/usr/include/polymake/next/Graph.h is in libpolymake-dev-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 | /* Copyright (c) 1997-2018
Ewgenij Gawrilow, Michael Joswig (Technische Universitaet Berlin, Germany)
http://www.polymake.org
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version: http://www.gnu.org/licenses/gpl.txt.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
--------------------------------------------------------------------------------
*/
/** @file Graph.h
@brief Implementation of pm::graph::Graph class
*/
#ifndef POLYMAKE_GRAPH_H
#define POLYMAKE_GRAPH_H
#include "polymake/internal/sparse2d.h"
#include "polymake/IncidenceMatrix.h"
#include "polymake/SparseMatrix.h"
#include "polymake/internal/assoc.h"
#include "polymake/internal/converters.h"
#include "polymake/SelectedSubset.h"
#include "polymake/GenericGraph.h"
#include "polymake/EmbeddedList.h"
#include "polymake/hash_map"
#include "polymake/list"
#include "polymake/vector"
#include "polymake/meta_list.h"
#include <cassert>
namespace pm {
namespace graph {
using pm::sparse2d::restriction_kind;
using pm::sparse2d::full;
using pm::sparse2d::dying;
using pm::sparse2d::relocate;
using pm::relocate;
template <typename TDir> class Table;
template <typename TDir, restriction_kind restriction=full> struct node_entry;
template <typename Traits> struct dir_permute_entries;
template <typename Traits> struct undir_permute_entries;
template <typename TDir, typename E, typename... TParams> class NodeMap;
template <typename TDir, typename E, typename... TParams> class EdgeMap;
template <typename TDir, typename E, typename... TParams> class NodeHashMap;
template <typename TDir, typename E, typename... TParams> class EdgeHashMap;
struct edge_agent_base {
int n_edges, n_alloc;
edge_agent_base() : n_edges(0), n_alloc(0) {}
static const int bucket_shift=8, bucket_size=1<<bucket_shift, bucket_mask=bucket_size-1;
static int min_buckets(int b) { return b>=10 ? b : 10; }
template <typename MapList>
bool extend_maps(MapList& maps);
};
template <typename TDir>
struct edge_agent : edge_agent_base {
Table<TDir>* table;
edge_agent() : table(nullptr) {}
typedef sparse2d::cell<int> Cell;
template <bool for_copy>
void init(Table<TDir> *t, bool_constant<for_copy>);
template <typename NumberConsumer>
void renumber(const NumberConsumer& nc);
void reset() { n_alloc=0; table=nullptr; }
void added(Cell *c)
{
if (table)
table->_edge_added(*this,c);
else
n_alloc=0;
++n_edges;
}
void removed(Cell *c)
{
--n_edges;
if (table)
table->_edge_removed(c);
else
n_alloc=0;
}
};
template <typename TDir, bool TOut_edges>
class it_traits : public sparse2d::it_traits<int, TOut_edges, TDir::value> {
typedef sparse2d::it_traits<int, TOut_edges, TDir::value> base_t;
public:
it_traits(int index_arg=0) : base_t(index_arg) {}
AVL::Ptr<typename base_t::Node>& link(typename base_t::Node *n, AVL::link_index X) const
{
return (TDir::value && n->key<0) ? n->links[X-AVL::L] : base_t::link(n,X);
}
const it_traits& get_it_traits() const { return *this; }
};
template <typename TDir, bool TOut_edges /* =false */, restriction_kind restriction>
class traits_base : public it_traits<TDir, TOut_edges> {
public:
typedef it_traits<TDir, TOut_edges> traits_for_iterator;
typedef typename traits_for_iterator::Node Node;
protected:
mutable AVL::Ptr<Node> root_links[3];
public:
typedef int mapped_type;
static const bool
symmetric=TDir::value,
row_oriented=TOut_edges /* =false */,
allow_multiple=TDir::multigraph;
typedef AVL::tree< sparse2d::traits<traits_base, symmetric, restriction> > own_tree;
typedef AVL::tree< sparse2d::traits<traits_base<TDir, (!symmetric && !row_oriented), restriction>, symmetric, restriction> >
cross_tree;
protected:
typedef node_entry<TDir, restriction> entry;
typedef sparse2d::ruler<entry, edge_agent<TDir> > own_ruler;
typedef own_ruler cross_ruler;
Node* head_node() const
{
return reinterpret_cast<Node*>(const_cast<traits_base*>(this));
}
const entry& get_node_entry() const
{
return *entry::reverse_cast(static_cast<const own_tree*>(this));
}
entry& get_node_entry()
{
return *entry::reverse_cast(static_cast<own_tree*>(this));
}
const cross_ruler& get_cross_ruler() const
{
return get_node_entry().get_ruler();
}
cross_ruler& get_cross_ruler()
{
return get_node_entry().get_ruler();
}
int visit_by_copy(Node* n) const
{
return 2*this->get_line_index() - n->key;
}
void notify_add(Node* n)
{
get_cross_ruler().prefix().added(n);
}
void notify_remove(Node* n)
{
get_cross_ruler().prefix().removed(n);
}
public:
typedef int arg_type;
traits_base(int index_arg) : traits_for_iterator(index_arg) {}
const cross_tree& get_cross_tree(int i) const
{
return get_cross_ruler()[i].out();
}
cross_tree& get_cross_tree(int i)
{
return get_cross_ruler()[i].out();
}
friend class Table<TDir>;
template <typename> friend struct sparse2d::sym_permute_entries;
template <typename> friend struct dir_permute_entries;
template <typename> friend struct undir_permute_entries;
};
template <typename TDir, restriction_kind restriction>
class traits_base<TDir, true, restriction> {
protected:
typedef sparse2d::cell<int> Node;
mutable AVL::Ptr<Node> root_links[3];
public:
typedef int mapped_type;
static const bool
symmetric=false,
row_oriented=true,
allow_multiple=TDir::multigraph;
typedef it_traits<TDir, true> traits_for_iterator;
typedef traits_base<TDir, false, restriction> cross_traits_base;
static AVL::Ptr<Node>& link(Node* n, AVL::link_index X)
{
return n->links[X-AVL::L + 3];
}
int get_line_index() const
{
return get_node_entry().in().get_line_index();
}
traits_for_iterator get_it_traits() const { return get_line_index(); }
typedef AVL::tree< sparse2d::traits<traits_base, symmetric, restriction> > own_tree;
typedef AVL::tree< sparse2d::traits<cross_traits_base, symmetric, restriction> > cross_tree;
protected:
typedef node_entry<TDir, restriction> entry;
typedef sparse2d::ruler<entry, edge_agent<TDir> > own_ruler;
typedef own_ruler cross_ruler;
Node* head_node() const
{
return reinterpret_cast<Node*>(reinterpret_cast<char*>(const_cast<traits_base*>(this))-
sizeof(cross_traits_base));
}
const entry& get_node_entry() const
{
return *entry::reverse_cast(static_cast<const own_tree*>(this));
}
entry& get_node_entry()
{
return *entry::reverse_cast(static_cast<own_tree*>(this));
}
const cross_ruler& get_cross_ruler() const
{
return get_node_entry().get_ruler();
}
cross_ruler& get_cross_ruler()
{
return get_node_entry().get_ruler();
}
int visit_by_copy(Node* n) const
{
return 2*get_line_index() - n->key;
}
void notify_add(Node* n)
{
get_cross_ruler().prefix().added(n);
}
void notify_remove(Node* n)
{
get_cross_ruler().prefix().removed(n);
}
public:
typedef const traits_base& arg_type;
const cross_tree& get_cross_tree(int i) const
{
return get_cross_ruler()[i].in();
}
cross_tree& get_cross_tree(int i)
{
return get_cross_ruler()[i].in();
}
static void prepare_move_between_trees(Node* n, const int old_line_index, const int new_line_index)
{
n->key += new_line_index - old_line_index;
}
friend class Table<TDir>;
};
template <typename TDir, restriction_kind restriction, bool _symmetric=TDir::value /* =true */>
struct node_entry_trees {
typedef AVL::tree< sparse2d::traits<traits_base<TDir, false, restriction>, _symmetric, restriction> >
out_tree_type;
typedef out_tree_type in_tree_type;
out_tree_type _out;
explicit node_entry_trees(int index_arg) : _out(index_arg) {}
out_tree_type& out() { return _out; }
const out_tree_type& out() const { return _out; }
out_tree_type& in() { return _out; }
const out_tree_type& in() const { return _out; }
int degree() const { return _out.size(); }
out_tree_type& cross_tree(out_tree_type*) { return _out; }
static const node_entry<TDir, restriction>*
reverse_cast(const out_tree_type* t)
{
return static_cast<const node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::_out));
}
static node_entry<TDir, restriction>*
reverse_cast(out_tree_type* t)
{
return static_cast<node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::_out));
}
};
template <typename TDir, restriction_kind restriction>
struct node_entry_trees<TDir, restriction, false> {
typedef AVL::tree< sparse2d::traits<traits_base<TDir, true, restriction>, false, restriction> >
out_tree_type;
typedef AVL::tree< sparse2d::traits<traits_base<TDir, false, restriction>, false, restriction> >
in_tree_type;
in_tree_type _in;
out_tree_type _out;
explicit node_entry_trees(int index_arg) : _in(index_arg) {}
out_tree_type& out() { return _out; }
const out_tree_type& out() const { return _out; }
in_tree_type& in() { return _in; }
const in_tree_type& in() const { return _in; }
int degree() const { return _out.size()+_in.size(); }
out_tree_type& cross_tree(in_tree_type*) { return _out; }
in_tree_type& cross_tree(out_tree_type*) { return _in; }
static const node_entry<TDir, restriction>*
reverse_cast(const out_tree_type* t)
{
return static_cast<const node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::_out));
}
static node_entry<TDir, restriction>*
reverse_cast(out_tree_type* t)
{
return static_cast<node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::_out));
}
static const node_entry<TDir, restriction>*
reverse_cast(const in_tree_type* t)
{
return static_cast<const node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::_in));
}
static node_entry<TDir, restriction>*
reverse_cast(in_tree_type* t)
{
return static_cast<node_entry<TDir, restriction>*>(pm::reverse_cast(t, &node_entry_trees::_in));
}
};
template <typename TDir, restriction_kind restriction>
struct node_entry
: public node_entry_trees<TDir, restriction> {
typedef TDir dir;
typedef sparse2d::ruler<node_entry, edge_agent<TDir> > ruler;
explicit node_entry(int index_arg) : node_entry_trees<TDir, restriction>(index_arg) {}
int get_line_index() const { return this->in().get_line_index(); }
const ruler& get_ruler() const
{
return ruler::reverse_cast(this, get_line_index());
}
ruler& get_ruler()
{
return ruler::reverse_cast(this, get_line_index());
}
friend void relocate(node_entry* from, node_entry* to)
{
relocate(&(from->out()), &(to->out()));
if (TDir::value==Directed::value) relocate(&(from->in()), &(to->in()));
}
};
template <typename Table>
struct dir_permute_entries {
typedef typename Table::ruler ruler;
typedef typename Table::entry entry_t;
typedef typename Table::out_tree_type out_tree_t;
typedef typename Table::in_tree_type in_tree_t;
typedef typename out_tree_t::Node Node;
explicit dir_permute_entries(int& free_node_id)
: free_node_id_ptr(&free_node_id) {}
static void relocate(entry_t* from, entry_t* to)
{
relocate_tree(&from->_out, &to->_out, std::false_type());
relocate_tree(&from->_in, &to->_in, std::false_type());
}
static void complete_in_trees(ruler* R)
{
int nfrom=0;
for (entry_t& entry : *R) {
for (auto e=entry._out.begin(); !e.at_end(); ++e) {
Node* node=e.operator->();
(*R)[node->key-nfrom]._in.push_back_node(node);
}
++nfrom;
}
}
void operator()(ruler* Rold, ruler* R)
{
inv_perm.resize(R->size(), -1);
int nto=0;
for (entry_t& entry : *R) {
const int old_n=entry._in.line_index;
if (old_n >= 0)
inv_perm[old_n]=nto;
++nto;
}
nto=0;
for (entry_t& entry : *R) {
const int old_nto=entry._in.line_index;
if (old_nto >= 0) {
entry._in.line_index=nto;
for (auto e=(*Rold)[old_nto]._in.begin(); !e.at_end(); ++e) {
Node* node=e.operator->();
const int old_nfrom=node->key-old_nto, nfrom=inv_perm[old_nfrom];
node->key=nfrom+nto;
(*R)[nfrom]._out.push_back_node(node);
}
} else {
*free_node_id_ptr=~nto;
free_node_id_ptr=&entry._in.line_index;
}
++nto;
}
*free_node_id_ptr=std::numeric_limits<int>::min();
complete_in_trees(R);
}
template <typename Perm, typename InvPerm>
void copy(const ruler* R_src, ruler* R_dst, const Perm& perm, const InvPerm& inv_perm)
{
const int n=R_dst->size();
auto p_it=perm.begin();
for (int dst_nto=0; dst_nto < n; ++dst_nto, ++p_it) {
const int src_nto=*p_it;
const in_tree_t& src_in_tree=(*R_src)[src_nto]._in;
if (src_in_tree.line_index >= 0) {
for (auto e=src_in_tree.begin(); !e.at_end(); ++e) {
const Node* node=e.operator->();
const int src_nfrom=node->key-src_nto;
const int dst_nfrom=inv_perm[src_nfrom];
out_tree_t& t=(*R_dst)[dst_nfrom]._out;
t.push_back_node(new(t.allocate_node()) Node(dst_nfrom+dst_nto));
}
} else {
*free_node_id_ptr=~dst_nto;
free_node_id_ptr=&(*R_dst)[dst_nto]._in.line_index;
}
}
*free_node_id_ptr=std::numeric_limits<int>::min();
complete_in_trees(R_dst);
}
std::vector<int> inv_perm;
int* free_node_id_ptr;
};
template <typename Traits>
struct undir_permute_entries
: sparse2d::sym_permute_entries<Traits> {
using typename Traits::entry_t;
explicit undir_permute_entries(int& free_node_id)
: free_node_id_ptr(&free_node_id) {}
static void relocate(entry_t* from, entry_t* to)
{
relocate_tree(&from->_out, &to->_out, std::false_type());
}
void deleted_node(entry_t& entry, int n)
{
*free_node_id_ptr=~n;
free_node_id_ptr=&entry._out.line_index;
}
void finalize_deleted_nodes()
{
*free_node_id_ptr=std::numeric_limits<int>::min();
}
int* free_node_id_ptr;
};
struct NodeMapBase {
ptr_pair<NodeMapBase> ptrs;
long refc;
void* _table;
NodeMapBase() : refc(1), _table(0) {}
virtual ~NodeMapBase() {}
virtual void init()=0;
virtual void reset(int n=0)=0;
virtual void resize(size_t n_alloc_new, int n, int nnew)=0;
virtual void shrink(size_t n_alloc_new, int n)=0;
virtual void move_entry(int n_from, int n_to)=0;
virtual void revive_entry(int n)=0;
virtual void delete_entry(int n)=0;
virtual void permute_entries(const std::vector<int>& inv_perm)=0;
};
template <typename> class EdgeMapDataAccess;
struct EdgeMapBase {
ptr_pair<EdgeMapBase> ptrs;
long refc;
void* _table;
EdgeMapBase() : refc(1), _table(0) {}
virtual ~EdgeMapBase() {}
virtual bool is_detachable() const = 0;
virtual void reset()=0;
virtual void revive_entry(int e)=0;
virtual void delete_entry(int e)=0;
virtual void realloc(size_t n_alloc)=0;
virtual void add_bucket(int n)=0;
};
struct EdgeMapDenseBase : public EdgeMapBase {
void **buckets;
size_t n_alloc;
EdgeMapDenseBase() : buckets(0) {}
void alloc(size_t n)
{
n_alloc=n;
buckets=new void*[n];
std::memset(buckets, 0, n*sizeof(void*));
}
void realloc(size_t new_n_alloc)
{
if (new_n_alloc > n_alloc) {
void **old_buckets=buckets;
buckets=new void*[new_n_alloc];
std::memcpy(buckets, old_buckets, n_alloc*sizeof(void*));
std::memset(buckets+n_alloc, 0, (new_n_alloc-n_alloc)*sizeof(void*));
delete[] old_buckets;
n_alloc=new_n_alloc;
}
}
void destroy() { delete[] buckets; buckets=nullptr; n_alloc=0; }
};
template <typename MapList>
bool edge_agent_base::extend_maps(MapList& maps)
{
if (n_edges & bucket_mask) return false;
const int new_bucket=n_edges >> bucket_shift;
if (new_bucket >= n_alloc) {
n_alloc += min_buckets(n_alloc / 5);
for (auto& map : maps) {
map.realloc(n_alloc);
map.add_bucket(new_bucket);
}
} else {
for (auto& map : maps)
map.add_bucket(new_bucket);
}
return true;
}
template <typename Data>
class EdgeMapDataAccess {
public:
typedef int argument_type;
typedef Data& result_type;
static Data* index2addr(void **buckets, int i)
{
return reinterpret_cast<Data*>(buckets[i>>edge_agent_base::bucket_shift])+(i&edge_agent_base::bucket_mask);
}
result_type operator() (int i) const
{
return *index2addr(buckets,i);
}
EdgeMapDataAccess(void** arg=0) : buckets(arg) {}
EdgeMapDataAccess(const EdgeMapDataAccess<typename attrib<Data>::minus_const>& op) : buckets(op.buckets) {}
protected:
void **buckets;
};
} // end namespace graph
template <typename Data>
struct operation_cross_const_helper< graph::EdgeMapDataAccess<Data> > {
typedef graph::EdgeMapDataAccess<typename attrib<Data>::minus_const> operation;
typedef graph::EdgeMapDataAccess<typename attrib<Data>::plus_const> const_operation;
};
namespace graph {
template <typename TDir>
class Table {
public:
typedef TDir dir;
static const bool is_directed=dir::value==Directed::value;
typedef node_entry<dir> entry;
typedef typename entry::ruler ruler;
protected:
ruler *R;
typedef sparse2d::cell<int> Cell;
typedef EmbeddedList<NodeMapBase, &NodeMapBase::ptrs> node_map_list;
typedef EmbeddedList<EdgeMapBase, &EdgeMapBase::ptrs> edge_map_list;
mutable node_map_list node_maps;
mutable edge_map_list edge_maps;
std::vector<int> free_edge_ids;
int n_nodes, free_node_id;
friend struct edge_agent<dir>;
friend class Graph<dir>;
public:
Table()
: R(ruler::construct(0)), n_nodes(0), free_node_id(std::numeric_limits<int>::min()) {}
explicit Table(int n)
: R(ruler::construct(n)), n_nodes(n), free_node_id(std::numeric_limits<int>::min()) {}
Table(const Table& t)
: R(ruler::construct(*t.R)), n_nodes(t.n_nodes), free_node_id(t.free_node_id)
{
R->prefix().n_edges=t.edges();
}
protected:
template <typename TSet>
static typename std::enable_if<check_container_feature<TSet, sparse_compatible>::value, int>::type
get_dim_of(const TSet& s)
{
return s.dim();
}
template <typename TSet>
static typename std::enable_if<!check_container_feature<TSet, sparse_compatible>::value, int>::type
get_dim_of(const TSet& s)
{
return s.empty() ? 0 : s.back()+1;
}
public:
template <typename TSet>
explicit Table(const GenericSet<TSet>& s)
: R(ruler::construct(get_dim_of(s.top())))
, n_nodes(R->size())
, free_node_id(std::numeric_limits<int>::min())
{
if (!std::is_same<TSet, sequence>::value || s.top().size()!=n_nodes)
init_delete_nodes(sequence(0,n_nodes)-s);
}
template <typename TSet>
Table(const GenericSet<TSet>& s, int dim)
: R(ruler::construct(dim))
, n_nodes(dim)
, free_node_id(std::numeric_limits<int>::min())
{
if (!std::is_same<TSet, sequence>::value || s.top().size()!=n_nodes)
init_delete_nodes(sequence(0,n_nodes)-s);
}
protected:
void detach_node_maps()
{
for (auto it=entire(node_maps); !it.at_end(); ) {
NodeMapBase* m=it.operator->(); ++it;
m->reset(); m->_table=nullptr;
detach(*m);
}
}
void detach_edge_maps()
{
for (auto it=entire(edge_maps); !it.at_end(); ) {
EdgeMapBase* m=it.operator->(); ++it;
m->reset(); m->_table=nullptr;
detach(*m);
}
}
public:
~Table()
{
detach_node_maps();
detach_edge_maps();
typedef typename node_entry<dir,dying>::ruler dying_ruler;
dying_ruler::destroy(reinterpret_cast<dying_ruler*>(R));
}
Table& operator= (const Table& t)
{
this->~Table();
new(this) Table(t);
return *this;
}
void swap(Table& t)
{
std::swap(R,t.R);
node_maps.swap(t.node_maps);
edge_maps.swap(t.edge_maps);
std::swap(n_nodes, t.n_nodes);
std::swap(free_node_id, t.free_node_id);
std::swap(free_edge_ids, t.free_edge_ids);
for (auto& map : node_maps)
map._table=this;
for (auto& map : t.node_maps)
map._table=&t;
for (auto& map : edge_maps)
map._table=this;
for (auto& map : t.edge_maps)
map._table=&t;
}
void clear(int n=0)
{
for (auto& map : node_maps) map.reset(n);
for (auto& map : edge_maps) map.reset();
R->prefix().table=nullptr;
R=ruler::resize_and_clear(R,n);
edge_agent<dir>& h=R->prefix();
if (!edge_maps.empty()) h.table=this;
h.n_alloc=0;
h.n_edges=0;
n_nodes=n;
if (n) for (auto& map : node_maps) map.init();
free_node_id=std::numeric_limits<int>::min();
free_edge_ids.clear();
}
struct shared_clear {
int n;
shared_clear(int n_arg) : n(n_arg) {}
void operator() (void *p, const Table&) const { new(p) Table(n); }
void operator() (Table& t) const { t.clear(n); }
};
typedef typename entry::out_tree_type out_tree_type;
typedef typename entry::in_tree_type in_tree_type;
int dim() const { return R->size(); }
int nodes() const { return n_nodes; }
int edges() const { return R->prefix().n_edges; }
bool node_exists(int n) const { return (*R)[n].get_line_index()>=0; }
bool node_out_of_range(int n) const { return n<0 || n>=R->size(); }
bool invalid_node(int n) const { return node_out_of_range(n) || !node_exists(n); }
entry& operator[] (int n) { return (*R)[n]; }
const entry& operator[] (int n) const { return (*R)[n]; }
protected:
int revive_node()
{
int n=~free_node_id;
entry& e=(*R)[n];
free_node_id=e.in().line_index;
e.in().line_index=n;
for (auto& map : node_maps) map.revive_entry(n);
++n_nodes;
return n;
}
// is only called when the maps do not contain any gaps
void _resize(int nnew)
{
R=ruler::resize(R,nnew);
for (auto& map : node_maps) map.resize(R->max_size(), n_nodes, nnew);
n_nodes=nnew;
}
void _edge_added(edge_agent<dir>& h, Cell *c)
{
int id;
if (free_edge_ids.empty()) {
id=h.n_edges;
if (h.extend_maps(edge_maps)) {
c->data=id;
return;
}
} else {
id=free_edge_ids.back();
free_edge_ids.pop_back();
}
c->data=id;
for (auto& map : edge_maps) map.revive_entry(id);
}
void _edge_removed(Cell *c)
{
const int id=c->data;
for (auto& map : edge_maps) map.delete_entry(id);
free_edge_ids.push_back(id);
}
public:
int add_node()
{
if (free_node_id != std::numeric_limits<int>::min())
return revive_node();
int n=R->size();
_resize(n+1);
return n;
}
void delete_node(int n)
{
entry& e=(*R)[n];
e.out().clear();
if (is_directed) e.in().clear();
e.in().line_index=free_node_id;
free_node_id=~n;
for (auto& map : node_maps) map.delete_entry(n);
--n_nodes;
}
protected:
template <typename List>
void init_delete_nodes(const List& l)
{
for (auto it = entire(l); !it.at_end(); ++it) {
const int n=*it;
entry& e=(*R)[n];
e.in().line_index=free_node_id;
free_node_id=~n;
--n_nodes;
}
}
template <typename Tree>
void renumber_nodes_in_edges(Tree& t, int /*nnew*/, int diff, Directed)
{
for (auto e=entire(t); !e.at_end(); ++e)
e->key -= diff;
}
void renumber_nodes_in_edges(in_tree_type& t, int nnew, int diff, Undirected)
{
const int diag=2*t.line_index;
for (auto e=entire(t); !e.at_end(); ) {
Cell& c=*e; ++e;
c.key -= diff << (c.key==diag);
}
t.line_index=nnew;
}
template <bool delete_isolated>
struct squeeze_node_chooser {
int operator() (const entry& t) const
{
if (t.get_line_index()<0) return -1;
return delete_isolated && t.degree()==0;
}
};
struct resize_node_chooser {
int nnew;
int operator() (entry& t) const
{
int n=t.get_line_index();
if (n<0) return -1;
if (n>=nnew) {
t.in().clear();
if (is_directed) t.out().clear();
return 1;
}
return 0;
}
resize_node_chooser(int n_arg) : nnew(n_arg) {}
};
template <typename NumberConsumer, typename NodeChooser>
void squeeze_nodes(const NumberConsumer& nc, NodeChooser to_delete)
{
int n=0, nnew=0;
for (auto t=R->begin(), end=R->end(); t!=end; ++t, ++n) {
const int what=to_delete(*t);
if (what==0) {
if (int diff=n-nnew) {
if (is_directed) t->in().line_index=nnew;
renumber_nodes_in_edges(t->out(), nnew, diff, dir());
if (is_directed) renumber_nodes_in_edges(t->in(), nnew, diff, dir());
relocate(t.operator->(), &t[-diff]);
for (auto& map : node_maps) map.move_entry(n, nnew);
}
nc(n, nnew); ++nnew;
} else {
if (what>0) {
for (auto& map : node_maps) map.delete_entry(n);
--n_nodes;
}
destroy_at(t.operator->());
}
}
if (nnew < n) {
R=ruler::resize(R, nnew, false);
for (auto it=entire(node_maps); !it.at_end(); ++it) it->shrink(R->max_size(), nnew);
}
free_node_id=std::numeric_limits<int>::min();
}
public:
template <typename NumberConsumer>
void squeeze_nodes(const NumberConsumer& nc)
{
squeeze_nodes(nc, squeeze_node_chooser<false>());
}
template <typename NumberConsumer>
void squeeze_edges(const NumberConsumer& nc)
{
for (auto& map : edge_maps) {
if (!map.is_detachable())
throw std::runtime_error("can't renumber edge IDs - non-trivial data attached");
}
R->prefix().renumber(nc);
detach_edge_maps();
}
void resize(int n)
{
if (n > n_nodes) {
while (free_node_id != std::numeric_limits<int>::min()) {
revive_node();
if (n==n_nodes) return;
}
_resize(n);
} else if (n < n_nodes) {
if (free_node_id != std::numeric_limits<int>::min())
squeeze_nodes(operations::binary_noop(), resize_node_chooser(n));
else
_resize(n);
}
}
protected:
struct undir_perm_traits {
typedef typename Table::ruler ruler;
typedef out_tree_type tree_t;
typedef typename Table::entry entry_t;
static tree_t& tree(entry_t& e) { return e.out(); }
static const tree_t& tree(const entry_t& e) { return e.out(); }
static bool is_alive(const entry_t& e) { return e.get_line_index() >= 0; }
void handle_dead_entry(entry_t& e, int n)
{
static_cast<undir_permute_entries<undir_perm_traits>&>(*this).deleted_node(e, n);
}
void finalize_dead_entries()
{
static_cast<undir_permute_entries<undir_perm_traits>&>(*this).finalize_deleted_nodes();
}
};
dir_permute_entries<Table> permute_entries(Directed)
{
return dir_permute_entries<Table>(free_node_id);
}
undir_permute_entries<undir_perm_traits> permute_entries(Undirected)
{
return undir_permute_entries<undir_perm_traits>(free_node_id);
}
public:
template <typename TPerm, typename _inverse>
void permute_nodes(const TPerm& perm, _inverse)
{
auto permuter=permute_entries(dir());
R=ruler::permute(R, perm, permuter, _inverse());
for (auto& map : node_maps) map.permute_entries(permuter.inv_perm);
}
template <typename TPerm, typename TInvPerm>
void copy_permuted(const Table& src, const TPerm& perm, const TInvPerm& inv_perm)
{
permute_entries(dir()).copy(src.R, R, perm, inv_perm);
n_nodes=src.n_nodes;
}
#if POLYMAKE_DEBUG
public:
void check(const char* prefix) const
{
for (const entry *r=R->begin(), *end=R->end(); r!=end; ++r) {
check(r->out(), prefix, "(out)");
if (is_directed) check(r->in(), prefix, "(in)");
}
}
protected:
template <typename Tree>
void check(const Tree& t, const char* prefix, const char* direction) const
{
std::ostringstream label;
label << prefix << "node " << t.get_line_index() << direction << ": ";
t.check(label.str().c_str());
}
#endif // POLYMAKE_DEBUG
public:
void attach(NodeMapBase& m) const
{
Table *me=const_cast<Table*>(this);
m._table=me;
me->node_maps.push_back(m);
}
void detach(NodeMapBase& m)
{
node_maps.remove(m);
}
void attach(EdgeMapBase& m) const
{
Table *me=const_cast<Table*>(this);
m._table=me;
me->edge_maps.push_back(m);
}
void detach(EdgeMapBase& m)
{
edge_maps.remove(m);
if (edge_maps.empty()) {
R->prefix().reset();
free_edge_ids.clear();
}
}
ruler& get_ruler() { return *R; }
const ruler& get_ruler() const { return *R; }
template <bool for_copy>
const edge_agent<dir>& get_edge_agent(bool_constant<for_copy> C) const
{
edge_agent<dir>& h=R->prefix();
if (!h.table) h.init(const_cast<Table*>(this), C);
return h;
}
};
struct edge_accessor
: public sparse2d::cell_accessor< sparse2d::cell<int> > {
template <typename Iterator>
class mix_in : public Iterator {
public:
mix_in() {}
template <typename SourceIterator, typename suitable=typename suitable_arg_for_iterator<SourceIterator, Iterator>::type>
mix_in(const SourceIterator& cur_arg)
: Iterator(prepare_iterator_arg<Iterator>(cur_arg)) {}
int from_node() const
{
return (Iterator::symmetric || Iterator::row_oriented)
? this->get_line_index()
: sparse2d::cell_index_accessor<const Iterator&>()(*this);
}
int to_node() const
{
return (Iterator::symmetric || Iterator::row_oriented)
? sparse2d::cell_index_accessor<const Iterator&>()(*this)
: this->get_line_index();
}
protected:
int& edge_id() const { return (**this).data; }
template <typename> friend struct edge_agent;
};
};
class truncate_after_index
{
public:
typedef void argument_type;
typedef bool result_type;
truncate_after_index(int v=0) : val(v) {}
template <typename Iterator>
bool operator() (const Iterator& it) const { return it.index() <= val; }
private:
int val;
};
template <typename Tree>
class incident_edge_list
: public modified_tree< incident_edge_list<Tree>,
mlist< OperationTag< pair< edge_accessor, BuildUnaryIt<sparse2d::cell_index_accessor> > >,
HiddenTag< Tree > > > {
typedef modified_tree<incident_edge_list> base_t;
template <typename> friend class Graph;
protected:
~incident_edge_list() = delete;
template <typename Iterator>
void copy(Iterator src)
{
auto dst=this->begin();
for (; !src.at_end(); ++src) {
int idiff=1;
while (!dst.at_end()) {
idiff=dst.index()-src.index();
if (idiff<0)
this->erase(dst++);
else
break;
idiff=1;
}
if (idiff>0)
this->insert(dst, src.index());
else
++dst;
}
while (!dst.at_end()) this->erase(dst++);
}
// merge not needed
template <typename Iterator>
bool init_from_set(Iterator src, std::false_type)
{
auto dst=this->end();
const int diag= Tree::symmetric ? this->hidden().get_line_index() : 0;
for (; !src.at_end(); ++src) {
const int i=*src;
if (Tree::symmetric && i > diag) return true;
this->insert(dst, i);
}
return false;
}
// merge needed
template <typename Iterator>
void init_from_set(Iterator src, std::true_type)
{
auto dst=this->begin();
for (; !src.at_end(); ++src) {
const int i=*src;
int idiff=1;
while (!dst.at_end()) {
idiff=dst.index()-i;
if (idiff<=0) ++dst;
if (idiff>=0) break;
idiff=1;
}
if (idiff>0) this->insert(dst, i);
}
}
template <typename Iterator, typename need_merge>
void init_from_edge_list(Iterator src, need_merge, std::false_type)
{
init_from_set(make_unary_transform_iterator(src, BuildUnaryIt<operations::index2element>()), need_merge());
}
template <typename Iterator, typename need_merge>
void init_from_edge_list(Iterator src, need_merge, std::true_type)
{
init_from_set(make_equal_range_contractor(make_unary_transform_iterator(src, BuildUnaryIt<operations::index2element>())), need_merge());
}
template <typename Input>
void init_multi_from_sparse(Input& src)
{
if (!src.get_option(TrustedValue<std::true_type>()) &&
src.lookup_dim(false) != dim())
throw std::runtime_error("multigraph input - dimension mismatch");
auto dst=this->end();
const int diag= Tree::symmetric ? this->hidden().get_line_index() : 0;
while (!src.at_end()) {
const int index=src.index();
if (Tree::symmetric && index > diag) {
src.skip_item();
src.skip_rest();
break;
}
int count;
for (src >> count; count; --count)
this->insert(dst, index);
}
}
template <typename Input>
void init_multi_from_dense(Input& src)
{
if (!src.get_option(TrustedValue<std::true_type>()) &&
src.size() != dim())
throw std::runtime_error("multigraph input - dimension mismatch");
auto dst=this->end();
const int diag= Tree::symmetric ? this->hidden().get_line_index() : 0;
for (int i=0; !src.at_end(); ++i) {
if (Tree::symmetric && i > diag) {
src.skip_rest();
break;
}
int count;
for (src >> count; count; --count)
this->insert(dst, i);
}
}
public:
static const bool multigraph=Tree::allow_multiple;
template <typename Input>
typename std::enable_if<!multigraph, typename mproject2nd<Input, void>::type>::type
read(Input& in)
{
typedef typename Input::template list_cursor< std::list<int> >::type cursor;
cursor src=in.begin_list((std::list<int>*)0);
if (init_from_set(list_reader<int, cursor&>(src), std::false_type())) src.skip_rest();
src.finish();
}
template <typename Input>
typename std::enable_if<multigraph, typename mproject2nd<Input, void>::type>::type
read(Input& in)
{
typedef typename Input::template list_cursor< SparseVector<int> >::type cursor;
cursor src=in.begin_list((SparseVector<int>*)0);
if (src.sparse_representation())
init_multi_from_sparse(src.set_option(SparseRepresentation<std::true_type>()));
else
init_multi_from_dense(src.set_option(SparseRepresentation<std::false_type>()));
src.finish();
}
int dim() const { return this->max_size(); }
incident_edge_list& operator= (const incident_edge_list& l)
{
copy(entire(l));
return *this;
}
template <typename Input> friend
Input& operator>> (GenericInput<Input>& in, incident_edge_list& me)
{
me.read(in.top());
return in.top();
}
typedef typename std::conditional<multigraph,
input_truncator<typename base_t::iterator, truncate_after_index>,
single_position_iterator<typename base_t::iterator> >::type
parallel_edge_iterator;
typedef typename std::conditional<multigraph,
input_truncator<typename base_t::const_iterator, truncate_after_index>,
single_position_iterator<typename base_t::const_iterator> >::type
parallel_edge_const_iterator;
private:
parallel_edge_const_iterator all_edges_to(int n2, std::false_type) const
{
return this->find(n2);
}
parallel_edge_iterator all_edges_to(int n2, std::false_type)
{
return this->find(n2);
}
parallel_edge_const_iterator all_edges_to(int n2, std::true_type) const
{
return parallel_edge_const_iterator(this->find_nearest(n2, first_of_equal()), truncate_after_index(n2));
}
parallel_edge_iterator all_edges_to(int n2, std::true_type)
{
return parallel_edge_iterator(this->find_nearest(n2, first_of_equal()), truncate_after_index(n2));
}
void delete_all_edges_to(int n2, std::false_type)
{
this->erase(n2);
}
void delete_all_edges_to(int n2, std::true_type)
{
for (parallel_edge_iterator e=all_edges_to(n2, std::true_type()); !e.at_end(); )
this->erase(e++);
}
public:
parallel_edge_const_iterator all_edges_to(int n2) const
{
return all_edges_to(n2, bool_constant<multigraph>());
}
parallel_edge_iterator all_edges_to(int n2)
{
return all_edges_to(n2, bool_constant<multigraph>());
}
void delete_all_edges_to(int n2)
{
delete_all_edges_to(n2, bool_constant<multigraph>());
}
};
template <typename Tree>
class lower_incident_edge_list
: public modified_container_impl< lower_incident_edge_list<Tree>,
mlist< HiddenTag< incident_edge_list<Tree> >,
IteratorConstructorTag< input_truncator_constructor >,
OperationTag< BuildUnaryIt<uniq_edge_predicate> > > > {
public:
int dim() const { return this->hidden().dim(); }
};
template <typename Tree>
class multi_adjacency_line
: public modified_container_impl< multi_adjacency_line<Tree>,
mlist< HiddenTag< incident_edge_list<Tree> >,
IteratorConstructorTag< range_folder_constructor >,
OperationTag< equal_index_folder > > >,
public GenericVector<multi_adjacency_line<Tree>, int> {
protected:
~multi_adjacency_line() = delete;
public:
int dim() const { return this->hidden().dim(); }
};
template <typename EntryRef>
struct valid_node_selector {
typedef EntryRef argument_type;
typedef typename deref<EntryRef>::type entry_type;
typedef bool result_type;
bool operator() (argument_type t) const
{
return t.get_line_index()>=0;
}
typedef typename entry_type::out_tree_type out_tree_type;
typedef typename entry_type::in_tree_type in_tree_type;
typedef incident_edge_list<out_tree_type> out_edge_list;
typedef incident_edge_list<in_tree_type> in_edge_list;
typedef typename std::conditional<out_edge_list::multigraph, multi_adjacency_line<out_tree_type>, incidence_line<out_tree_type> >::type out_adjacent_node_list;
typedef typename std::conditional<out_edge_list::multigraph, multi_adjacency_line<in_tree_type>, incidence_line<in_tree_type> >::type in_adjacent_node_list;
typedef out_adjacent_node_list adjacent_node_list;
typedef typename inherit_ref<out_edge_list, EntryRef>::type out_edge_list_ref;
typedef typename inherit_ref<in_edge_list, EntryRef>::type in_edge_list_ref;
typedef typename inherit_ref<out_adjacent_node_list, EntryRef>::type out_adjacent_node_list_ref;
typedef typename inherit_ref<in_adjacent_node_list, EntryRef>::type in_adjacent_node_list_ref;
typedef out_adjacent_node_list_ref adjacent_node_list_ref;
out_edge_list_ref out_edges(EntryRef t) const
{
return reinterpret_cast<out_edge_list_ref>(t.out());
}
in_edge_list_ref in_edges(EntryRef t) const
{
return reinterpret_cast<in_edge_list_ref>(t.in());
}
typename out_tree_type::const_iterator out_edge_impl(EntryRef t, int n2, std::true_type) const
{
typename out_tree_type::const_iterator e=t.out().find(n2);
if (e.at_end()) throw no_match("non-existing edge");
return e;
}
typename in_tree_type::const_iterator in_edge_impl(EntryRef t, int n2, std::true_type) const
{
typename in_tree_type::const_iterator e=t.in().find(n2);
if (e.at_end()) throw no_match("non-existing edge");
return e;
}
typename out_tree_type::iterator out_edge_impl(EntryRef t, int n2, std::false_type) const
{
return t.out().insert(n2);
}
typename in_tree_type::iterator in_edge_impl(EntryRef t, int n2, std::false_type) const
{
return t.in().insert(n2);
}
int out_edge(EntryRef t, int n2) const
{
return out_edge_impl(t, n2, bool_constant<attrib<EntryRef>::is_const>())->data;
}
int in_edge(EntryRef t, int n2) const
{
return in_edge_impl(t, n2, bool_constant<attrib<EntryRef>::is_const>())->data;
}
int out_degree(EntryRef t) const
{
return t.out().size();
}
int in_degree(EntryRef t) const
{
return t.in().size();
}
int degree(EntryRef t) const
{
return t.degree();
}
out_adjacent_node_list_ref out_adjacent_nodes(EntryRef t) const
{
return reinterpret_cast<out_adjacent_node_list_ref>(t.out());
}
in_adjacent_node_list_ref in_adjacent_nodes(EntryRef t) const
{
return reinterpret_cast<in_adjacent_node_list_ref>(t.in());
}
adjacent_node_list_ref adjacent_nodes(EntryRef t) const
{
return reinterpret_cast<adjacent_node_list_ref>(t.out());
}
};
template <typename TOut_edges, template <typename> class MasqueradeLine, typename NodeIterator=void>
class line_factory;
template <typename Iterator, typename Accessor>
struct valid_node_iterator : public unary_predicate_selector<Iterator, Accessor> {
typedef unary_predicate_selector<Iterator, Accessor> base_t;
template <typename, template <typename> class, typename> friend class line_factory;
public:
typedef valid_node_iterator<typename iterator_traits<Iterator>::iterator, Accessor> iterator;
typedef valid_node_iterator<typename iterator_traits<Iterator>::const_iterator, Accessor> const_iterator;
typedef random_access_iterator_tag iterator_category;
valid_node_iterator() {}
template <typename Accessor2>
valid_node_iterator(const valid_node_iterator<typename iterator_traits<Iterator>::iterator, Accessor2>& it)
: base_t(it) {}
valid_node_iterator(const Iterator& cur_arg, const Accessor& acc_arg=Accessor())
: base_t(cur_arg,acc_arg) {}
valid_node_iterator& operator++ () { base_t::operator++(); return *this; }
const valid_node_iterator operator++ (int) { valid_node_iterator copy(*this); base_t::operator++(); return copy; }
valid_node_iterator& operator-- () { base_t::operator--(); return *this; }
const valid_node_iterator operator-- (int) { valid_node_iterator copy(*this); base_t::operator--(); return copy; }
// random access is based on the absolute node index, not on the number of valid nodes in between!
valid_node_iterator& operator+= (int i)
{
static_cast<Iterator&>(*this)+=i;
return *this;
}
valid_node_iterator operator+ (int i) const { valid_node_iterator copy(*this); return copy+=i; }
friend
valid_node_iterator operator+ (int i, const valid_node_iterator& me) { return me+i; }
valid_node_iterator& operator-= (int i)
{
static_cast<Iterator&>(*this)-=i;
return *this;
}
valid_node_iterator operator- (int i) const { valid_node_iterator copy(*this); return copy-=i; }
ptrdiff_t operator- (const valid_node_iterator& it) const { return static_cast<const Iterator&>(*this)-it; }
int index() const { return (**this).get_line_index(); }
typedef typename base_t::helper::operation::out_edge_list_ref out_edge_list_ref;
typedef typename base_t::helper::operation::in_edge_list_ref in_edge_list_ref;
typedef typename base_t::helper::operation::out_adjacent_node_list_ref out_adjacent_node_list_ref;
typedef typename base_t::helper::operation::in_adjacent_node_list_ref in_adjacent_node_list_ref;
typedef typename base_t::helper::operation::adjacent_node_list_ref adjacent_node_list_ref;
out_edge_list_ref out_edges() const
{
return this->pred.out_edges(**this);
}
in_edge_list_ref in_edges() const
{
return this->pred.in_edges(**this);
}
int out_edge(int n2) const
{
return this->pred.out_edge(**this, n2);
}
int in_edge(int n2) const
{
return this->pred.in_edge(**this, n2);
}
int edge(int n2) const
{
return this->pred.out_edge(**this, n2);
}
int out_degree() const
{
return this->pred.out_degree(**this);
}
int in_degree() const
{
return this->pred.in_degree(**this);
}
int degree() const
{
return this->pred.degree(**this);
}
out_adjacent_node_list_ref out_adjacent_nodes() const
{
return this->pred.out_adjacent_nodes(**this);
}
in_adjacent_node_list_ref in_adjacent_nodes() const
{
return this->pred.in_adjacent_nodes(**this);
}
adjacent_node_list_ref adjacent_nodes() const
{
return this->pred.adjacent_nodes(**this);
}
};
struct valid_node_access_constructor : unary_predicate_selector_constructor {
template <typename Iterator, typename Accessor, typename ExpectedFeatures>
struct defs : unary_predicate_selector_constructor::defs<Iterator,Accessor,ExpectedFeatures> {
typedef valid_node_iterator<Iterator,Accessor> iterator;
};
};
template <typename TDir>
class valid_node_container
: public modified_container_impl< valid_node_container<TDir>,
mlist< ContainerTag< typename Table<TDir>::ruler >,
OperationTag< BuildUnary<valid_node_selector> >,
IteratorConstructorTag< valid_node_access_constructor >,
HiddenTag< Table<TDir> > > > {
typedef modified_container_impl<valid_node_container> base_t;
protected:
~valid_node_container();
public:
typedef random_access_iterator_tag container_category;
typename base_t::container& get_container() { return this->hidden().get_ruler(); }
const typename base_t::container& get_container() const { return this->hidden().get_ruler(); }
typename base_t::reference operator[] (int n) { return get_container()[n]; }
typename base_t::const_reference operator[] (int n) const { return get_container()[n]; }
int dim() const { return get_container().size(); }
};
template <typename TDir>
class node_container
: public modified_container_impl< node_container<TDir>,
mlist< HiddenTag< valid_node_container<TDir> >,
OperationTag< BuildUnaryIt<operations::index2element> > > >,
public GenericSet<node_container<TDir>, int, operations::cmp> {
protected:
~node_container();
public:
int dim() const { return this->get_container().dim(); }
};
} // end namespace graph
template <typename Iterator, typename Accessor, typename Feature>
struct check_iterator_feature<graph::valid_node_iterator<Iterator, Accessor>, Feature>
: check_iterator_feature<unary_predicate_selector<Iterator, Accessor>, Feature> {};
template <typename Iterator, typename Accessor>
struct check_iterator_feature<graph::valid_node_iterator<Iterator, Accessor>, indexed>
: std::true_type {};
template <typename TDir>
struct check_container_feature<graph::valid_node_container<TDir>, sparse_compatible>
: std::true_type {};
template <typename TDir>
struct check_container_feature<graph::node_container<TDir>, sparse_compatible>
: std::true_type {};
namespace graph {
template <typename TOut_edges, template <typename> class MasqueradeLine, typename EntryRef>
class line_factory {
public:
typedef EntryRef argument_type;
typedef typename std::conditional<TOut_edges::value, typename deref<EntryRef>::type::out_tree_type,
typename deref<EntryRef>::type::in_tree_type >::type
tree_type;
typedef typename inherit_ref<MasqueradeLine<tree_type>, EntryRef>::type result_type;
result_type operator() (argument_type e) const
{
return impl(e, TOut_edges());
}
private:
result_type impl(argument_type e, std::true_type) const
{
return reinterpret_cast<result_type>(e.out());
}
result_type impl(argument_type e, std::false_type) const
{
return reinterpret_cast<result_type>(e.in());
}
};
template <typename TOut_edges, template <typename> class MasqueradeLine>
class line_factory<TOut_edges, MasqueradeLine, void> : operations::incomplete {};
} // end namespace graph
template <typename TOut_edges, template <typename> class MasqueradeLine, typename Iterator, typename EntryRef>
struct unary_op_builder<graph::line_factory<TOut_edges, MasqueradeLine, void>, Iterator, EntryRef>
: empty_op_builder< graph::line_factory<TOut_edges, MasqueradeLine, EntryRef> > {};
namespace graph {
template <typename TDir, typename TOut_edges, template <typename> class MasqueradeLine>
class line_container
: public modified_container_impl< line_container<TDir, TOut_edges, MasqueradeLine>,
mlist< HiddenTag< valid_node_container<TDir> >,
OperationTag< line_factory<TOut_edges, MasqueradeLine> > > > {
protected:
~line_container();
public:
Table<TDir>& get_table() { return this->hidden().hidden(); }
const Table<TDir>& get_table() const { return this->hidden().hidden(); }
void resize(int n) { get_table().clear(n); }
};
template <typename TDir, bool undirected=TDir::value>
struct edge_container_helper {
typedef line_container<TDir, std::true_type, incident_edge_list> type;
};
template <typename TDir>
struct edge_container_helper<TDir, true> {
typedef line_container<TDir, std::true_type, lower_incident_edge_list> type;
};
template <typename TDir>
class edge_container
: public cascade_impl< edge_container<TDir>,
mlist< HiddenTag< typename edge_container_helper<TDir>::type >,
CascadeDepth< int_constant<2> > > > {
protected:
~edge_container();
public:
int size() const { return this->hidden().get_table().edges(); }
int max_size() const { return size(); }
};
template <typename TDir>
template <bool for_copy> inline
void edge_agent<TDir>::init(Table<TDir>* t, bool_constant<for_copy>)
{
table=t;
n_alloc=min_buckets(n_edges+bucket_mask>>bucket_shift);
if (!for_copy) {
// if the table was cloned, edge ids were copied too
int id=0;
for (typename edge_container<TDir>::iterator e=reinterpret_cast<edge_container<TDir>*>(t)->begin(); !e.at_end(); ++e, ++id)
e.edge_id()=id;
}
}
template <typename TDir>
template <typename NumberConsumer> inline
void edge_agent<TDir>::renumber(const NumberConsumer& nc)
{
int id=0;
for (typename edge_container<TDir>::iterator e=reinterpret_cast<edge_container<TDir>*>(table)->begin(); !e.at_end(); ++e, ++id) {
nc(e.edge_id(), id);
e.edge_id()=id;
}
assert(id == n_edges);
}
} // end namespace graph
template <typename TDir, typename TOut_edges, template <typename> class MasqueradeLine>
struct check_container_feature<graph::line_container<TDir, TOut_edges, MasqueradeLine>, sparse_compatible> : std::true_type {};
template <typename Tree>
struct check_container_feature<graph::incident_edge_list<Tree>, sparse_compatible> : std::true_type {};
template <typename Tree>
struct check_container_feature<graph::lower_incident_edge_list<Tree>, sparse_compatible> : std::true_type {};
template <typename Tree>
struct check_container_feature<graph::multi_adjacency_line<Tree>, pure_sparse> : std::true_type {};
template <typename Tree>
struct spec_object_traits< graph::multi_adjacency_line<Tree> >
: spec_object_traits<is_container> {
typedef Tree masquerade_for;
static const int is_resizeable=0;
static const bool is_always_const=true;
};
namespace graph {
/** @class Graph
@brief Directed or undirected finite graphs.
@a NodeAttr and @a EdgeAttr specify the type of additional data associated
with nodes and edges (sometimes also called node and edge attributes.) The
default setting @a nothing denotes the absence of any attributes, it
doesn't waste extra memory.
The nodes of the graph are referred to via integer indices, starting with
0; they are stored in a contiguous array. This allows constant-time
random node access, while inserting or deleting of nodes incurs storage
reallocation. However, due to some kind of forecasting strategy of memory
allocation (similar to that deployed in std::vector), the amortized
cost of node insertion is proportional to <i>#nodes log(#nodes)</i>.
The edges are organized in incidence lists, which are implemented as a 2-d
mesh of AVL trees. Hence, a random access to an edge (with given source
and target nodes) takes a logarithmical time of the source node degree.
Multiple edges (i.e., with the same source and target nodes) are not
allowed; they could be modeled, however, by choosing some container class
as the edge attribute.
The kind of the graph decides about how the incidence edge lists are
organized. In the @em directed case each edge naturally appears in the
outgoing list of its source node and in the ingoing list of its target
node. In the @em undirected case the notions of outgoing and ingoing
edges are the same; each edge manages to appear in the outgoing lists of
both adjacent nodes, although it is stored only once. The @i skew case is
a special variant of the indirect case, intended for numerical edge
attributes only. Depending on the reading direction, the edge attribute
changes its sign: @c{ edge(n1,n2) == -edge(n2,n1) }.
The whole data structure is attached to the Graph object via a smart
pointer with @ref refcounting "reference counting".
*/
template <typename TDir>
class Graph
: public GenericGraph<Graph<TDir>, TDir> {
protected:
typedef Table<TDir> table_type;
public:
/// Create an empty Graph with 0 nodes.
Graph() {}
/// Create a Graph with @a n isolated nodes (without edges).
explicit Graph(int n)
: data(n) {}
Graph(const GenericGraph<Graph>& G2)
: data(G2.top().data) {}
template <typename Graph2>
Graph(const GenericGraph<Graph2, TDir>& G2)
: data(G2.top().dim())
{
copy_impl(pm::nodes(G2).begin(), std::false_type(), std::false_type(), G2.top().has_gaps());
}
template <typename Graph2, typename TDir2>
explicit Graph(const GenericGraph<Graph2, TDir2>& G2)
: data(G2.top().dim())
{
const bool need_merge= Graph2::is_directed && !Graph::is_directed,
need_contraction= Graph2::is_multigraph && !Graph::is_multigraph;
copy_impl(pm::nodes(G2).begin(), bool_constant<need_merge>(), bool_constant<need_contraction>(), G2.top().has_gaps());
}
template <typename TMatrix>
explicit Graph(const GenericIncidenceMatrix<TMatrix>& m,
typename std::enable_if<!TDir::multigraph, mlist<TMatrix>*>::type=nullptr)
: data(m.rows())
{
if (POLYMAKE_DEBUG || !Unwary<TMatrix>::value) {
if (!TMatrix::is_symmetric && m.rows() != m.cols())
throw std::runtime_error("Graph - non-quadratic source adjacency matrix");
}
const bool need_merge= !TMatrix::is_symmetric && !Graph::is_directed;
copy_impl(rows(m).begin(), bool_constant<need_merge>());
}
// construct graph with gaps
template <typename TSet>
explicit Graph(const GenericSet<TSet, int>& s)
: data(s.top()) {}
template <typename TSet>
Graph(const GenericSet<TSet, int>& s, int dim)
: data(s.top(), dim) {}
/// assignment from Graph of the same type
Graph& operator= (const Graph& G2)
{
data=G2.data;
return *this;
}
/// assignment from GenericGraph
Graph& operator= (const GenericGraph<Graph>& G2)
{
*this=G2.top();
return *this;
}
/// assignment from GenericGraph with other flavor of directedness
template <typename Graph2, typename TDir2>
Graph& operator= (const GenericGraph<Graph2, TDir2>& G2)
{
clear(G2.top().dim());
const bool need_merge= Graph2::is_directed && !Graph::is_directed,
need_contraction= Graph2::is_multigraph && !Graph::is_multigraph;
copy_impl(pm::nodes(G2).begin(), bool_constant<need_merge>(), bool_constant<need_contraction>(), G2.top().has_gaps());
return *this;
}
/// number of nodes
int nodes() const { return data->nodes(); }
/// resize the Graph to given number of nodes
void resize(int n) { data->resize(n); }
/// clear all edges and resize (to zero nodes by default)
void clear(int n=0) { data.apply(typename table_type::shared_clear(n)); }
/// true of nodes are not (known to be) consecutively ordered
bool has_gaps() const { return data->free_node_id != std::numeric_limits<int>::min(); }
/// renumber the nodes
friend Graph renumber_nodes(const Graph& me)
{
if (!me.has_gaps()) return me;
Graph G(me.nodes());
std::vector<int> renumber(me.dim());
int i=0;
for (auto n=entire(pm::nodes(me)); !n.at_end(); ++n, ++i)
renumber[n.index()]=i;
for (auto e=entire(pm::edges(me)); !e.at_end(); ++e)
G.edge(renumber[e.from_node()], renumber[e.to_node()]);
return G;
}
/// "output dimension"; relevant for proper output in the polymake shell
int dim() const { return data->dim(); }
template <typename Input> friend
Input& operator>> (GenericInput<Input>& in, Graph& me)
{
me.read(in.top().begin_list(&rows(pm::adjacency_matrix(me))));
return in.top();
}
// for IndexDispenser
class ResizeTraits {
Graph *G;
protected:
void resize(int n) { G->resize(n); }
public:
ResizeTraits(Graph& G_arg) : G(&G_arg) {}
};
/// swap function
void swap(Graph& G) { data.swap(G.data); }
/// relocate the data
friend void relocate(Graph* from, Graph* to)
{
relocate(&from->data, &to->data);
}
template <typename NumberConsumer>
void squeeze(const NumberConsumer& nc)
{
data->squeeze_nodes(nc);
}
/// force renumbering of the nodes in consecutive order
void squeeze()
{
data->squeeze_nodes(operations::binary_noop());
}
template <typename NumberConsumer>
void squeeze_isolated(const NumberConsumer& nc)
{
data->squeeze_nodes(nc, typename table_type::template squeeze_node_chooser<true>());
}
void squeeze_isolated()
{
data->squeeze_nodes(operations::binary_noop(), typename table_type::template squeeze_node_chooser<true>());
}
template <typename NumberConsumer>
void squeeze_edges(const NumberConsumer& nc)
{
data->squeeze_edges(nc);
}
void squeeze_edges()
{
data->squeeze_edges(operations::binary_noop());
}
/// delete a node
void delete_node(int n)
{
data->delete_node(n);
}
/// permute the nodes
template <typename TPerm>
typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value>::type
permute_nodes(const TPerm& perm)
{
data->permute_nodes(perm, std::false_type());
}
/// inverse permutation of nodes
template <typename TInvPerm>
typename std::enable_if<isomorphic_to_container_of<TInvPerm, int>::value>::type
permute_inv_nodes(const TInvPerm& inv_perm)
{
data->permute_nodes(inv_perm, std::true_type());
}
/// permuted copy
template <typename TPerm, typename TInvPerm>
typename std::enable_if<isomorphic_to_container_of<TPerm, int>::value &&
isomorphic_to_container_of<TInvPerm, int>::value,
Graph>::type
copy_permuted(const TPerm& perm, const TInvPerm& inv_perm) const
{
Graph result(dim());
result.data->copy_permuted(*data, perm, inv_perm);
return result;
}
/// node type
typedef graph::node_container<TDir> node_container;
/// node reference type
typedef node_container& node_container_ref;
/// constant node reference type
typedef const node_container& const_node_container_ref;
template <template <typename> class MasqueradeLine>
struct edge_access {
typedef line_container<TDir, std::true_type, MasqueradeLine> out;
typedef line_container<TDir, std::false_type, MasqueradeLine> in;
};
typedef typename edge_access<incident_edge_list>::out out_edge_list_container;
typedef out_edge_list_container& out_edge_list_container_ref;
typedef const out_edge_list_container& const_out_edge_list_container_ref;
typedef typename out_edge_list_container::value_type out_edge_list;
typedef out_edge_list& out_edge_list_ref;
typedef const out_edge_list& const_out_edge_list_ref;
typedef typename out_edge_list::parallel_edge_iterator parallel_edge_iterator;
typedef typename out_edge_list::parallel_edge_const_iterator parallel_edge_const_iterator;
typedef typename edge_access<incident_edge_list>::in in_edge_list_container;
typedef in_edge_list_container& in_edge_list_container_ref;
typedef const in_edge_list_container& const_in_edge_list_container_ref;
typedef typename in_edge_list_container::value_type in_edge_list;
typedef in_edge_list& in_edge_list_ref;
typedef const in_edge_list& const_in_edge_list_ref;
typedef typename std::conditional<TDir::multigraph, typename edge_access<multi_adjacency_line>::out, typename edge_access<incidence_line>::out>::type adjacency_rows_container;
typedef adjacency_rows_container& adjacency_rows_container_ref;
typedef const adjacency_rows_container& const_adjacency_rows_container_ref;
typedef typename std::conditional<TDir::multigraph, typename edge_access<multi_adjacency_line>::in, typename edge_access<incidence_line>::in>::type adjacency_cols_container;
typedef adjacency_cols_container& adjacency_cols_container_ref;
typedef const adjacency_cols_container& const_adjacency_cols_container_ref;
typedef typename adjacency_rows_container::value_type out_adjacent_node_list;
typedef typename adjacency_cols_container::value_type in_adjacent_node_list;
typedef typename std::conditional<Graph::is_directed, nothing, out_adjacent_node_list>::type adjacent_node_list;
typedef typename assign_const<out_adjacent_node_list, TDir::multigraph>::type& out_adjacent_node_list_ref;
typedef const out_adjacent_node_list& const_out_adjacent_node_list_ref;
typedef typename assign_const<in_adjacent_node_list, TDir::multigraph>::type& in_adjacent_node_list_ref;
typedef const in_adjacent_node_list& const_in_adjacent_node_list_ref;
typedef typename std::conditional<Graph::is_directed, nothing, out_adjacent_node_list_ref>::type adjacent_node_list_ref;
typedef typename std::conditional<Graph::is_directed, nothing, const_out_adjacent_node_list_ref>::type const_adjacent_node_list_ref;
template <typename MasqueradeRef>
MasqueradeRef pretend()
{
return reinterpret_cast<MasqueradeRef>(*data);
}
template <typename MasqueradeRef>
MasqueradeRef pretend() const
{
return reinterpret_cast<MasqueradeRef>(*data);
}
/// number of edges
int edges() const { return data->edges(); }
/// add a node; may reuse a currently unused node
int add_node() { return data->add_node(); }
/// true if node is unused
bool invalid_node(int n) const { return data->invalid_node(n); }
/// true if node number is higher than currently reserved maximum number of nodes
bool node_out_of_range(int n) const { return data->node_out_of_range(n); }
/// out-degree of a node
int out_degree(int n) const
{
return (*data)[n].out().size();
}
/// in-degree of a node
int in_degree(int n) const
{
return (*data)[n].in().size();
}
/// total degree of a node
int degree(int n) const
{
return (*data)[n].degree();
}
/// true if node exists
bool node_exists(int n) const
{
return data->node_exists(n);
}
private:
typedef typename table_type::entry node_entry_type;
typedef valid_node_selector<node_entry_type&> node_acc;
typedef valid_node_selector<const node_entry_type&> const_node_acc;
public:
/// Return the number of the edge between two given nodes.
/// The edge is created if it did not exist before.
/// In a multigraph, one (arbitrary) edge from a parallel bundle will be returned.
int edge(int n1, int n2)
{
node_acc n;
return n.out_edge((*data)[n1], n2);
}
/// Return the number of the edge between two given nodes.
/// If the edge does not exist, an exception is raised.
int edge(int n1, int n2) const
{
const_node_acc n;
return n.out_edge((*data)[n1], n2);
}
private:
int add_edge_impl(int n1, int n2, std::false_type) { return edge(n1, n2); }
int add_edge_impl(int n1, int n2, std::true_type) { return (*data)[n1].out().insert_new(n2)->data; }
public:
/// Create a new edge between two given nodes and return its number.
/// In a multigraph, a new edge is always created; the exact position of the new edge among its parallel twins can't be predicted.
/// In a normal graph, a new edge is only created if the nodes were not adjacent before.
int add_edge(int n1, int n2)
{
return add_edge_impl(n1, n2, bool_constant<Graph::is_multigraph>());
}
/// Check whether there is an edge between the two given nodes.
bool edge_exists(int n1, int n2) const
{
return (*data)[n1].out().exists(n2);
}
/// Return the iterator over all edges connecting two given nodes.
parallel_edge_iterator all_edges(int n1, int n2)
{
return out_edges(n1).all_edges_to(n2);
}
/// Return the iterator over all edges connecting two given nodes.
parallel_edge_const_iterator all_edges(int n1, int n2) const
{
return out_edges(n1).all_edges_to(n2);
}
/// Delete the edge (if it exists) connecting the two given nodes.
void delete_edge(int n1, int n2)
{
(*data)[n1].out().erase(n2);
}
/// Delete an edge pointed by the given iterator over a sequence of (parallel) edges.
void delete_edge(const parallel_edge_iterator& where)
{
(*data)[where.get_line_index()].out().erase(where);
}
/// Delete all (parallel) edges connecting the two given nodes.
void delete_all_edges(int n1, int n2)
{
out_edges(n1).delete_all_edges_to(n2);
}
/// Contract the edge between the two given nodes.
/// The second node is deleted afterwards.
/// If the specified edge belongs to one or more triangles in a multigraph, the lateral edges become parallel after contraction.
/// In a normal graph, the lateral edges incident to n2 are deleted.
void contract_edge(int n1, int n2)
{
relink_edges((*data)[n2].out(), (*data)[n1].out(), n2, n1);
if (Graph::is_directed)
relink_edges((*data)[n2].in(), (*data)[n1].in(), n2, n1);
data->delete_node(n2);
}
private:
template <typename Tree>
void relink_edges(Tree& tree_from, Tree& tree_to, int node_from, int node_to)
{
for (auto it=tree_from.begin(); !it.at_end(); ) {
const auto c=it.operator->(); ++it;
if (c->key == node_from + node_to) {
// this is an edge to be contracted
tree_from.destroy_node(c);
} else if (c->key == node_from * 2) {
// a loop
c->key = node_to * 2;
if (tree_to.insert_node(c)) {
if (Graph::is_directed) {
(*data)[node_from].in().remove_node(c);
(*data)[node_to].in().insert_node(c);
}
} else {
c->key = node_from * 2;
tree_from.destroy_node(c);
}
} else {
tree_from.prepare_move_between_trees(c, node_from, node_to);
if (tree_to.insert_node(c)) {
(*data)[c->key - node_to].cross_tree(&tree_from).update_node(c);
} else {
tree_to.prepare_move_between_trees(c, node_to, node_from);
tree_from.destroy_node(c);
}
}
}
// forget the nodes
tree_from.init();
}
public:
template <template <typename> class MasqueradeLine>
typename edge_access<MasqueradeLine>::out::reference
out_edges(int n)
{
return reinterpret_cast<typename edge_access<MasqueradeLine>::out::reference>((*data)[n].out());
}
template <template <typename> class MasqueradeLine>
typename edge_access<MasqueradeLine>::out::const_reference
out_edges(int n) const
{
return reinterpret_cast<typename edge_access<MasqueradeLine>::out::const_reference>((*data)[n].out());
}
/// reference to list of outgoing edges
out_edge_list_ref out_edges(int n)
{
return this->template out_edges<incident_edge_list>(n);
}
/// constant reference to list of outgoing edges
const_out_edge_list_ref out_edges(int n) const
{
return this->template out_edges<incident_edge_list>(n);
}
template <template <typename> class MasqueradeLine>
typename edge_access<MasqueradeLine>::in::reference
in_edges(int n)
{
return reinterpret_cast<typename edge_access<MasqueradeLine>::in::reference>((*data)[n].in());
}
template <template <typename> class MasqueradeLine>
const typename edge_access<MasqueradeLine>::in::const_reference
in_edges(int n) const
{
return reinterpret_cast<typename edge_access<MasqueradeLine>::in::const_reference>((*data)[n].in());
}
/// reference to list of incoming edges
in_edge_list_ref in_edges(int n)
{
return this->template in_edges<incident_edge_list>(n);
}
/// constant reference to list of incoming edges
const_in_edge_list_ref in_edges(int n) const
{
return this->template in_edges<incident_edge_list>(n);
}
/// reference to list of nodes which are adjacent via out-arcs
out_adjacent_node_list_ref out_adjacent_nodes(int n)
{
return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
}
/// constant reference to list of nodes which are adjacent via out-arcs
const_out_adjacent_node_list_ref out_adjacent_nodes(int n) const
{
return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
}
/// reference to list of nodes which are adjacent via in-arcs
in_adjacent_node_list_ref in_adjacent_nodes(int n)
{
return in_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
}
/// constant reference to list of nodes which are adjacent via in-arcs
const_in_adjacent_node_list_ref in_adjacent_nodes(int n) const
{
return in_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
}
/// reference to list of all adjacent nodes
adjacent_node_list_ref adjacent_nodes(int n)
{
static_assert(!Graph::is_directed, "adjacent_nodes undefined for a directed graph");
return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
}
/// constant reference to list of all adjacent nodes
const_adjacent_node_list_ref adjacent_nodes(int n) const
{
static_assert(!Graph::is_directed, "adjacent_nodes undefined for a directed graph");
return out_adjacent_nodes_impl(n, bool_constant<TDir::multigraph>());
}
private:
out_adjacent_node_list_ref out_adjacent_nodes_impl(int n, std::false_type)
{
return this->template out_edges<incidence_line>(n);
}
const_out_adjacent_node_list_ref out_adjacent_nodes_impl(int n, std::false_type) const
{
return this->template out_edges<incidence_line>(n);
}
in_adjacent_node_list_ref in_adjacent_nodes_impl(int n, std::false_type)
{
return this->template in_edges<incidence_line>(n);
}
const_in_adjacent_node_list_ref in_adjacent_nodes_impl(int n, std::false_type) const
{
return this->template in_edges<incidence_line>(n);
}
const_out_adjacent_node_list_ref out_adjacent_nodes_impl(int n, std::true_type) const
{
return this->template out_edges<multi_adjacency_line>(n);
}
const_in_adjacent_node_list_ref in_adjacent_nodes_impl(int n, std::true_type) const
{
return this->template in_edges<multi_adjacency_line>(n);
}
public:
template <typename E, typename... TParams>
struct NodeMapData : public NodeMapBase {
typedef typename mlist_wrap<TParams...>::type params;
typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;
E* data;
size_t n_alloc;
default_value_supplier dflt;
std::allocator<E> _allocator;
table_type& table() { return *reinterpret_cast<table_type*>(_table); }
const table_type& ctable() const { return *reinterpret_cast<const table_type*>(_table); }
void alloc(size_t n)
{
n_alloc=n;
data=_allocator.allocate(n);
}
void init()
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
construct_at(data+*it, dflt());
}
void init(const E& val)
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
construct_at(data+*it, val);
}
template <typename Iterator>
void init(Iterator src)
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it, ++src)
construct_at(data+*it, *src);
}
void copy(const NodeMapData& m)
{
dflt=m.dflt;
typename node_container::const_iterator src=m.get_index_container().begin();
for (auto it=entire(get_index_container()); !it.at_end(); ++it, ++src)
construct_at(data+*it, m.data[*src]);
}
void reset(int n=0)
{
if (!std::is_trivially_destructible<E>::value)
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
destroy_at(data+*it);
if (n) {
if (size_t(n) != n_alloc) {
_allocator.deallocate(data, n_alloc);
alloc(n);
}
} else {
_allocator.deallocate(data, n_alloc);
data=nullptr; n_alloc=0;
}
}
void clear(int n=0)
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
dflt.assign(data[*it]);
}
void resize(size_t new_n_alloc, int n, int nnew)
{
if (n_alloc < new_n_alloc) {
E *new_data=_allocator.allocate(new_n_alloc), *src=data, *dst=new_data;
for (E *end=new_data+std::min(n,nnew); dst<end; ++src, ++dst)
relocate(src, dst);
if (nnew>n) {
for (E *end=new_data+nnew; dst<end; ++dst)
construct_at(dst, dflt());
} else {
for (E *end=data+n; src<end; ++src)
destroy_at(src);
}
if (data) _allocator.deallocate(data,n_alloc);
data=new_data; n_alloc=new_n_alloc;
} else if (nnew>n) {
for (E *d=data+n, *end=data+nnew; d<end; ++d)
construct_at(d, dflt());
} else {
for (E *d=data+nnew, *end=data+n; d<end; ++d)
destroy_at(d);
}
}
void shrink(size_t new_n_alloc, int n)
{
if (n_alloc != new_n_alloc) {
E *new_data=_allocator.allocate(new_n_alloc);
for (E *src=data, *dst=new_data, *end=new_data+n; dst<end; ++src, ++dst)
relocate(src, dst);
_allocator.deallocate(data, n_alloc);
data=new_data; n_alloc=new_n_alloc;
}
}
void move_entry(int n_from, int n_to) { relocate(data+n_from, data+n_to); }
void revive_entry(int n) { construct_at(data+n, dflt()); }
void delete_entry(int n) { if (!std::is_trivially_destructible<E>::value) destroy_at(data+n); }
void permute_entries(const std::vector<int>& inv_perm)
{
E* new_data=_allocator.allocate(n_alloc);
int n_from=0;
for (const int n_to : inv_perm) {
if (n_to >= 0)
relocate(data+n_from, new_data+n_to);
++n_from;
}
_allocator.deallocate(data, n_alloc);
data=new_data;
}
typedef E value_type;
NodeMapData() {}
explicit NodeMapData(const default_value_supplier& dflt_arg)
: data(nullptr)
, n_alloc(0)
, dflt(dflt_arg) {}
~NodeMapData() {if (_table) { reset(); table().detach(*this); } }
typedef const_node_container_ref index_container_ref;
index_container_ref get_index_container() const { return reinterpret_cast<index_container_ref>(ctable()); }
};
template <typename E, typename... TParams>
struct EdgeMapData
: public EdgeMapDenseBase {
typedef typename mlist_wrap<TParams...>::type params;
typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;
default_value_supplier dflt;
std::allocator<E> _allocator;
table_type& table() { return *reinterpret_cast<table_type*>(_table); }
const table_type& ctable() const { return *reinterpret_cast<const table_type*>(_table); }
E* index2addr(int i) const
{
return EdgeMapDataAccess<E>::index2addr(buckets,i);
}
void alloc(const edge_agent_base& h)
{
EdgeMapDenseBase::alloc(h.n_alloc);
void **b=buckets;
for (int n=h.n_edges; n>0; n-=h.bucket_size, ++b)
*b=_allocator.allocate(h.bucket_size);
}
void init()
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
construct_at(index2addr(*it), dflt());
}
void init(const E& val)
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
construct_at(index2addr(*it), val);
}
template <typename Iterator>
void init(Iterator src)
{
for (auto it=entire(get_index_container()); !it.at_end(); ++it, ++src)
construct_at(index2addr(*it), *src);
}
void copy(const EdgeMapData& m)
{
dflt=m.dflt;
typename edge_container<TDir>::const_iterator src=m.get_index_container().begin();
for (auto it=entire(get_index_container()); !it.at_end(); ++it, ++src)
construct_at(index2addr(*it), *m.index2addr(*src));
}
void reset()
{
if (!std::is_trivially_destructible<E>::value)
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
destroy_at(index2addr(*it));
for (E **b=reinterpret_cast<E**>(buckets), **b_end=b+n_alloc; b<b_end; ++b)
if (*b) _allocator.deallocate(*b,edge_agent_base::bucket_size);
EdgeMapDenseBase::destroy();
}
bool is_detachable() const
{
return std::is_trivially_destructible<E>::value;
}
void clear()
{
if (!std::is_pod<E>::value) {
operations::clear<E> clr;
for (auto it=entire(get_index_container()); !it.at_end(); ++it)
clr(*index2addr(*it));
}
}
void revive_entry(int e) { construct_at(index2addr(e), dflt()); }
void delete_entry(int e) { if (!std::is_trivially_destructible<E>::value) destroy_at(index2addr(e)); }
void add_bucket(int n)
{
E *d=_allocator.allocate(edge_agent_base::bucket_size);
construct_at(d, dflt());
buckets[n]=d;
}
typedef E value_type;
EdgeMapData() {}
explicit EdgeMapData(const default_value_supplier& dflt_arg) : dflt(dflt_arg) {}
~EdgeMapData() { if (_table) { reset(); table().detach(*this); } }
typedef const edge_container<TDir>& index_container_ref;
index_container_ref get_index_container() const { return reinterpret_cast<index_container_ref>(ctable()); }
};
template <typename E, typename... TParams>
struct NodeHashMapData : public NodeMapBase {
typedef typename mlist_wrap<TParams...>::type params;
typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;
typedef hash_map<int, E, TParams...> hash_map_t;
hash_map_t data;
void init() {}
void reset(int=0) { data.clear(); }
void clear() { data.clear(); }
void shrink(size_t,int) {}
void revive_entry(int) {}
void resize(size_t, int n, int nnew)
{
while (n>nnew) data.erase(--n);
}
void move_entry(int n_from, int n_to)
{
auto it=data.find(n_from);
if (it != data.end()) {
data.insert(n_to, std::move(it->second));
data.erase(it);
}
}
void delete_entry(int n) { data.erase(n); }
void permute_entries(const std::vector<int>& inv_perm)
{
hash_map_t new_data;
int n_from=0;
for (const int n_to : inv_perm) {
if (n_to >= 0) {
auto it=data.find(n_from);
if (it != data.end())
new_data.insert(n_to, std::move(it->second));
}
}
data.swap(new_data);
}
void copy(const NodeHashMapData& m) { data=m.data; }
table_type& table() { return *reinterpret_cast<table_type*>(_table); }
const table_type& ctable() const { return *reinterpret_cast<const table_type*>(_table); }
NodeHashMapData() {}
NodeHashMapData(const default_value_supplier& dflt_arg) : data(dflt_arg) {}
~NodeHashMapData() { if (_table) table().detach(*this); }
};
template <typename E, typename... TParams>
struct EdgeHashMapData : public EdgeMapBase {
typedef typename mlist_wrap<TParams...>::type params;
typedef typename mtagged_list_extract<params, DefaultValueTag, operations::clear<E>>::type default_value_supplier;
typedef hash_map<int, E, TParams...> hash_map_t;
hash_map_t data;
void reset() { data.clear(); }
bool is_detachable() const { return true; }
void clear() { data.clear(); }
void revive_entry(int) {}
void realloc(size_t) {}
void add_bucket(int) {}
void delete_entry(int e) { data.erase(e); }
void copy(const EdgeHashMapData& m) { data=m.data; }
table_type& table() { return *reinterpret_cast<table_type*>(_table); }
const table_type& ctable() const { return *reinterpret_cast<const table_type*>(_table); }
EdgeHashMapData() {}
explicit EdgeHashMapData(const default_value_supplier& dflt_arg) : data(dflt_arg) {}
~EdgeHashMapData() { if (_table) table().detach(*this); }
};
// Due to a bug in clang >=3.8 (https://llvm.org/bugs/show_bug.cgi?id=26938), the SharedMap
// class template cant be resolved in the definition of NodeMap if this forward declaration
// and the friend declaration in map2graph_connector exist at the same time.
// The friend statement suffices as forward declaration.
// TODO: An upper limit on the version will be set depending on the bug resolution.
#if !(defined(__clang__) && ((!defined(__APPLE__) && __clang_major__ == 3 && __clang_minor__ >= 8) || ( defined(__APPLE__) && ( __clang_major__ == 7 && __clang_minor__ >= 3 || __clang_major__ >= 8 ) ) ) )
template <typename BaseMap> class SharedMap;
#endif
protected:
template <typename E, typename... TParams, bool for_copy> static
void prepare_attach(const table_type& t, NodeMapData<E, TParams...>& m, bool_constant<for_copy>)
{
m.alloc(t.get_ruler().max_size());
t.attach(m);
}
template <typename E, typename... TParams, bool for_copy> static
void prepare_attach(const table_type& t, EdgeMapData<E, TParams...>& m, bool_constant<for_copy> C)
{
m.alloc(t.get_edge_agent(C));
t.attach(m);
}
template <typename E, typename... TParams, bool for_copy> static
void prepare_attach(const table_type& t, NodeHashMapData<E, TParams...>& m, bool_constant<for_copy>)
{
t.attach(m);
}
template <typename E, typename... TParams, bool for_copy> static
void prepare_attach(const table_type& t, EdgeHashMapData<E, TParams...>& m, bool_constant<for_copy> C)
{
(void)t.get_edge_agent(C);
t.attach(m);
}
class divorce_maps;
class map2graph_connector : public shared_alias_handler {
protected:
virtual void divorce(const table_type& t)=0;
virtual ~map2graph_connector() {}
friend class divorce_maps;
friend class Graph<TDir>;
};
class divorce_maps : public shared_alias_handler {
public:
template <typename Rep>
Rep* operator() (Rep *body, std::true_type) const
{
if (al_set.n_aliases)
for (auto alias_ptr : al_set)
static_cast<map2graph_connector*>(alias_ptr->to_handler())->divorce(body->obj);
return body;
}
template <typename Rep>
Rep* operator() (Rep *body, std::false_type)
{
if (al_set.n_aliases) al_set.forget();
return body;
}
friend class Graph<TDir>;
template <typename> friend class SharedMap;
};
public:
template <typename BaseMap>
class SharedMap : protected map2graph_connector {
public:
typedef typename BaseMap::default_value_supplier default_value_supplier;
typedef BaseMap map_type;
protected:
map_type *map;
default_value_supplier dflt;
map_type* copy(const table_type& t)
{
map_type* cp=new map_type;
prepare_attach(t, *cp, std::true_type());
cp->copy(*map);
return cp;
}
void divorce();
void divorce(const table_type& t);
void leave() { if (--map->refc == 0) delete map; }
void mutable_access() { if (__builtin_expect(map->refc>1, 0)) divorce(); }
template <bool may_need_detach>
void attach_to(const Graph& G, bool_constant<may_need_detach>)
{
if (may_need_detach && map) {
if (this->al_set.owner) {
assert(this->al_set.owner != &G.data.get_divorce_handler().al_set);
this->al_set.owner->remove(&this->al_set);
}
if (&map->table() == G.data.get()) {
// attached via perl magic object or another Graph
this->al_set.enter(G.data.get_divorce_handler().al_set);
return;
}
leave();
}
map=new map_type(dflt);
prepare_attach(*G.data,*map, std::false_type());
this->al_set.enter(G.data.get_divorce_handler().al_set);
}
SharedMap() : map(0) {}
explicit SharedMap(const default_value_supplier& dflt_arg) : map(0), dflt(dflt_arg) {}
explicit SharedMap(const Graph& G) { attach_to(G, std::false_type()); }
SharedMap(const Graph& G, const default_value_supplier& dflt_arg) : dflt(dflt_arg) { attach_to(G, std::false_type()); }
SharedMap(const SharedMap& m) : map(m.map), dflt(m.dflt) { map->refc++; }
~SharedMap() { if (map) leave(); }
SharedMap& operator= (const SharedMap& m)
{
if (m.map) m.map->refc++;
if (map) leave();
map=m.map;
dflt=m.dflt;
return *this;
}
public:
void clear();
friend class Graph<TDir>;
friend void relocate(SharedMap* from, SharedMap* to)
{
relocate(static_cast<shared_alias_handler*>(from), static_cast<shared_alias_handler*>(to));
to->dflt=from->dflt;
to->map=from->map;
}
bool invalid_node(int n) const { return map->ctable().invalid_node(n); }
};
public:
template <typename Map>
void attach(SharedMap<Map>& m) const
{
m.attach_to(*this, std::true_type());
m.map->init();
}
template <typename Map>
void attach(SharedMap<Map>& m, typename function_argument<typename Map::value_type>::type val) const
{
m.attach_to(*this, std::true_type());
m.map->init(val);
}
template <typename Map, typename Iterator>
void attach(SharedMap<Map>& m, Iterator src) const
{
m.attach_to(*this, std::true_type());
m.map->init(src);
}
protected:
template <typename TContainer>
static void prepare_attach_static(TContainer& c, int, io_test::as_set)
{
unwary(c).clear();
}
template <typename TContainer, bool TAllowSparse>
static void prepare_attach_static(TContainer& c, int n, io_test::as_array<1, TAllowSparse>)
{
unwary(c).resize(n);
}
template <typename TContainer, bool TAllowSparse>
static void prepare_attach_static(TContainer& c, int n, io_test::as_array<0, TAllowSparse>)
{
if (POLYMAKE_DEBUG || !Unwary<TContainer>::value) {
if (get_dim(unwary(c)) != n)
throw std::runtime_error("Graph::init_map - dimension mismatch");
}
}
public:
template <typename TContainer>
void init_node_map(TContainer& c) const
{
prepare_attach_static(c, this->nodes(), typename io_test::input_mode<unwary_t<TContainer>>::type());
}
template <typename TContainer>
void init_edge_map(TContainer& c) const
{
prepare_attach_static(c, data->get_edge_agent(std::false_type()).n_edges, typename io_test::input_mode<unwary_t<TContainer>>::type());
}
/// Provide each edge with a unique integer id.
/// The ids are assigned in the order of visiting them by Edges<Graph>::iterator,
/// but you shouldn't rely on any special order later, after having added or deleted
/// some edges, because the enumeration is effectively performed only once in the life
/// of a Graph object. Later calls to this function are no-ops.
/// Moreover, the edges are also enumerated when an edge attribute map is attached
/// to the Graph object for the first time.
void enumerate_edges() const
{
data->get_edge_agent(std::false_type());
}
friend
AdjacencyMatrix<Graph, TDir::multigraph>& serialize(Graph& me) { return adjacency_matrix(me); }
friend
const AdjacencyMatrix<Graph, TDir::multigraph>& serialize(const Graph& me) { return adjacency_matrix(me); }
protected:
typedef shared_object<table_type, AliasHandlerTag<shared_alias_handler>, DivorceHandlerTag<divorce_maps>> shared_type;
shared_type data;
friend Graph& make_mutable_alias(Graph& alias, Graph& owner)
{
alias.data.make_mutable_alias(owner.data);
return alias;
}
template <typename Input>
void read_with_gaps(Input& in)
{
const int end=in.lookup_dim(false);
clear(end);
int n=0;
for (auto l=entire(out_edge_lists(*this)); !in.at_end(); ++l, ++n) {
const int i=in.index();
while (n<i) ++l, data.get()->delete_node(n++);
in >> *l;
}
while (n<end) data.get()->delete_node(n++);
}
template <typename Input>
void read(Input&& in)
{
if (in.sparse_representation()) {
read_with_gaps(in.set_option(SparseRepresentation<std::true_type>()));
} else {
clear(in.size());
for (auto l=entire(out_edge_lists(*this)); !in.at_end(); ++l)
in >> *l;
}
}
template <typename NodeIterator, typename need_merge, typename need_contraction>
void copy_impl(NodeIterator src, need_merge, need_contraction, bool has_gaps)
{
if (has_gaps) {
int n=0, end=dim();
for (auto l=entire(out_edge_lists(*this)); !src.at_end(); ++l, ++src, ++n) {
const int i=src.index();
while (n<i) ++l, data.get()->delete_node(n++);
l->init_from_edge_list(src.out_edges().begin(), need_merge(), need_contraction());
}
while (n<end) data.get()->delete_node(n++);
} else {
for (auto l=entire(out_edge_lists(*this)); !l.at_end(); ++l, ++src)
l->init_from_edge_list(src.out_edges().begin(), need_merge(), need_contraction());
}
}
template <typename RowIterator, typename need_merge>
void copy_impl(RowIterator src, need_merge)
{
for (auto l=entire(out_edge_lists(*this)); !l.at_end(); ++l, ++src)
l->init_from_set(src->begin(), need_merge());
}
template <typename, typename, typename...> friend class NodeMap;
template <typename, typename, typename...> friend class EdgeMap;
template <typename, typename, typename...> friend class NodeHashMap;
template <typename, typename, typename...> friend class EdgeHashMap;
const Graph& get_graph() const { return *this; } // for HashMaps wanting to attach
#if POLYMAKE_DEBUG
public:
void check(const char *prefix="") const { data->check(prefix); }
void dump() const __attribute__((used)) { cerr << adjacency_matrix(*this) << std::flush; }
void dump_edges() const;
void dumps() const __attribute__((used)) { dump(); dump_edges(); }
#endif
};
#if POLYMAKE_DEBUG
template <typename TDir>
void Graph<TDir>::dump_edges() const
{
for (auto e=entire(pretend<const edge_container<TDir>&>()); !e.at_end(); ++e)
cerr << *e << ':' << e.from_node() << '-' << e.to_node() << '\n';
cerr << std::flush;
}
#endif
/// data structure to store data at the nodes of a Graph
template <typename TDir, typename E, typename... TParams>
class NodeMap
: public Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeMapData<E, TParams...>>
, public modified_container_impl< NodeMap<TDir, E, TParams...>,
mlist< ContainerTag< typename Graph<TDir>::const_node_container_ref >,
OperationTag< operations::random_access<ptr_wrapper<E, false>> > > > {
typedef modified_container_impl<NodeMap> base_t;
typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeMapData<E, TParams...>> shared_base;
public:
typedef typename shared_base::default_value_supplier default_value_supplier;
typedef Graph<TDir> graph_type;
typedef random_access_iterator_tag container_category;
NodeMap() {}
explicit NodeMap(const default_value_supplier& dflt_arg) : shared_base(dflt_arg) {}
explicit NodeMap(const graph_type& G) : shared_base(G)
{
this->map->init();
}
NodeMap(const graph_type& G, const default_value_supplier& dflt_arg) : shared_base(G, dflt_arg)
{
this->map->init();
}
NodeMap(const graph_type& G, typename function_argument<E>::type val) : shared_base(G)
{
this->map->init(val);
}
NodeMap(const graph_type& G, typename function_argument<E>::type val,
const default_value_supplier& dflt_arg) : shared_base(G, dflt_arg)
{
this->map->init(val);
}
template <typename Iterator>
NodeMap(const graph_type& G, Iterator src) : shared_base(G)
{
this->map->init(src);
}
template <typename Iterator>
NodeMap(const graph_type& G, Iterator src,
const default_value_supplier& dflt_arg) : shared_base(G, dflt_arg)
{
this->map->init(src);
}
typename shared_base::map_type::index_container_ref get_container()
{
this->mutable_access();
return this->map->get_index_container();
}
typename shared_base::map_type::index_container_ref get_container() const
{
return this->map->get_index_container();
}
typename base_t::operation get_operation() { return pointer2iterator(this->map->data); }
typename base_t::const_operation get_operation() const { return pointer2iterator(const_cast<const E*>(this->map->data)); }
friend int index_within_range(const NodeMap& me, int n)
{
if (n<0) n+=me.map->ctable().dim();
if (me.invalid_node(n))
throw std::runtime_error("NodeMap::operator[] - node id out of range or deleted");
return n;
}
E& operator[] (int n)
{
this->mutable_access();
return this->map->data[n];
}
const E& operator[] (int n) const
{
return this->map->data[n];
}
friend class Graph<TDir>;
friend void relocate(NodeMap* from, NodeMap* to)
{
relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
}
#if POLYMAKE_DEBUG
private:
void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
void dump(std::true_type) const { cerr << *this << std::flush; }
public:
void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};
/// data structure to store data at the edges of a Graph
template <typename TDir, typename E, typename... TParams>
class EdgeMap
: public Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeMapData<E, TParams...> >
, public modified_container_impl< EdgeMap<TDir, E, TParams...>,
mlist< ContainerTag< const edge_container<TDir>& >,
OperationTag< EdgeMapDataAccess<E> > > > {
typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeMapData<E, TParams...>> shared_base;
public:
typedef typename shared_base::default_value_supplier default_value_supplier;
typedef Graph<TDir> graph_type;
typedef random_access_iterator_tag container_category;
EdgeMap() {}
explicit EdgeMap(const default_value_supplier& dflt_arg) : shared_base(dflt_arg) {}
explicit EdgeMap(const graph_type& G) : shared_base(G)
{
this->map->init();
}
EdgeMap(const graph_type& G, const default_value_supplier& dflt_arg) : shared_base(G, dflt_arg)
{
this->map->init();
}
EdgeMap(const graph_type& G, typename function_argument<E>::type val) : shared_base(G)
{
this->map->init(val);
}
EdgeMap(const graph_type& G, typename function_argument<E>::type val,
const default_value_supplier& dflt_arg) : shared_base(G, dflt_arg)
{
this->map->init(val);
}
template <typename Iterator>
EdgeMap(const graph_type& G, Iterator src) : shared_base(G)
{
this->map->init(src);
}
template <typename Iterator>
EdgeMap(const graph_type& G, Iterator src,
const default_value_supplier& dflt_arg) : shared_base(G, dflt_arg)
{
this->map->init(src);
}
typename shared_base::map_type::index_container_ref get_container()
{
this->mutable_access();
return this->map->get_index_container();
}
typename shared_base::map_type::index_container_ref get_container() const
{
return this->map->get_index_container();
}
EdgeMapDataAccess<E> get_operation() { return this->map->buckets; }
EdgeMapDataAccess<const E> get_operation() const { return this->map->buckets; }
E& operator[] (int e) { this->mutable_access(); return *this->map->index2addr(e); }
const E& operator[] (int e) const { return *this->map->index2addr(e); }
E& operator() (int n1, int n2)
{
this->mutable_access();
typename graph_type::node_acc n;
return *this->map->index2addr(n.out_edge(this->map->table()[n1], n2));
}
const E& operator() (int n1, int n2) const
{
typename graph_type::const_node_acc n;
return *this->map->index2addr(n.out_edge(this->map->table()[n1], n2));
}
friend class Graph<TDir>;
friend void relocate(EdgeMap* from, EdgeMap* to)
{
relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
}
#if POLYMAKE_DEBUG
private:
void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
void dump(std::true_type) const { cerr << *this << std::flush; }
public:
void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};
template <typename TDir, typename E, typename... TParams>
class NodeHashMap
: public Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeHashMapData<E, TParams...> >
, public redirected_container< NodeHashMap<TDir, E, TParams...>,
mlist< ContainerTag< hash_map<int, E, TParams...> > > > {
typedef redirected_container<NodeHashMap> base_t;
typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template NodeHashMapData<E, TParams...> > shared_base;
public:
typedef typename shared_base::default_value_supplier default_value_supplier;
typedef int key_type;
typedef E mapped_type;
typedef hash_map<int, E, TParams...> hash_map_t;
NodeHashMap() {}
explicit NodeHashMap(const default_value_supplier& dflt_arg) : shared_base(dflt_arg) {}
template <typename Graph2>
explicit NodeHashMap(const GenericGraph<Graph2, TDir>& G) : shared_base(G.top().get_graph()) {}
template <typename Graph2>
NodeHashMap(const GenericGraph<Graph2, TDir>& G, const default_value_supplier& dflt_arg) : shared_base(G.top().get_graph(), dflt_arg) {}
hash_map_t& get_container()
{
this->mutable_access();
return this->map->data;
}
const hash_map_t& get_container() const
{
return this->map->data;
}
E& operator[] (int n)
{
if (this->invalid_node(n))
throw std::runtime_error("NodeHashMap::operator[] - node id out of range or deleted");
return get_container()[n];
}
const E& operator[] (int n) const
{
if (this->invalid_node(n))
throw std::runtime_error("NodeHashMap::operator[] - node id out of range or deleted");
typename base_t::const_iterator it=find(n);
if (it==get_container().end()) throw no_match();
return it->second;
}
typename base_t::iterator insert(int n, typename function_argument<E>::type v)
{
if (POLYMAKE_DEBUG) {
if (this->invalid_node(n))
throw std::runtime_error("NodeHashMap::insert - node index out of range or deleted");
}
return get_container().insert(n,v);
}
pair<typename base_t::iterator, bool> insert(const typename base_t::value_type& v)
{
if (POLYMAKE_DEBUG) {
if (this->invalid_node(v.first))
throw std::runtime_error("NodeHashMap::insert - node index out of range or deleted");
}
return get_container().insert(v);
}
typename base_t::const_iterator find(int n) const { return get_container().find(n); }
void erase(int n) { return get_container().erase(n); }
typename base_t::iterator erase(typename base_t::iterator where) { return get_container().erase(where); }
friend class Graph<TDir>;
friend void relocate(NodeHashMap* from, NodeHashMap* to)
{
relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
}
#if POLYMAKE_DEBUG
private:
void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
void dump(std::true_type) const { cerr << *this << std::flush; }
public:
void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};
template <typename TDir, typename E, typename... TParams>
class EdgeHashMap
: public Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeHashMapData<E, TParams...>>
, public redirected_container< EdgeHashMap<TDir, E, TParams...>,
mlist< ContainerTag< hash_map<int, E, TParams...> > > > {
typedef redirected_container<EdgeHashMap> base_t;
typedef typename Graph<TDir>::template SharedMap<typename Graph<TDir>::template EdgeHashMapData<E, TParams...>> shared_base;
public:
typedef typename shared_base::default_value_supplier default_value_supplier;
typedef int key_type;
typedef E mapped_type;
typedef hash_map<int, E, TParams...> hash_map_t;
EdgeHashMap() {}
explicit EdgeHashMap(const default_value_supplier& dflt_arg) : shared_base(dflt_arg) {}
template <typename Graph2>
explicit EdgeHashMap(const GenericGraph<Graph2, TDir>& G) : shared_base(G.top().get_graph()) {}
template <typename Graph2>
EdgeHashMap(const GenericGraph<Graph2, TDir>& G, const default_value_supplier& dflt_arg) : shared_base(G.top().get_graph(), dflt_arg) {}
hash_map_t& get_container()
{
this->mutable_access();
return this->map->data;
}
const hash_map_t& get_container() const
{
return this->map->data;
}
E& operator[] (int e) { return get_container()[e]; }
const E& operator[] (int e) const
{
typename base_t::const_iterator it=find(e);
if (it==get_container().end()) throw no_match();
return it->second;
}
E& operator() (int n1, int n2)
{
typename Graph<TDir>::node_acc n;
return get_container()[n.out_edge(this->map->table()[n1], n2)];
}
typename base_t::iterator insert(int e, typename function_argument<E>::type v)
{
return get_container().insert(e,v);
}
pair<typename base_t::iterator, bool> insert(const typename base_t::value_type& v)
{
return get_container().insert(v);
}
typename base_t::const_iterator find(int e) const { return get_container().find(e); }
typename base_t::const_iterator find(int n1, int n2) const
{
typename Graph<TDir>::out_edge_list::const_iterator e=this->map->table()[n1].out().find(n2);
return e.at_end() ? get_container().end() : find(*e);
}
void erase(int e) { return get_container().erase(e); }
typename base_t::iterator erase(typename base_t::iterator where) { return get_container().erase(where); }
void erase(int n1, int n2)
{
this->mutable_access(); // an iterator into the tree becomes invalid after divorce()
typename Graph<TDir>::node_acc n;
typename Graph<TDir>::out_edge_list::iterator e=n.out_edges(this->map->table()[n1]).find(n2);
if (!e.at_end()) this->map->data.erase(*e);
}
friend class Graph<TDir>;
friend void relocate(EdgeHashMap* from, EdgeHashMap* to)
{
relocate(static_cast<shared_base*>(from), static_cast<shared_base*>(to));
}
#if POLYMAKE_DEBUG
private:
void dump(std::false_type) const { cerr << "elements are not printable" << std::flush; }
void dump(std::true_type) const { cerr << *this << std::flush; }
public:
void dump() const __attribute__((used)) { dump(bool_constant<is_printable<E>::value>()); }
#endif
};
template <typename TDir>
template <typename TMap>
void Graph<TDir>::SharedMap<TMap>::divorce()
{
map->refc--;
map=copy(map->ctable());
}
template <typename TDir>
template <typename TMap>
void Graph<TDir>::SharedMap<TMap>::clear()
{
if (__builtin_expect(map->refc>1,0)) {
map->refc--;
const table_type& t=map->ctable();
map=new map_type(dflt);
prepare_attach(t, *map, std::false_type());
} else {
map->clear();
}
}
template <typename TDir>
template <typename TMap>
void Graph<TDir>::SharedMap<TMap>::divorce(const typename Graph<TDir>::table_type& t)
{
if (map->refc>1) {
map->refc--;
map=copy(t);
} else {
map->table().detach(*map);
t.attach(*map);
}
}
} // end namespace graph
template <typename TDir, typename E, typename... TParams>
struct spec_object_traits< graph::NodeMap<TDir, E, TParams...> > : spec_object_traits<is_container> {
static const int is_resizeable=0;
};
template <typename TDir, typename E, typename... TParams>
struct check_container_feature< graph::NodeMap<TDir, E, TParams...>, sparse_compatible>
: std::true_type {};
template <typename TDir, typename E, typename... TParams>
struct spec_object_traits< graph::EdgeMap<TDir, E, TParams...> > : spec_object_traits<is_container> {
static const int is_resizeable=0;
};
template <typename TDir>
struct spec_object_traits< graph::Graph<TDir> > : spec_object_traits<is_opaque> {
static const int is_resizeable=1;
};
template <typename TDir>
struct spec_object_traits< Serialized<graph::Graph<TDir>> >
: spec_object_traits< AdjacencyMatrix<graph::Graph<TDir>> > { };
template <typename TGraph, typename TPerm> inline
typename TGraph::persistent_type
permuted_nodes(const GenericGraph<TGraph>& g, const TPerm& perm)
{
if (POLYMAKE_DEBUG || !Unwary<TGraph>::value) {
if (g.top().dim() != perm.size())
throw std::runtime_error("permuted_nodes - dimension mismatch");
}
std::vector<int> inv_perm(g.nodes());
inverse_permutation(perm, inv_perm);
return g.top().copy_permuted(perm, inv_perm);
}
template <typename TGraph, typename TPerm> inline
typename std::enable_if<container_traits<TPerm>::is_random, typename TGraph::persistent_type>::type
permuted_inv_nodes(const GenericGraph<TGraph>& g, const TPerm& inv_perm)
{
if (POLYMAKE_DEBUG || !Unwary<TGraph>::value) {
if (g.top().dim() != inv_perm.size())
throw std::runtime_error("permuted_inv_nodes - dimension mismatch");
}
std::vector<int> perm(g.nodes());
inverse_permutation(inv_perm, perm);
return g.top().copy_permuted(perm, inv_perm);
}
template <typename TGraph, typename TPerm> inline
typename std::enable_if<!container_traits<TPerm>::is_random, typename TGraph::persistent_type>::type
permuted_inv_nodes(const GenericGraph<TGraph>& g, const TPerm& inv_perm)
{
if (POLYMAKE_DEBUG || !Unwary<TGraph>::value) {
if (g.top().dim() != inv_perm.size())
throw std::runtime_error("permuted_inv_nodes - dimension mismatch");
}
std::vector<int> inv_perm_copy(inv_perm.size());
copy_range(entire(inv_perm), inv_perm_copy.begin());
return permuted_inv_rows(g,inv_perm_copy);
}
template <typename TDir>
class Wary< graph::Graph<TDir> >
: public WaryGraph< graph::Graph<TDir> > {
protected:
Wary();
~Wary();
};
template <typename TDir, typename E, typename... TParams>
class Wary< graph::EdgeMap<TDir, E, TParams...> >
: public Generic< Wary< graph::EdgeMap<TDir, E, TParams...> > > {
protected:
Wary();
~Wary();
public:
E& operator() (int n1, int n2)
{
if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
throw std::runtime_error("EdgeMap::operator() - node id out of range or deleted");
return this->top()(n1,n2);
}
const E& operator() (int n1, int n2) const
{
if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
throw std::runtime_error("EdgeMap::operator() - node id out of range or deleted");
return this->top()(n1,n2);
}
};
template <typename TDir, typename E, typename... TParams>
class Wary< graph::EdgeHashMap<TDir, E, TParams...> >
: public Generic< Wary< graph::EdgeHashMap<TDir, E, TParams...> > > {
protected:
Wary();
~Wary();
public:
E& operator() (int n1, int n2)
{
if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
throw std::runtime_error("EdgeHashMap::operator() - node id out of range or deleted");
return this->top()(n1, n2);
}
typename graph::EdgeHashMap<TDir, E, TParams...>::const_iterator find(int n1, int n2) const
{
if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
throw std::runtime_error("EdgeHashMap::find - node id out of range or deleted");
return this->top().find(n1,n2);
}
void erase(int n1, int n2)
{
if (this->top().invalid_node(n1) || this->top().invalid_node(n2))
throw std::runtime_error("EdgeHashMap::erase - node id out of range or deleted");
this->top().erase(n1, n2);
}
};
/// create complete graph on given number of nodes
inline
graph::Graph<> complete_graph(int n_nodes)
{
graph::Graph<> G(n_nodes);
for (int n=0; n<n_nodes; ++n)
G.adjacent_nodes(n)=sequence(0,n_nodes)-n;
return G;
}
} // end namespace pm
namespace polymake {
using pm::graph::Graph;
using pm::graph::NodeMap;
using pm::graph::EdgeMap;
using pm::graph::NodeHashMap;
using pm::graph::EdgeHashMap;
using pm::complete_graph;
}
namespace std {
template <typename TDir> inline
void swap(pm::graph::Graph<TDir>& G1, pm::graph::Graph<TDir>& G2) { G1.swap(G2); }
}
#endif // POLYMAKE_GRAPH_H
// Local Variables:
// mode:C++
// c-basic-offset:3
// indent-tabs-mode:nil
// End:
|