This file is indexed.

/usr/share/perl5/Math/PlanePath/SquareReplicate.pm is in libmath-planepath-perl 125-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# math-image --path=SquareReplicate --lines --scale=10
# math-image --path=SquareReplicate --all --output=numbers_dash --size=80x50
# math-image --path=SquareReplicate,numbering_type=rotate-4 --all --output=numbers --size=48x9


package Math::PlanePath::SquareReplicate;
use 5.004;
use strict;

use vars '$VERSION', '@ISA';
$VERSION = 125;
use Math::PlanePath;
@ISA = ('Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow','round_up_pow',
  'digit_split_lowtohigh','digit_join_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [ { name            => 'numbering_type',
      display         => 'Numbering',
      type            => 'enum',
      default         => 'fixed',
      choices         => ['fixed','rotate-4','rotate-8'],
      choices_display => ['Fixed','Rotate 4','Rotate 8'],
      description     => 'Fixed or rotating sub-part numbering.',
    },
  ];

use constant n_start => 0;
use constant xy_is_visited => 1;
use constant ddiffxy_maximum => 1;
use constant dir_maximum_dxdy => (0,-1); # South

# these don't vary with numbering_type since initial N=0to9 same
use constant x_negative_at_n => 4;
use constant y_negative_at_n => 6;

#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new (@_);
  $self->{'numbering_type'} ||= 'fixed';  # default
  return $self;
}

sub _digits_rotate_lowtohigh {
  my ($self, $aref) = @_;
  my $rot = 0;
  my $mask = ($self->{'numbering_type'} eq 'rotate-4' ? 1 : 0);
  foreach my $digit (reverse @$aref) {
    if ($digit) {
      $digit--;
      my $delta_rot = $digit - ($digit & $mask);
      $digit = (($digit + $rot) % 8) + 1;  # mutate $aref
      $rot += $delta_rot;
    }
  }
}
sub _digits_unrotate_lowtohigh {
  my ($self, $aref) = @_;
  ### _digits_unrotate_lowtohigh(): @$aref
  my $rot = 0;
  my $mask = ($self->{'numbering_type'} eq 'rotate-4' ? 1 : 0);
  foreach my $digit (reverse @$aref) {
    ### at: "digit=$digit rot=$rot"
    if ($digit) {
      $digit = ($digit-1 - $rot) % 8;  # mutate $aref
      ### new digit 0-based: $digit
      $rot += $digit - ($digit & $mask);
      ### $rot
      $digit++;
      ### new digit 1-based: $digit
    }
  }
}

#  4 3 2
#  5 0 1
#  6 7 8
#
my @digit_to_x = (0,1, 1,0,-1, -1, -1, 0, 1);
my @digit_to_y = (0,0, 1,1, 1,  0, -1,-1,-1);

sub n_to_xy {
  my ($self, $n) = @_;
  ### SquareReplicate n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  my $x = my $y = ($n * 0);  # inherit bignum 0
  my $len = ($x + 1);        # inherit bignum 1

  my @digits = digit_split_lowtohigh($n,9);
  if ($self->{'numbering_type'} ne 'fixed') {
    _digits_rotate_lowtohigh($self, \@digits, 1);
  }
  foreach my $digit (@digits) {
    ### at: "$x,$y  digit=$digit"
    $x += $digit_to_x[$digit] * $len;
    $y += $digit_to_y[$digit] * $len;
    $len *= 3;
  }
  ### final: "$x,$y"
  return ($x,$y);
}

#   mod    digit
#  5 3 4   4 3 2     (x mod 3) + 3*(y mod 3)
#  2 0 1   5 0 1
#  8 6 7   6 7 8
#
my @mod_to_digit = (0,1,5, 3,2,4, 7,8,6);

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### SquareReplicate xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);

  my ($len,$level_limit);
  {
    my $xa = abs($x);
    my $ya = abs($y);
    ($len,$level_limit) = round_down_pow (2*($xa > $ya ? $xa : $ya) || 1, 3);
    ### $level_limit
    ### $len
  }
  $level_limit += 2;
  if (is_infinite($level_limit)) {
    return $level_limit;
  }

  my $zero = ($x * 0 * $y);  # inherit bignum 0
  my @n; # digits low to high
  while ($x || $y) {
    if ($level_limit-- < 0) {
      ### oops, level limit reached ...
      return undef;
    }
    my $m = ($x % 3) + 3*($y % 3);
    my $digit = $mod_to_digit[$m];
    push @n, $digit;
    ### at: "$x,$y  m=$m digit=$digit"

    $x -= $digit_to_x[$digit];
    $y -= $digit_to_y[$digit];
    ### subtract: "$digit_to_x[$digit],$digit_to_y[$digit] to $x,$y"

    ### assert: $x!=$x || $x % 3 == 0
    ### assert: $y!=$y || $y % 3 == 0
    $x /= 3;
    $y /= 3;
  }
  ### n from xy: @n
  if ($self->{'numbering_type'} ne 'fixed') {
    _digits_rotate_lowtohigh($self, \@n, -1);
    ### @n
  }
  return digit_join_lowtohigh (\@n, 9, $zero);
}

# level   N    Xmax
#   1   9^1-1    1
#   2   9^2-1    1+3
#   3   9^3-1    1+3+9
# X <= 3^0+3^1+...+3^(level-1)
# X <= 1 + 3^0+3^1+...+3^(level-1)
# X <= (3^level - 1)/2
# 2*X+1 <= 3^level
# level >= log3(2*X+1)
#
# X < 1  +  3^0+3^1+...+3^(level-1)
# X < 1 + (3^level - 1)/2
# (3^level - 1)/2 > X-1
# 3^level - 1 > 2*X-2
# 3^level > 2*X-1
#
# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### SquareReplicate rect_to_n_range(): "$x1,$y1  $x2,$y2"

  my $max = abs(round_nearest($x1));
  foreach ($y1, $x2, $y2) {
    my $m = abs(round_nearest($_));
    if ($m > $max) { $max = $m }
  }
  my ($pow) = round_down_pow (2*($max||1)-1, 3);
  return (0, 9*$pow*$pow - 1);  # 9^level-1
}

#-----------------------------------------------------------------------------
# level_to_n_range()

# shared by Math::PlanePath::WunderlichMeander and more
sub level_to_n_range {
  my ($self, $level) = @_;
  return (0, 9**$level - 1);
}
sub n_to_level {
  my ($self, $n) = @_;
  if ($n < 0) { return undef; }
  if (is_infinite($n)) { return $n; }
  $n = round_nearest($n);
  my ($pow, $exp) = round_up_pow ($n+1, 9);
  return $exp;
}

#-----------------------------------------------------------------------------
1;
__END__

=for stopwords eg Ryde Math-PlanePath aabbccdd

=head1 NAME

Math::PlanePath::SquareReplicate -- replicating squares

=head1 SYNOPSIS

 use Math::PlanePath::SquareReplicate;
 my $path = Math::PlanePath::SquareReplicate->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This path is a self-similar replicating square,

    40--39--38  31--30--29  22--21--20         4
     |       |   |       |   |       |
    41  36--37  32  27--28  23  18--19         3
     |           |           |
    42--43--44  33--34--35  24--25--26         2

    49--48--47   4-- 3-- 2  13--12--11         1
     |       |   |       |   |       |
    50  45--46   5   0-- 1  14   9--10     <- Y=0
     |           |           |
    51--52--53   6-- 7-- 8  15--16--17        -1

    58--57--56  67--66--65  76--75--74        -2
     |       |   |       |   |       |
    59  54--55  68  63--64  77  72--73        -3
     |           |           |
    60--61--62  69--70--71  78--79--80        -4

                     ^
    -4  -3  -2  -1  X=0  1   2   3   4

The base shape is the initial N=0 to N=8 section,

   4  3  2
   5  0  1
   6  7  8

It then repeats with 3x3 blocks arranged in the same pattern, then 9x9
blocks, etc.

    36 --- 27 --- 18
     |             |
     |             |
    45      0 ---  9
     |
     |
    54 --- 63 --- 72

The replication means that the values on the X axis are those using only
digits 0,1,5 in base 9.  Those to the right have a high 1 digit and those to
the left a high 5 digit.  These digits are the values in the initial N=0 to
N=8 figure which fall on the X axis.

Similarly on the Y axis digits 0,3,7 in base 9, or the leading diagonal X=Y
0,2,6 and opposite diagonal 0,4,8.  The opposite diagonal digits 0,4,8 are
00,11,22 in base 3, so is all the values in base 3 with doubled digits
aabbccdd, etc.

=head2 Level Ranges

A given replication extends to

    Nlevel = 9^level - 1
    - (3^level - 1) <= X <= (3^level - 1)
    - (3^level - 1) <= Y <= (3^level - 1)

=head2 Complex Base

This pattern corresponds to expressing a complex integer X+i*Y with axis
powers of base b=3,

    X+Yi = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]

using complex digits a[i] encoded in N in integer base 9,

    a[i] digit     N digit
    ----------     -------
          0           0
          1           1
        i+1           2
        i             3
        i-1           4
         -1           5
       -i-1           6
       -i             7
       -i+1           8

=head2 Numbering Rotate-4

Parameter C<numbering_type =E<gt> 'rotate-4'> applies a rotation to 4
directions E,N,W,S for each sub-part according to its position around the
preceding level.

         ^   ^
         |   |
       +---+---+---+
       | 4   3 | 2 |-->
       +---+---+   +
    <--| 5 | 0>| 1 |-->
       +   +---+---+
    <--| 6 | 7   8 |
       +---+---+---+
             |   |
             v   v

The effect can be illustrated by writing N in base-9.

=cut

# math-image --path=SquareReplicate,numbering_type=rotate-4 --all --output=numbers_dash --size=58x27

=pod

    42--41  48  32--31  38  24--23--22
     |   |   |   |   |   |   |       |
    43  40  47  33  30  37  25  20--21      numbering_type => 'rotate-4'
     |       |   |       |   |                  N shown in base-9
    44--45--46  34--35--36  26--27--28
                                   
    58--57--56   4---3---2  14--13--12
             |   |       |   |       |
    51--50  55   5   0---1  15  10--11
     |       |   |           |     
    52--53--54   6---7---8  16--17--18
                                   
    68--67--66  76--75--74  86--85--84
             |   |       |   |       |
    61--60  65  77  70  73  87  80  83
     |       |   |   |   |   |   |   |
    62--63--64  78  71--72  88  81--82

Parts 10-18 and 20-28 are the same as the middle 0-8.  Parts 30-38 and 40-48
have a rotation by +90 degrees.  Parts 50-58 and 60-68 rotation by +180
degrees, and so on.

Notice this means in each part the base-9 points 11, 21, 31, points are
directed away from the middle in the same way, relative to the sub-part
locations.  This gives a reasonably simple way to characterize points on the
boundary of a given expansion level.

Working through the directions and boundary sides gives a state machine for
which unit squares are on the boundary.  For level E<gt>= 1 a given unit
square has one of both of two sides on the boundary.

       B
    +-----+         
    |     |            unit square with expansion direction,   
    |     |->  A       one or both of sides A,B on the boundary    
    |     |
    +-----+

A further low base-9 digit expands the square to a block of 9, with squares
then boundary or not.  The result is 4 states, which can be expressed by
pairs of digits

    write N in base-9 using level many digits,
    delete all 2s in 2nd or later digit
    non-boundary =
      0 anywhere
      5 or 6 or 7 in 2nd or later digit
      pair 13,33,53,73, 14,34,54,74 anywhere
      pair 43,44, 81,88 at 2nd or later digit

Pairs 53,73,54,74 can be checked just at the start of the digits, since 5 or
7 anywhere later are non-boundary alone irrespective of what (if any) pair
they might make.

=cut

# boundary squares
# GP-DEFINE  B(k) = if(k==0,1, 4*(3^k-1));
# GP-Test  vector(6,k,k--; B(k)) == [1, 8, 32, 104, 320, 968]
# k>=1 half = A100774 2*(3^n - 1)

# GP-DEFINE  BpredRot4(n,k) = {
# GP-DEFINE    my(v=digits(n,9));
# GP-DEFINE    while(#v<k,v=concat([0],v));
# GP-DEFINE    if(#v>=2,
# GP-DEFINE       v=concat([v[1]],select(d->d!=2, v[2..#v])));
# GP-DEFINE    for(i=1,#v, if(v[i]==0,return(0)));
# GP-DEFINE    for(i=2,#v, if(v[i]==5||v[i]==6||v[i]==7,return(0)));
# GP-DEFINE    for(i=1,#v-1,
# GP-DEFINE        if((v[i]==1||v[i]==3||v[i]==5||v[i]==7)
# GP-DEFINE           && (v[i+1]==3||v[i+1]==4), return(0)));
# GP-DEFINE    for(i=2,#v-1,
# GP-DEFINE        if(v[i]==4
# GP-DEFINE           && (v[i+1]==3||v[i+1]==4), return(0));
# GP-DEFINE        if(v[i]==8
# GP-DEFINE           && (v[i+1]==1||v[i+1]==8), return(0)));
# GP-DEFINE    1;
# GP-DEFINE  }
# GP-Test  vector(6,k,k--; B(k)) == \
# GP-Test  vector(6,k,k--; sum(n=0,9^k-1,BpredRot4(n,k)))

# GP-DEFINE  to_base9(n) = fromdigits(digits(n,9));
# my(k=2); for(n=0,9^k-1,if(BpredRot4(n,k),print1(to_base9(n)","))); print();
# my(k=2); for(n=0,9^k-1,if(BpredRot4(n,k),print1(n","))); print();
# not in OEIS: 10,11,17,19,20,21,22,26,28,29,35,37,38,39,40,44,46,47,53,55,56,57,58,62,64,65,71,73,74,75,76,80
# not in OEIS: 11,12,18,21,22,23,24,28,31,32,38,41,42,43,44,48,51,52,58,61,62,63,64,68,71,72,78,81,82,83,84,88

=pod

=head2 Numbering Rotate 8

Parameter C<numbering_type =E<gt> 'rotate-8'> applies a rotation to 8
directions for each sub-part according to its position around the preceding
level.

     ^       ^       ^
      \      |      /
       +---+---+---+
       | 4 | 3 | 2 |
       +---+---+---+
    <--| 5 | 0>| 1 |-->
       +---+---+---+
       | 6 | 7 | 8 |
       +---+---+---+
      /      |      \
     v       v       v

The effect can be illustrated again by N in base-9.

=cut

# math-image --path=SquareReplicate,numbering_type=rotate-8 --all --output=numbers_dash --size=80x50

=pod

    41 48-47 32-31 38 23-22-21
     |\    |  |  |  |  |   /
    42 40 46 33 30 37 24 20 28      numbering_type => 'rotate'
     |     |  |     |  |     |          N shown in base-9
    43-44-45 34-35-36 25-26-27

    58-57-56  4--3--2 14-13-12
           |  |     |  |     |
    51-50 55  5  0--1 15 10-11
     |     |  |        |
    52-53-54  6--7--8 16-17-18

    67-66-65 76-75-74 85-84-83
     |     |  |     |  |     |
    68 60 64 77 70 73 86 80 82
      /    |  |  |  |  |   \ |
    61-62-63 78 71-72 87-88 81

Notice this means in each part the 11, 21, 31, etc, points are directed
away from the middle in the same way, relative to the sub-part locations.

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::SquareReplicate-E<gt>new ()>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 9**$level - 1)>.

=back

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::CornerReplicate>,
L<Math::PlanePath::LTiling>,
L<Math::PlanePath::GosperReplicate>,
L<Math::PlanePath::QuintetReplicate>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut