#endif // POLYMAKE_SPARSE_MATRIX_H

// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End: