/usr/share/perl5/Math/PlanePath/GosperReplicate.pm is in libmath-planepath-perl 125-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 | # Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde
# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
# math-image --path=GosperReplicate --lines --scale=10
# math-image --path=GosperReplicate --all --output=numbers_dash
# math-image --path=GosperReplicate,numbering_type=rotate --all --output=numbers_dash
#
package Math::PlanePath::GosperReplicate;
use 5.004;
use strict;
use List::Util qw(max);
use POSIX 'ceil';
use Math::Libm 'hypot';
use Math::PlanePath::SacksSpiral;
use vars '$VERSION', '@ISA';
$VERSION = 125;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
use Math::PlanePath::Base::Generic
'is_infinite',
'round_nearest';
use Math::PlanePath::Base::Digits
'round_up_pow',
'digit_split_lowtohigh',
'digit_join_lowtohigh';
# uncomment this to run the ### lines
#use Smart::Comments;
use constant parameter_info_array =>
[ { name => 'numbering_type',
display => 'Numbering',
share_key => 'numbering_type_rotate',
type => 'enum',
default => 'fixed',
choices => ['fixed','rotate'],
choices_display => ['Fixed','Rotate'],
description => 'Fixed or rotating sub-part numbering.',
},
];
use constant n_start => 0;
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_even;
use constant x_negative_at_n => 3;
use constant y_negative_at_n => 5;
use constant absdx_minimum => 1;
use constant dir_maximum_dxdy => (3,-1);
#------------------------------------------------------------------------------
sub new {
my $self = shift->SUPER::new (@_);
$self->{'numbering_type'} ||= 'fixed'; # default
return $self;
}
sub _digits_rotate_lowtohigh {
my ($aref) = @_;
my $rot = 0;
foreach my $digit (reverse @$aref) {
if ($digit) {
$rot += $digit-1;
$digit = ($rot % 6) + 1; # mutate $aref
}
}
}
sub _digits_unrotate_lowtohigh {
my ($aref) = @_;
my $rot = 0;
foreach my $digit (reverse @$aref) {
if ($digit) {
$digit = ($digit-1-$rot) % 6; # mutate $aref
$rot += $digit;
$digit++;
}
}
}
sub n_to_xy {
my ($self, $n) = @_;
### GosperReplicate n_to_xy(): $n
if ($n < 0) {
return;
}
if (is_infinite($n)) {
return ($n,$n);
}
{
my $int = int($n);
### $int
### $n
if ($n != $int) {
my ($x1,$y1) = $self->n_to_xy($int);
my ($x2,$y2) = $self->n_to_xy($int+1);
my $frac = $n - $int; # inherit possible BigFloat
my $dx = $x2-$x1;
my $dy = $y2-$y1;
return ($frac*$dx + $x1, $frac*$dy + $y1);
}
$n = $int; # BigFloat int() gives BigInt, use that
}
my $x = my $y = $n*0; # inherit bigint from $n
my $sx = $x + 2; # 2
my $sy = $x; # 0
# digit
# 3 2
# \ /
# 4---0---1
# / \
# 5 6
my @digits = digit_split_lowtohigh($n,7);
if ($self->{'numbering_type'} eq 'rotate') {
_digits_rotate_lowtohigh(\@digits);
}
foreach my $digit (@digits) {
### digit: "$digit $x,$y side $sx,$sy"
if ($digit == 1) {
### right ...
# $x = -$x; # rotate 180
# $y = -$y;
$x += $sx;
$y += $sy;
} elsif ($digit == 2) {
### up right ...
# ($x,$y) = ((3*$y-$x)/2, # rotate -120
# ($x+$y)/-2);
$x += ($sx - 3*$sy)/2; # at +60
$y += ($sx + $sy)/2;
} elsif ($digit == 3) {
### up left ...
# ($x,$y) = (($x+3*$y)/2, # -60
# ($y-$x)/2);
$x += ($sx + 3*$sy)/-2; # at +120
$y += ($sx - $sy)/2;
} elsif ($digit == 4) {
### left
$x -= $sx; # at -180
$y -= $sy;
} elsif ($digit == 5) {
### down left
# ($x,$y) = (($x-3*$y)/2, # rotate +60
# ($x+$y)/2);
$x += (3*$sy - $sx)/2; # at -120
$y += ($sx + $sy)/-2;
} elsif ($digit == 6) {
### down right
# ($x,$y) = (($x+3*$y)/-2, # rotate +120
# ($x-$y)/2);
$x += ($sx + 3*$sy)/2; # at -60
$y += ($sy - $sx)/2;
}
# 2*(sx,sy) + rot+60(sx,sy)
($sx,$sy) = ((5*$sx - 3*$sy) / 2,
($sx + 5*$sy) / 2);
}
return ($x,$y);
}
# modulus
# 1 3
# \ /
# 5---0---2
# / \
# 4 6
# 0 1 2 3 4 5 6
my @modulus_to_x = (0,-1, 2, 1,-1,-2, 1);
my @modulus_to_y = (0, 1, 0, 1,-1, 0,-1);
my @modulus_to_digit = (0, 3, 1, 2, 5, 4, 6);
sub xy_to_n {
my ($self, $x, $y) = @_;
### GosperReplicate xy_to_n(): "$x, $y"
$x = round_nearest($x);
$y = round_nearest($y);
if (($x + $y) % 2) {
return undef;
}
my $level = _xy_to_level_ceil($x,$y);
if (is_infinite($level)) {
return $level;
}
my $zero = ($x * 0 * $y); # inherit bignum 0
my @n; # digits low to high
while ($level-- >= 0 && ($x || $y)) {
### at: "$x,$y m=".(($x + 2*$y) % 7)
my $m = ($x + 2*$y) % 7;
push @n, $modulus_to_digit[$m];
$x -= $modulus_to_x[$m];
$y -= $modulus_to_y[$m];
### digit: "to $x,$y"
### assert: (3 * $y + 5 * $x) % 14 == 0
### assert: (5 * $y - $x) % 14 == 0
# shrink
($x,$y) = ((3*$y + 5*$x) / 14,
(5*$y - $x) / 14);
}
if ($self->{'numbering_type'} eq 'rotate') {
_digits_unrotate_lowtohigh(\@n);
}
return digit_join_lowtohigh (\@n, 7, $zero);
}
# not exact
sub rect_to_n_range {
my ($self, $x1,$y1, $x2,$y2) = @_;
$y1 *= sqrt(3);
$y2 *= sqrt(3);
my ($r_lo, $r_hi) = Math::PlanePath::SacksSpiral::_rect_to_radius_range
($x1,$y1, $x2,$y2);
$r_hi *= 2;
my $level_plus_1 = ceil( log(max(1,$r_hi/4)) / log(sqrt(7)) ) + 2;
return (0, 7**$level_plus_1 - 1);
}
sub _xy_to_level_ceil {
my ($x,$y) = @_;
my $r = hypot($x,$y);
$r *= 2;
return ceil( log(max(1,$r/4)) / log(sqrt(7)) ) + 1;
}
#------------------------------------------------------------------------------
# levels
sub level_to_n_range {
my ($self, $level) = @_;
return (0, 7**$level - 1);
}
sub n_to_level {
my ($self, $n) = @_;
if ($n < 0) { return undef; }
if (is_infinite($n)) { return $n; }
$n = round_nearest($n);
my ($pow, $exp) = round_up_pow ($n+1, 7);
return $exp;
}
#------------------------------------------------------------------------------
1;
__END__
=for stopwords eg Ryde Gosper Math-PlanePath
=head1 NAME
Math::PlanePath::GosperReplicate -- self-similar hexagon replications
=head1 SYNOPSIS
use Math::PlanePath::GosperReplicate;
my $path = Math::PlanePath::GosperReplicate->new;
my ($x, $y) = $path->n_to_xy (123);
=head1 DESCRIPTION
This is a self-similar hexagonal tiling of the plane. At each level the
shape is the Gosper island.
17----16 4
/ \
24----23 18 14----15 3
/ \ \
25 21----22 19----20 10---- 9 2
\ / \
26----27 3---- 2 11 7---- 8 1
/ \ \
31----30 4 0---- 1 12----13 <- Y=0
/ \ \
32 28----29 5---- 6 45----44 -1
\ / \
33----34 38----37 46 42----43 -2
/ \ \
39 35----36 47----48 -3
\
40----41 -4
^
-7 -6 -5 -4 -3 -2 -1 X=0 1 2 3 4 5 6 7
Points are spread out on every second X coordinate to make a triangular
lattice in integer coordinates (see L<Math::PlanePath/Triangular Lattice>).
The base pattern is the inner N=0 to N=6, then six copies of that shape are
arranged around as the blocks N=7,14,21,28,35,42. Then six copies of the
resulting N=0 to N=48 shape are replicated around, etc.
Each point can be taken as a little hexagon, so that all points tile the
plane with hexagons. The innermost N=0 to N=6 are for instance,
* *
/ \ / \
/ \ / \
* * *
| 3 | 2 |
* * *
/ \ / \ / \
/ \ / \ / \
* * * *
| 4 | 0 | 1 |
* * * *
\ / \ / \ /
\ / \ / \ /
* * *
| 5 | 6 |
* * *
\ / \ /
\ / \ /
* *
The further replications are the same arrangement, but the sides become ever
wigglier and the centres rotate around. The rotation can be seen N=7 at
X=5,Y=1 which is up from the X axis.
The C<FlowsnakeCentres> path is this same replicating shape, but starting
from a side instead of the middle and traversing in such as way as to make
each N adjacent. The C<Flowsnake> curve itself is this replication too, but
segments across hexagons.
=head2 Complex Base
The path corresponds to expressing complex integers X+i*Y in a base
b = 5/2 + i*sqrt(3)/2
=cut
# GP-DEFINE sqrt3 = quadgen(12);
# GP-DEFINE sqrt3i = quadgen(-12);
# GP-Test sqrt3^2 == 3
# GP-Test sqrt3i^2 == -3
# GP-DEFINE b = 5/2 + sqrt3i/2;
=pod
with coordinates scaled to put equilateral triangles on a square grid. So
for integer X,Y on the triangular grid (X,Y either both odd or both even),
X/2 + i*Y*sqrt(3)/2 = a[n]*b^n + ... + a[2]*b^2 + a[1]*b + a[0]
where each digit a[i] is either 0 or a sixth root of unity encoded into
base-7 digits of N,
w6 = e^(i*pi/3) sixth root of unity, b = 2 + w6
= 1/2 + i*sqrt(3)/2
N digit a[i] complex number
------- -------------------
0 0
1 w6^0 = 1
2 w6^1 = 1/2 + i*sqrt(3)/2
3 w6^2 = -1/2 + i*sqrt(3)/2
4 w6^3 = -1
5 w6^4 = -1/2 - i*sqrt(3)/2
6 w6^5 = 1/2 - i*sqrt(3)/2
=cut
# GP-DEFINE w6 = 1/2 + sqrt3i/2;
# GP-Test w6^6 == 1
# GP-Test w6^0 == 1
# GP-Test w6^1 == 1/2 + sqrt3i/2
# GP-Test w6^2 == -1/2 + sqrt3i/2
# GP-Test w6^3 == -1
# GP-Test w6^4 == -1/2 - sqrt3i/2
# GP-Test w6^5 == 1/2 - sqrt3i/2
# GP-Test (5/2)^2 + (sqrt3/2)^2 == 7
# GP-DEFINE z_digit(d) = [0, 1,w6,w6^2, -1,w6^4,w6^5][d+1];
# GP-DEFINE z_point(n) = \
# GP-DEFINE subst(Pol(apply(z_digit,digits(n,7))),'x,b);
# GP-Test z_point(0) == 0
# GP-Test z_point(1) == 1
# GP-Test z_point(2) == w6
# GP-Test z_point(7) == w6+2
# GP-DEFINE nearly_equal_epsilon = 1e-15;
# GP-DEFINE nearly_equal(x,y, epsilon=nearly_equal_epsilon) = \
# GP-DEFINE abs(x-y) < epsilon;
# GP-DEFINE to_base7(n) = fromdigits(digits(n,7));
# GP-DEFINE from_base7(n) = fromdigits(digits(n),7);
=pod
7 digits suffice because
norm(b) = (5/2)^2 + (sqrt(3)/2)^2 = 7
=cut
# GP-Test norm(b) == 7
# GP-Test (5/2)^2 + (sqrt3/2)^2 == 7
=pod
=head2 Rotate Numbering
Parameter C<numbering_type =E<gt> 'rotate'> applies a rotation in each
sub-part according to its location around the preceding level.
The effect can be illustrated by writing N in base-7. Part 10-16 is the
same as the middle 0-6. Part 20-26 has a rotation by +60 degrees. Part
30-36 has rotation by +120 degrees, and so on.
=cut
# start from this, then mangled by hand
# math-image --path=GosperReplicate,numbering_type=rotate --all --output=numbers_dash
=pod
22----21
/ / numbering_type => 'rotate'
31 36 23 20 26 N shown in base-7
/ \ \ \ /
32 30 35 24----25 13----12
\ / / \
33----34 3---- 2 14 10----11
/ \ \
46----45 4 0---- 1 15----16
\ \
41----40 44 5---- 6 64----63
\ / / \
42----43 55----54 65 60 62
/ \ \ \ /
56 50 53 66 61
/ /
51----52
Notice this means in each part the 11, 21, 31, etc, points are directed
away from the middle in the same way, relative to the sub-part locations.
Working through the expansions gives the following rule for when an N is
on the boundary of level k,
write N in k many base-7 digits (empty string if k=0)
if any 0 digit then non-boundary
ignore high digit and all 1 digits
if any 4 or 5 digit then non-boundary
if any 32, 33, 66 pair then non-boundary
A 0 digit is the middle of a block, or 4 or 5 digit the inner side of a
block, for kE<gt>=1, hence non-boundary. After that the 6,1,2,3 parts
variously expand with rotations so that a 66 is enclosed on the clockwise
side and 32 and 33 on the anti-clockwise side.
=cut
# in decimal
# 16----15
# / /
# 22 27 17 14 20
# / \ \ \ /
# 23 21 26 18----19 10---- 9
# \ / / \
# 24----25 3---- 2 11 7---- 8
# / \ \
# 34----33 4 0---- 1 12----13
# \ \
# 29----28 32 5---- 6 46----45
# \ / / \
# 30----31 40----39 47 42 44
# / \ \ \ /
# 41 35 38 48 43
# / /
# 36----37
=pod
=head1 FUNCTIONS
See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.
=over 4
=item C<$path = Math::PlanePath::GosperReplicate-E<gt>new ()>
=item C<$path = Math::PlanePath::GosperReplicate-E<gt>new (numbering_type =E<gt> $str)>
Create and return a new path object. The C<numbering_type> parameter can be
"fixed" (default)
"rotate"
=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>
Return the X,Y coordinates of point number C<$n> on the path. Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.
=back
=head2 Level Methods
=over
=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>
Return C<(0, 7**$level - 1)>.
=back
=head1 FORMULAS
=head2 Axis Rotations
In the fixed numbering, digit positions 1,2,3,4,5,6 go around +60deg each,
so the N for rotation of X,Y by +60 degrees is each digit +1.
N = 0, 1, 2, 3, 4, 5, 6, 10, 11, 12
rot+60(N) = 0, 2, 3, 4, 5, 6, 1, 14, 16, 17, ... decimal
= 0, 2, 3, 4, 5, 6, 1, 20, 22, 23, ... base7
rot+120(N) = 0, 3, 4, 5, 6, 1, 2, 21, 24, 25, ... decimal
= 0, 3, 4, 5, 6, 1, 2, 30, 33, 34, ... base7
etc
=cut
# rot180(N) = 0, 4, 5, 6, 1, 2, 3, 28, 32, 33, ... decimal
# = 0, 4, 5, 6, 1, 2, 3, 40, 44, 45, ... base7
#
# rot-120(N) = 0, 5, 6, 1, 2, 3, 4, 35, 40, 41, ... decimal
# = 0, 5, 6, 1, 2, 3, 4, 50, 55, 56, ... base7
#
# rot-60(N) = 0, 6, 1, 2, 3, 4, 5, 42, 48, 43, ... decimal
# = 0, 6, 1, 2, 3, 4, 5, 60, 66, 61, ... base7
# GP-DEFINE digit_plus1(d) = [0,2,3,4,5,6,1][d+1];
# GP-DEFINE digit_plus2(d) = [0,3,4,5,6,1,2][d+1];
# GP-DEFINE digit_plus3(d) = [0,4,5,6,1,2,3][d+1];
# GP-DEFINE digit_minus2(d) = [0,5,6,1,2,3,4][d+1];
# GP-DEFINE digit_minus1(d) = [0,6,1,2,3,4,5][d+1];
# GP-DEFINE N_rotate_plus60(n) = fromdigits(apply(digit_plus1, digits(n,7)),7);
# GP-DEFINE N_rotate_plus120(n)= fromdigits(apply(digit_plus2, digits(n,7)),7);
# GP-DEFINE N_rotate_180(n) = fromdigits(apply(digit_plus3, digits(n,7)),7);
# GP-DEFINE N_rotate_minus120(n)=fromdigits(apply(digit_minus2,digits(n,7)),7);
# GP-DEFINE N_rotate_minus60(n)= fromdigits(apply(digit_minus1,digits(n,7)),7);
# GP-Test my(v=[0, 2, 3, 4, 5, 6, 1, 14, 16, 17]); /* samples shown */ \
# GP-Test vector(#v,n,n--; N_rotate_plus60(n)) == v
# GP-Test my(v=[0, 2, 3, 4, 5, 6, 1, 20, 22, 23]); /* samples shown */ \
# GP-Test vector(#v,n,n--; to_base7(N_rotate_plus60(n))) == v
# GP-Test my(v=[0, 3, 4, 5, 6, 1, 2, 21, 24, 25]); /* samples shown */ \
# GP-Test vector(#v,n,n--; N_rotate_plus120(n)) == v
# GP-Test my(v=[0, 3, 4, 5, 6, 1, 2, 30, 33, 34]); /* samples shown */ \
# GP-Test vector(#v,n,n--; to_base7(N_rotate_plus120(n))) == v
# GP-Test my(v=[0, 4, 5, 6, 1, 2, 3, 28, 32, 33]); /* samples shown */ \
# GP-Test vector(#v,n,n--; N_rotate_180(n)) == v
# GP-Test my(v=[0, 4, 5, 6, 1, 2, 3, 40, 44, 45]); /* samples shown */ \
# GP-Test vector(#v,n,n--; to_base7(N_rotate_180(n))) == v
# GP-Test my(v=[0, 5, 6, 1, 2, 3, 4, 35, 40, 41]); /* samples shown */ \
# GP-Test vector(#v,n,n--; N_rotate_minus120(n)) == v
# GP-Test my(v=[0, 5, 6, 1, 2, 3, 4, 50, 55, 56]); /* samples shown */ \
# GP-Test vector(#v,n,n--; to_base7(N_rotate_minus120(n))) == v
# GP-Test my(v=[0, 6, 1, 2, 3, 4, 5, 42, 48, 43]); /* samples shown */ \
# GP-Test vector(#v,n,n--; N_rotate_minus60(n)) == v
# GP-Test my(v=[0, 6, 1, 2, 3, 4, 5, 60, 66, 61]); /* samples shown */ \
# GP-Test vector(#v,n,n--; to_base7(N_rotate_minus60(n))) == v
# GP-Test vector(500,n,n--; z_point(N_rotate_plus60(n))) == \
# GP-Test vector(500,n,n--; w6*z_point(n))
# GP-Test vector(500,n,n--; z_point(N_rotate_plus120(n))) == \
# GP-Test vector(500,n,n--; w6^2*z_point(n))
# GP-Test vector(500,n,n--; z_point(N_rotate_180(n))) == \
# GP-Test vector(500,n,n--; -z_point(n))
# GP-Test vector(500,n,n--; z_point(N_rotate_minus120(n))) == \
# GP-Test vector(500,n,n--; conj(w6)^2*z_point(n))
# GP-Test vector(500,n,n--; z_point(N_rotate_minus60(n))) == \
# GP-Test vector(500,n,n--; conj(w6)*z_point(n))
# not in OEIS: 2, 3, 4, 5, 6, 1, 14, 16, 17
# not in OEIS: 2, 3, 4, 5, 6, 1, 20, 22, 23
# not in OEIS: 3, 4, 5, 6, 1, 2, 21, 24, 25
# not in OEIS: 3, 4, 5, 6, 1, 2, 30, 33, 34
# not in OEIS: 4, 5, 6, 1, 2, 3, 28, 32, 33
# not in OEIS: 4, 5, 6, 1, 2, 3, 40, 44, 45
# not in OEIS: 5, 6, 1, 2, 3, 4, 35, 40, 41
# not in OEIS: 5, 6, 1, 2, 3, 4, 50, 55, 56
# not in OEIS: 6, 1, 2, 3, 4, 5, 42, 48, 43
# not in OEIS: 6, 1, 2, 3, 4, 5, 60, 66, 61
=pod
In the rotate numbering, just adding +1 (etc) at the high digit alone is
rotation.
=cut
# GP-DEFINE n_rotate_highdigit(n,offset) = {
# GP-DEFINE my(v=digits(n));
# GP-DEFINE v[1] = ((v[1]-1+offset)%6) + 1;
# GP-DEFINE fromdigits(v,7);
# GP-DEFINE }
# for(offset=1,6,print(vector(18,n, n_rotate_highdigit(n,offset))))
# not in OEIS: 2, 3, 4, 5, 6, 1, 2, 3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22
# not in OEIS: 3, 4, 5, 6, 1, 2, 3, 4, 5, 21, 22, 23, 24, 25, 26, 27, 28, 29
# not in OEIS: 4, 5, 6, 1, 2, 3, 4, 5, 6, 28, 29, 30, 31, 32, 33, 34, 35, 36
# not in OEIS: 5, 6, 1, 2, 3, 4, 5, 6, 1, 35, 36, 37, 38, 39, 40, 41, 42, 43
# not in OEIS: 6, 1, 2, 3, 4, 5, 6, 1, 2, 42, 43, 44, 45, 46, 47, 48, 49, 50
# not in OEIS: 1, 2, 3, 4, 5, 6, 1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
=pod
=head2 X,Y Extents
The maximum X in a given level N=0 to 7^k-1 can be calculated from the
replications. A given high digit 1 to 6 has sub-parts located at
b^k*w6^(d-1). Those sub-parts are all the same, so the one with maximum
real(b^k*w6^(d-1)) contains the maximum X.
N_xmax_digit(j) = d=1to6 where real(w6^(d-1) * b^j) is maximum
= 1,1,6,6,6,5,5,5,4,4,4,3,3,3,3,2,2, ...
k-1
N_xmax(k) = digits N_xmax_digit(j) low digit j=0
j=0
= 0, 1, 8, 302, 2360, 16766, 100801, ... decimal
= 0, 1, 11, 611, 6611, 66611, 566611, ... base7
k-1
z_xmax(k) = sum w6^d[j] * b^j
j=0 each d[j] with real(w6^d[j] * b^j) maximum
= 0, 1, 7/2+1/2*sqrt3*i, 10-sqrt3*i, 57/2-3/2*sqrt3*i,...
xmax(k) = 2*real(z_xmax(k))
= 0, 2, 7, 20, 57, 151, 387, 1070, 2833, 7106, ...
=cut
# GP-DEFINE N_xmax_digit(j) = \
# GP-DEFINE my(p=b^j,d); vecmax(vector(6,d,real(w6^(d-1)*p)),&d); d;
# GP-Test my(v=[1,1,6,6,6,5,5,5,4,4,4,3,3,3,3,2,2]); /* samples shown */ \
# GP-Test vector(#v,j,j--; N_xmax_digit(j)) == v
# GP-DEFINE N_xmax(k) = fromdigits(Vecrev(vector(k,j,j--; N_xmax_digit(j))),7);
# GP-Test my(v=[0, 1, 8, 302, 2360, 16766, 100801]); /* samples shown */ \
# GP-Test vector(#v,j,j--; N_xmax(j)) == v
# GP-Test my(v=[0, 1, 11, 611, 6611, 66611, 566611]); /* samples shown */ \
# GP-Test vector(#v,j,j--; to_base7(N_xmax(j))) == v
# GP-Test to_base7(N_xmax(51)) \
# GP-Test == 334445556661112222333444555666111222333344455566611
# GP-DEFINE z_xmax(k) = {
# GP-DEFINE sum(j=0,k-1,
# GP-DEFINE my(p=b^j, v=vector(6,d,(w6^(d-1)*p)), i);
# GP-DEFINE vecmax(real(v),&i);
# GP-DEFINE v[i]);
# GP-DEFINE }
# GP-Test my(v=[0, 1, 7/2+1/2*sqrt3i, 10-sqrt3i, 57/2-3/2*sqrt3i]); \
# GP-Test vector(#v,k,k--; z_xmax(k)) == v
# GP-Test z_xmax(0) == 0
# GP-Test z_xmax(1) == 1
# GP-Test z_point(7) == 5/2 + 1/2*sqrt3i
# GP-Test z_point(8) == 7/2 + 1/2*sqrt3i
# GP-DEFINE xmax(k) = real(z_xmax(k));
# GP-Test my(v=[0, 2, 7, 20, 57, 151, 387, 1070, 2833, 7106]); \
# GP-Test vector(#v,k,k--; 2*xmax(k)) == v
# GP-Test 2*xmax(45) == 12321054172600214702
# GP-Test 2*xmax(2) == 7 /* X of N=8 shown in sample numbers */
# vector(15,k,k--; N_xmax_digit(k))
# not in OEIS: 1, 1, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3
# vector(8,k,k++; N_xmax(k))
# vector(8,k,k++; to_base7(N_xmax(k)))
# not in OEIS: 8, 57, 400, 10004, 77232, 547828, 3018457, 20312860
# not in OEIS: 11, 111, 1111, 41111, 441111, 4441111, 34441111, 334441111
# vector(6,k,k--; z_xmax(k))
# vector(8,k, norm(z_xmax(k)))
# vector(10,k,k++; 2*real(z_xmax(k)))
# vector(10,k,k++; 2*imag(z_xmax(k)))
# vector(10,k,k++; real(z_xmax(k))+imag(z_xmax(k)))
# not in OEIS: 1, 13, 103, 819, 5827, 39243, 291772, 2026399 \\ norm
# not in OEIS: 7, 20, 57, 151, 387, 1070, 2833, 7106, 19686, 52675 \\ real
# not in OEIS: 1, -2, -3, 13, -49, -86, 163, -1102, -2128, 1597 \\ imag
# not in OEIS: 4, 9, 27, 82, 169, 492, 1498, 3002, 8779, 27136 \\ real+imag
# GP-DEFINE z_points(k) = vector(7^k,n,n--; z_point(n));
# GP-DEFINE N_xmax_by_points(k) = my(n); vecmax(real(z_points(k)),&n); n-1;
# GP-Test vector(5,k,k--; N_xmax_by_points(k)) == \
# GP-Test vector(5,k,k--; N_xmax(k))
# GP-Test z_point(302) == 10 - sqrt3i
# GP-Test z_point(57) == 9 + 3*sqrt3i
# GP-Test to_base7(302) == 611
# GP-Test to_base7(57) == 111
=pod
For computer calculation these maximums can be calculated from the powers.
The parts resulting can also be written in terms of the angle
arg(b) = atan(sqrt(3)/5) = 19.106... degrees
=cut
# GP-DEFINE b_angle = arg(b);
# GP-DEFINE b_angle_degrees = b_angle * 180/Pi;
# GP-Test nearly_equal( b_angle, atan(sqrt3/5) )
# GP-Test b_angle_degrees > 19.106
# GP-Test b_angle_degrees < 19.106+1/10^3
# not in OEIS: 0.333473172251832115336090 \\ radians
# not in OEIS: 19.1066053508690943945174 \\ degrees
=pod
For successive k, if adding this pushes the b^k angle past +30deg then the
preceding digit goes past -30deg and becomes the new maximum X. Write the
angle as a fraction of 60deg (pi/3),
F = atan(sqrt(3)/5) / (pi/3) = 0.318443 ...
=cut
# GP-DEFINE angle_F = atan(sqrt3/5) / (Pi/3);
# GP-Test angle_F > 0.318443
# GP-Test angle_F < 0.318443 + 1/10^6
# not in OEIS: 0.318443422514484906575291
=pod
This is irrational since b^k is never on the X or Y axes. That can be seen
since 2/sqrt3*imag(b^k) mod 7 goes in a repeating pattern 1,5,4,6,2,3.
Similarly 2*real(b^k) mod 7 so not on the Y axis, and also anything on the Y
axis would have 3*k fall on the X axis.
=cut
# GP-DEFINE is_integer(x) = (x==floor(x));
# GP-Test vector(100,k,k--; is_integer(imag(2*b^k))) == vector(100,k,1)
# GP-Test vector(100,k,k--; imag(2*b^k)%7) == \
# GP-Test vector(100,k,k--; if(k==0,0, [1,5,4,6,2,3][(k-1)%6+1]))
#
# GP-Test vector(100,k,k--; is_integer(real(2*b^k))) == vector(100,k,1)
# GP-Test vector(100,k,k--; real(2*b^k)%7) == \
# GP-Test vector(100,k,k--; if(k==0,2, [5, 4, 6, 2, 3, 1][(k-1)%6+1]))
=pod
Digits low to high are successive steps back cyclically 6,5,4,3,2,1 so that
(with mod giving 0 to 5),
N_xmax_digit(j) = (-floor(F*j+1/2) mod 6) + 1
=cut
# GP-DEFINE N_xmax_digit_by_floor(j) = (-floor(angle_F*j+1/2) % 6) + 1;
# GP-Test vector(1000,j,j--; N_xmax_digit_by_floor(j)) == \
# GP-Test vector(1000,j,j--; N_xmax_digit(j))
=pod
The +1/2 is since initial direction b^0=1 is angle 0 which is half way
between -30 and +30 deg.
Similarly for the location, using conj(w6) for rotation back
z_xmax_exp(j) = floor(F*j+1/2)
= 0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,5, ...
z_xmax(k) = sum(j=0,k-1, conj(w6)^z_xmax_exp(j) * b^j)
=cut
# GP-DEFINE z_xmax_exp(j) = floor(angle_F*j+1/2);
# GP-Test my(v=[0,0,1,1,1,2,2,2,3,3,3,4,4,4,4,5,5,5]); /* samples shown */ \
# GP-Test vector(#v,j,j--; z_xmax_exp(j)) == v
# GP-DEFINE z_xmax_by_floor(k) = sum(j=0,k-1, conj(w6)^z_xmax_exp(j) * b^j);
# GP-Test vector(200,j,j--; z_xmax_by_floor(j)) == \
# GP-Test vector(200,j,j--; z_xmax(j))
#
#
# vector(35,k,k++; z_xmax_exp(k)) \\ floor(angle_F*j+1/2))
# not in OEIS: 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11
# not A082964 a(n) = m given by arctan(tan(n)) = n - m*Pi.
# GP-DEFINE A082964(n) = round((n-atan(tan(n)))/Pi);
#
# atan(tan(n)) gives fractional part -pi/2 to +pi/2, so how many revolutions
# angle n makes around a circle, up to -pi/2, so factor 1/Pi
# 1/Pi \\ 0.318309886183790671537767 is close to F
#
# GP-DEFINE A082964_by_floor(n) = floor(1/Pi*n+1/2);
# GP-Test vector(10000,n,A082964(n)) == \
# GP-Test vector(10000,n,A082964_by_floor(n))
# GP-Test vector(1000,n,A082964(n)) != \
# GP-Test vector(1000,j, floor(angle_F*j+1/2))
=pod
By symmetry the maximum extent is the same in 60deg, 120deg, etc directions,
suitably rotated. The N in those cases has the digits 1,2,3,4,5,6 cycled
around for the rotation. In PlanePath triangular X,Y coordinates direction
60deg means when sum X+3*Y is a maximum, etc.
=cut
# GP-DEFINE w12_times_sqrt3 = 1+w6; /* w12 * sqrt(3) */
# (x/2+y*sqrt3i/2) * conj(w6) == (x/4 + 3*y/4) + (-x/4 + y*1/4)*sqrt3i
# (x/2+y*sqrt3i/2) * conj(w12_times_sqrt3) == (x*3/4 + y*3/4) + (-x/4 + y*3/4)*sqrt3i
# GP-DEFINE z_to_x(z) = 2*real(z);
# GP-DEFINE z_to_y(z) = 2*imag(z);
# GP-Test z_to_x(z_point(1)) == 2
# GP-Test z_to_x(z_point(3)) == -1
# GP-Test z_to_y(z_point(3)) == 1
# GP-DEFINE N_s3max_by_points(k) = my(n); vecmax(real(z_points(k)/w6),&n); n-1;
# GP-Test to_base7(N_s3max_by_points(3)) == 122
# GP-Test to_base7(N_s3max_by_points(4)) == 1122
=pod
If the +1/2 in the floor is omitted then the effect is to find the maximum
point in direction +30deg. In the PlanePath coordinates this means maximum
sum S = X+Y.
N_smax_digit(j) = (-floor(F*j) mod 6) + 1
= 1,1,1,1,6,6,6,5,5,5,4,4,4,3,3, ...
k-1
N_smax(k) = digits N_smax_digit(j) low digit j=0
j=0
= 0, 1, 8, 57, 400, 14806, 115648, ... decimal
= 0, 1, 11, 111, 1111, 61111, 661111, ... base7
and also N_smax() + 1
z_smax_exp(j) = floor(F*j)
= 0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6, ...
z_smax(k) = sum(j=0,k-1, conj(w6)^z_smax_exp(j) * b^j)
= 0, 1, 7/2+1/2*sqrt3*i, 9+3*sqrt3*i, 19+12*sqrt3*i, ...
and also z_smax() + w6^2
smax(k) = 2*real(z_smax(k)) + imag(z_smax(k))*2/sqrt3
= 0, 2, 8, 24, 62, 172, 470, 1190, 3202, 8740, ...
coordinate sum X+Y max
In the base figure, points 1 and 2 have the same X+Y=2 and this remains so
in subsequent levels, so that for kE<gt>=1 N_smax(k) and N_smax(k)+1 are
equal maximums.
=cut
# GP-DEFINE N_smax_digit(j) = (-floor(angle_F*j) % 6) + 1;
# GP-Test my(v=[1,1,1,1,6,6,6,5,5,5,4,4,4,3,3]); /* samples shown */ \
# GP-Test vector(#v,j,j--; N_smax_digit(j)) == v
# GP-DEFINE N_smax(k) = fromdigits(Vecrev(vector(k,j,j--; N_smax_digit(j))),7);
# GP-Test N_smax(0) == 0
# GP-Test N_smax(1) == 1
# GP-Test N_smax(6) == 115648
# GP-Test to_base7(N_smax(51)) \
# GP-Test == 444555566611122233344455566661112223334445556661111
# GP-Test my(v=[0, 1, 8, 57, 400, 14806, 115648]); /* samples shown */ \
# GP-Test vector(#v,j,j--; N_smax(j)) == v
# GP-Test my(v=[0, 1, 11, 111, 1111, 61111, 661111]); /* samples shown */ \
# GP-Test vector(#v,j,j--; to_base7(N_smax(j))) == v
# vector(25,k,k--; N_smax_digit(k))
# vector(8,k, N_smax(k))
# vector(8,k, to_base7(N_smax(k)))
# not in OEIS: 1,1,1,1,6,6,6,5,5,5,4,4,4,3,3,3,2,2,2,1,1,1,6,6,6 \\ digits
# not in OEIS: 1, 8, 57, 400, 14806, 115648 \\ decimal
# not in OEIS: 1, 11, 111, 1111, 61111, 661111 \\ base7
# vector(8,k, N_smax(k)+1)
# vector(8,k, to_base7(N_smax(k))+1)
# not in OEIS: 2, 9, 58, 401, 14807, 115649, 821543, 4939258 \\ decimal
# not in OEIS: 2, 12, 112, 1112, 61112, 661112, 6661112, 56661112 \\ base7
# GP-DEFINE z_smax_exp(j) = floor(angle_F*j);
# GP-Test my(v=[0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6]); /*samples shown*/ \
# GP-Test vector(#v,j,j--; z_smax_exp(j)) == v
# GP-DEFINE z_smax(k) = sum(j=0,k-1, conj(w6)^z_smax_exp(j) * b^j);
# GP-Test my(v=[0, 1, 7/2+1/2*sqrt3i, 9+3*sqrt3i, 19+12*sqrt3i]); /*samples*/ \
# GP-Test vector(#v,j,j--; z_smax(j)) == v
# GP-Test vector(50,j,j--; real( z_smax(j) / w12_times_sqrt3 )) == \
# GP-Test vector(50,j,j--; real( (z_smax(j)+w6^2) / w12_times_sqrt3 ))
# GP-DEFINE smax(k) = my(z=z_smax(k)); z_to_x(z)+z_to_y(z);
# GP-Test my(v=[0, 2, 8, 24, 62, 172, 470, 1190, 3202, 8740]); /*samples*/ \
# GP-Test vector(#v,j,j--; smax(j)) == v
# vector(50,k,k++; z_smax_exp(k)) \\ floor(angle_F*j)
# not in OEIS: 4,4,4,5,5,5,6,6,6,7,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14,14,14,14,15,15,15,16
# not A032615 = floor(n/Pi)
# 1/Pi \\ = 0.318309886183790671537767 is close to F
# GP-DEFINE A032615(n) = floor(1/Pi*n);
#
# is not A062300 which is same, almost, maybe, as A032615 after initial terms
# A062300 a(n) = floor cosec( pi/(n+1) )
# GP-DEFINE A062300(n) = floor(1/sin(Pi/(n+1)));
# GP-Test vector(10000,n,n+=4; A062300(n)) == \
# GP-Test vector(10000,n,n+=4; A032615(n+1))
# GP-Test vector(200,n,n+=4; A062300(n)) != \
# GP-Test vector(200,n,n+=4; z_smax_exp(n+1))
# sin(x)~x when x small so floor(1/sin(Pi/(n+1))) ~ floor((n+1)/Pi)
# but with sin(x)<x maybe 1/sin(Pi/(n+1)) would be just above the next integer
# agree to 100000 terms
# vector(16,k,k++; z_smax(k))
# vector(8,k,k++; norm(z_smax(k)))
# vector(10,k,k++; 2*real(z_smax(k)))
# vector(10,k,k++; 2*imag(z_smax(k)))
# not in OEIS: 13, 108, 793, 5556, 41509, 288775, 1932703, 14322999 \\ norm
# not in OEIS: 7, 18, 38, 132, 343, 740, 2503, 6537, 14366, 47355 \\ 2*real
# not in OEIS: 1, 6, 24, 40, 127, 450, 699, 2203, 7980, 11705 \\ 2*imag
# vector(10,k,k++; smax(k))
# vector(10,k,k++; smax(k)/2)
# not in OEIS: 8, 24, 62, 172, 470, 1190, 3202, 8740, 22346, 59060 \\ 2*re+2*im
# not in OEIS: 4, 12, 31, 86, 235, 595, 1601, 4370, 11173, 29530 \\ re+im
# GP-DEFINE N_smax_list_by_points(k) = {
# GP-DEFINE my(v=real(z_points(k)/w12_times_sqrt3), z=vecmax(v));
# GP-DEFINE apply(n->n-1, Vec(select(e->e==z,v,1)));
# GP-DEFINE }
# GP-Test N_smax_list_by_points(0) == [0]
# GP-Test N_smax_list_by_points(1) == [1,2]
# GP-Test N_smax_list_by_points(2) == [8,9]
# GP-Test N_smax_list_by_points(3) == [57,58]
# GP-Test N_smax(3) == 57
# tan(n)
# atan(tan(n))
# n-atan(tan(n))
# (n-atan(tan(n)))/Pi
# n - m*Pi
=pod
=head1 SEE ALSO
L<Math::PlanePath>,
L<Math::PlanePath::GosperIslands>,
L<Math::PlanePath::Flowsnake>,
L<Math::PlanePath::FlowsnakeCentres>,
L<Math::PlanePath::QuintetReplicate>,
L<Math::PlanePath::ComplexPlus>
=head1 HOME PAGE
L<http://user42.tuxfamily.org/math-planepath/index.html>
=head1 LICENSE
Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017 Kevin Ryde
This file is part of Math-PlanePath.
Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
Math-PlanePath. If not, see <http://www.gnu.org/licenses/>.
=cut
|