This file is indexed.

/usr/share/gap/pkg/ctbllib/gap4/ctblothe.gd is in gap-character-tables 1r2p2.dfsg.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
#############################################################################
##
#W  ctblothe.gd          GAP 4 package CTblLib                  Thomas Breuer
##
#Y  Copyright 1990-1992,   Lehrstuhl D für Mathematik,  RWTH Aachen,  Germany
##
##  This file contains the declarations of functions for interfaces to
##  other data formats of character tables.
##
##  1. Interface to CAS
##  2. Interface to MOC
##  3. Interface to GAP 3
##  4. Interface to the Cambridge format
##  5. Interface to the MAGMA display format
##
##  <#GAPDoc Label="interfaces">
##  This chapter describes data formats for character tables that can be read
##  or created by &GAP;.
##  Currently these are the formats used by
##  <List>
##  <Item>
##    the &CAS; system (see&nbsp;<Ref Sect="sec:interface-cas"/>),
##  </Item>
##  <Item>
##    the &MOC; system (see&nbsp;<Ref Sect="sec:interface-moc"/>),
##  </Item>
##  <Item>
##    &GAP;&nbsp;3 (see&nbsp;<Ref Sect="sec:interface-gap3"/>),
##  </Item>
##  <Item>
##    the so-called <E>Cambridge format</E>
##    (see&nbsp;<Ref Sect="sec:interface-cambridge"/>), and
##  </Item>
##  <Item>
##    the <Package>MAGMA</Package> system
##    (see&nbsp;<Ref Sect="sec:interface-magma"/>).
##  </Item>
##  </List>
##  <#/GAPDoc>
##


#############################################################################
##
#T  TODO:
##
#a  MocData( <chi> )
#a  MocInfo( <tbl> )
#o  VirtualCharacterByMocData( <tbl>, <vector> )
#o  CharacterByMocData( <tbl>, <vector> )
##


#############################################################################
##
##  1. Interface to CAS
##
##  <#GAPDoc Label="interface_CAS">
##  The interface to &CAS; (see&nbsp;<Cite Key="NPP84"/>) is thought
##  just for printing the &CAS; data to a file.
##  The function <Ref Func="CASString"/> is available mainly
##  in order to document the data format.
##  <E>Reading</E> &CAS; tables is not supported;
##  note that the tables contained in the
##  &CAS; Character Table Library have been migrated to
##  &GAP; using a few <C>sed</C> scripts and <C>C</C> programs.
##  <#/GAPDoc>
##


#############################################################################
##
#F  CASString( <tbl> )
##
##  <#GAPDoc Label="CASString">
##  <ManSection>
##  <Func Name="CASString" Arg="tbl"/>
##
##  <Description>
##  is a string that encodes the &CAS; library format
##  of the character table <A>tbl</A>.
##  This string can be printed to a file which then can be read into the
##  &CAS; system using its <C>get</C> command (see&nbsp;<Cite Key="NPP84"/>).
##  <P/>
##  The used line length is the first entry in the list returned by
##  <Ref Func="SizeScreen" BookName="ref"/>.
##  <P/>
##  Only the known values of the following attributes are used.
##  <Ref Attr="ClassParameters" BookName="ref"/> (for partitions only),
##  <Ref Attr="ComputedClassFusions" BookName="ref"/>,
##  <Ref Attr="ComputedIndicators" BookName="ref"/>,
##  <Ref Attr="ComputedPowerMaps" BookName="ref"/>,
##  <Ref Attr="ComputedPrimeBlocks" BookName="ref"/>,
##  <Ref Attr="Identifier" Label="for character tables" BookName="ref"/>,
##  <Ref Attr="InfoText" BookName="ref"/>,
##  <Ref Attr="Irr" BookName="ref"/>,
##  <Ref Attr="OrdersClassRepresentatives" BookName="ref"/>,
##  <Ref Attr="Size" BookName="ref"/>,
##  <Ref Attr="SizesCentralizers" BookName="ref"/>.
##  <P/>
##  <Example>
##  gap> Print( CASString( CharacterTable( "Cyclic", 2 ) ), "\n" );
##  'C2'
##  00/00/00. 00.00.00.
##  (2,2,0,2,-1,0)
##  text:
##  (#computed using generic character table for cyclic groups#),
##  order=2,
##  centralizers:(
##  2,2
##  ),
##  reps:(
##  1,2
##  ),
##  powermap:2(
##  1,1
##  ),
##  characters:
##  (1,1
##  ,0:0)
##  (1,-1
##  ,0:0);
##  /// converted from GAP
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CASString" );


#############################################################################
##
##  2. Interface to MOC
##
##  <#GAPDoc Label="interface_MOC">
##  The interface to &MOC; (see&nbsp;<Cite Key="HJLP92"/>)
##  can be used to print &MOC; input.
##  Additionally it provides an alternative representation of (virtual)
##  characters.
##  <P/>
##  The &MOC;&nbsp;3 code of a <M>5</M> digit number
##  in &MOC;&nbsp;2 code is given by the following list.
##  (Note that the code must contain only lower case letters.)
##  <P/>
##  <Verb>
##  ABCD    for  0ABCD
##  a       for  10000
##  b       for  10001          k       for  20001
##  c       for  10002          l       for  20002
##  d       for  10003          m       for  20003
##  e       for  10004          n       for  20004
##  f       for  10005          o       for  20005
##  g       for  10006          p       for  20006
##  h       for  10007          q       for  20007
##  i       for  10008          r       for  20008
##  j       for  10009          s       for  20009
##  tAB     for  100AB
##  uAB     for  200AB
##  vABCD   for  1ABCD
##  wABCD   for  2ABCD
##  yABC    for  30ABC
##  z       for  31000
##  </Verb>
##  <P/>
##  <E>Note</E> that any long number in &MOC;&nbsp;2 format
##  is divided into packages of length <M>4</M>,
##  the first (!) one filled with leading zeros if necessary.
##  Such a number with decimals <M>d_1, d_2, \ldots, d_{{4n+k}}</M>
##  is the sequence
##  <M>0 d_1 d_2 d_3 d_4 \ldots 0 d_{{4n-3}} d_{{4n-2}} d_{{4n-1}} d_{4n}
##  d_{{4n+1}} \ldots d_{{4n+k}}</M>
##  where <M>0 \leq k \leq 3</M>,
##  the first digit of <M>x</M> is <M>1</M> if the number is positive
##  and <M>2</M> if the number is negative,
##  and then follow <M>(4-k)</M> zeros.
##  <P/>
##  Details about the &MOC; system are explained
##  in&nbsp;<Cite Key="HJLP92"/>,
##  a brief description can be found in&nbsp;<Cite Key="LP91"/>.
##  <#/GAPDoc>
##


#############################################################################
##
#F  MAKElb11( <listofns> )
##
##  <#GAPDoc Label="MAKElb11">
##  <ManSection>
##  <Func Name="MAKElb11" Arg="listofns"/>
##
##  <Description>
##  For a list <A>listofns</A> of positive integers,
##  <Ref Func="MAKElb11"/> prints field information for all number fields
##  with conductor in this list.
##  <P/>
##  The output of <Ref Func="MAKElb11"/> is used by the &MOC; system;
##  Calling <C>MAKElb11( [ 3 .. 189 ] )</C> will print something very similar
##  to Richard Parker's file <F>lb11</F>.
##  <P/>
##  <Example>
##  gap> MAKElb11( [ 3, 4 ] );
##     3   2   0   1   0
##     4   2   0   1   0
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MAKElb11" );


#############################################################################
##
#F  MOCTable( <gaptbl> )
#F  MOCTable( <gaptbl>, <basicset> )
##
##  <#GAPDoc Label="MOCTable">
##  <ManSection>
##  <Func Name="MOCTable" Arg="gaptbl[, basicset]"/>
##
##  <Description>
##  <Ref Func="MOCTable"/> returns the &MOC; table record of the
##  &GAP; character table <A>gaptbl</A>.
##  <P/>
##  The one argument version can be used only if <A>gaptbl</A> is an
##  ordinary (<M>G.0</M>) table.
##  For Brauer (<M>G.p</M>) tables, one has to specify a basic set
##  <A>basicset</A> of ordinary irreducibles.
##  <A>basicset</A> must then be a list of positions of the basic set
##  characters in the <Ref Attr="Irr" BookName="ref"/> list
##  of the ordinary table of <A>gaptbl</A>.
##  <P/>
##  The result is a record that contains the information of <A>gaptbl</A>
##  in a format similar to the &MOC;&nbsp;3 format.
##  This record can, e.&nbsp;g., easily be printed out or be used to print
##  out characters using <Ref Func="MOCString"/>.
##  <P/>
##  The components of the result are
##  <List>
##  <Mark><C>identifier</C></Mark>
##  <Item>
##    the string <C>MOCTable( </C><M>name</M><C> )</C> where <M>name</M> is
##    the <Ref Attr="Identifier" Label="for character tables" BookName="ref"/>
##    value of <A>gaptbl</A>,
##  </Item>
##  <Mark><C>GAPtbl</C></Mark>
##  <Item>
##    <A>gaptbl</A>,
##  </Item>
##  <Mark><C>prime</C></Mark>
##  <Item>
##    the characteristic of the field (label <C>30105</C> in &MOC;),
##  </Item>
##  <Mark><C>centralizers</C></Mark>
##  <Item>
##    centralizer orders for cyclic subgroups (label <C>30130</C>)
##  </Item>
##  <Mark><C>orders</C></Mark>
##  <Item>
##    element orders for cyclic subgroups (label <C>30140</C>)
##  </Item>
##  <Mark><C>fieldbases</C></Mark>
##  <Item>
##    at position <M>i</M> the Parker basis of the number field generated
##    by the character values of the <M>i</M>-th cyclic subgroup.
##    The length of <C>fieldbases</C> is equal to the value of label
##    <C>30110</C> in &MOC;.
##  </Item>
##  <Mark><C>cycsubgps</C></Mark>
##  <Item>
##    <C>cycsubgps[i] = j</C> means that class <C>i</C> of the &GAP; table
##    belongs to the <C>j</C>-th cyclic subgroup of the &GAP; table,
##  </Item>
##  <Mark><C>repcycsub</C></Mark>
##  <Item>
##    <C>repcycsub[j] = i</C> means that class <C>i</C> of the &GAP; table
##    is the representative of the <C>j</C>-th cyclic subgroup of the
##    &GAP; table.
##    <E>Note</E> that the representatives of &GAP; table and
##    &MOC; table need not agree!
##  </Item>
##  <Mark><C>galconjinfo</C></Mark>
##  <Item>
##    a list <M>[ r_1, c_1, r_2, c_2, \ldots, r_n, c_n ]</M>
##    which means that the <M>i</M>-th class of the &GAP; table is
##    the <M>c_i</M>-th conjugate of the representative of
##    the <M>r_i</M>-th cyclic subgroup on the &MOC; table.
##    (This is used to translate back to &GAP; format,
##    stored under label <C>30160</C>)
##  </Item>
##  <Mark><C>30170</C></Mark>
##  <Item>
##    (power maps) for each cyclic subgroup (except the trivial one)
##    and each prime divisor of the representative order store four values,
##    namely the number of the subgroup, the power,
##    the number of the cyclic subgroup containing the image,
##    and the power to which the representative must be raised to yield
##    the image class.
##    (This is used only to construct the <C>30230</C> power map/embedding
##    information.)
##    In <C>30170</C> only a list of lists (one for each cyclic subgroup)
##    of all these values is stored, it will not be used by &GAP;.
##  </Item>
##  <Mark><C>tensinfo</C></Mark>
##  <Item>
##    tensor product information, used to compute the coefficients
##    of the Parker base for tensor products of characters
##    (label <C>30210</C> in &MOC;).
##    For a field with vector space basis <M>(v_1, v_2, \ldots, v_n)</M>,
##    the tensor product information of a cyclic subgroup in
##    &MOC; (as computed by <C>fct</C>) is either <M>1</M>
##    (for rational classes)
##    or a sequence
##    <Display Mode="M">
##    n x_{1,1} y_{1,1} z_{1,1} x_{1,2} y_{1,2} z_{1,2}
##    \ldots x_{1,m_1} y_{1,m_1} z_{1,m_1} 0 x_{2,1} y_{2,1}
##    z_{2,1} x_{2,2} y_{2,2} z_{2,2} \ldots x_{2,m_2}
##    y_{2,m_2} z_{2,m_2} 0 \ldots z_{n,m_n} 0
##    </Display>
##    which means that the coefficient of <M>v_k</M> in the product
##    <Display Mode="M">
##    \left( \sum_{i=1}^{n} a_i v_i \right)
##    \left( \sum_{j=1}^{n} b_j v_j \right)
##    </Display>
##    is equal to
##    <Display Mode="M">
##    \sum_{i=1}^{m_k} x_{k,i} a_{y_{k,i}} b_{z_{k,i}} .
##    </Display>
##    On a &MOC; table in &GAP;,
##    the <C>tensinfo</C> component is a list of lists,
##    each containing exactly the sequence mentioned above.
##  </Item>
##  <Mark><C>invmap</C></Mark>
##  <Item>
##    inverse map to compute complex conjugate characters,
##    label <C>30220</C> in &MOC;.
##  </Item>
##  <Mark><C>powerinfo</C></Mark>
##  <Item>
##    field embeddings for <M>p</M>-th symmetrizations,
##    <M>p</M> a prime integer not larger than the largest element order,
##    label <C>30230</C> in &MOC;.
##  </Item>
##  <Mark><C>30900</C></Mark>
##  <Item>
##    basic set of restricted ordinary irreducibles in the
##    case of nonzero characteristic,
##    all ordinary irreducibles otherwise.
##  </Item>
##  </List>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MOCTable" );


#############################################################################
##
#F  MOCString( <moctbl> )
#F  MOCString( <moctbl>, <chars> )
##
##  <#GAPDoc Label="MOCString">
##  <ManSection>
##  <Func Name="MOCString" Arg="moctbl[, chars]"/>
##
##  <Description>
##  Let <A>moctbl</A> be a &MOC; table record,
##  as returned by <Ref Func="MOCTable"/>.
##  <Ref Func="MOCString"/> returns a string describing the
##  &MOC;&nbsp;3 format of <A>moctbl</A>.
##  <P/>
##  If a second argument <A>chars</A> is specified,
##  it must be a list of &MOC;
##  format characters as returned by <Ref Func="MOCChars"/>.
##  In this case, these characters are stored under label <C>30900</C>.
##  If the second argument is missing then the basic set of ordinary
##  irreducibles is stored under this label.
##  <Example>
##  gap> moca5:= MOCTable( CharacterTable( "A5" ) );
##  rec( 30170 := [ [  ], [ 2, 2, 1, 1 ], [ 3, 3, 1, 1 ], [ 4, 5, 1, 1 ] ]
##      , 
##    30900 := [ [ 1, 1, 1, 1, 0 ], [ 3, -1, 0, 0, -1 ], 
##        [ 3, -1, 0, 1, 1 ], [ 4, 0, 1, -1, 0 ], [ 5, 1, -1, 0, 0 ] ], 
##    GAPtbl := CharacterTable( "A5" ), centralizers := [ 60, 4, 3, 5 ], 
##    cycsubgps := [ 1, 2, 3, 4, 4 ], 
##    fieldbases := 
##      [ CanonicalBasis( Rationals ), CanonicalBasis( Rationals ), 
##        CanonicalBasis( Rationals ), 
##        Basis( NF(5,[ 1, 4 ]), [ 1, E(5)+E(5)^4 ] ) ], fields := [  ], 
##    galconjinfo := [ 1, 1, 2, 1, 3, 1, 4, 1, 4, 2 ], 
##    identifier := "MOCTable(A5)", 
##    invmap := [ [ 1, 1, 0 ], [ 1, 2, 0 ], [ 1, 3, 0 ], 
##        [ 1, 4, 0, 1, 5, 0 ] ], orders := [ 1, 2, 3, 5 ], 
##    powerinfo := 
##      [ , 
##        [ [ 1, 1, 0 ], [ 1, 1, 0 ], [ 1, 3, 0 ], 
##            [ 1, 4, -1, 5, 0, -1, 5, 0 ] ], 
##        [ [ 1, 1, 0 ], [ 1, 2, 0 ], [ 1, 1, 0 ], 
##            [ 1, 4, -1, 5, 0, -1, 5, 0 ] ],, 
##        [ [ 1, 1, 0 ], [ 1, 2, 0 ], [ 1, 3, 0 ], [ 1, 1, 0, 0 ] ] ], 
##    prime := 0, repcycsub := [ 1, 2, 3, 4 ], 
##    tensinfo := 
##      [ [ 1 ], [ 1 ], [ 1 ], 
##        [ 2, 1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 1, -1, 2, 2, 0 ] ] )
##  gap> str:= MOCString( moca5 );;
##  gap> str{[1..68]};
##  "y100y105ay110fey130t60edfy140bcdfy150bbbfcabbey160bbcbdbebecy170ccbb"
##  gap> moca5mod3:= MOCTable( CharacterTable( "A5" ) mod 3, [ 1 .. 4 ] );;
##  gap> MOCString( moca5mod3 ){ [ 1 .. 68 ] };
##  "y100y105dy110edy130t60efy140bcfy150bbfcabbey160bbcbdbdcy170ccbbdfbby"
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MOCString" );


#############################################################################
##
#F  ScanMOC( <list> )
##
##  <#GAPDoc Label="ScanMOC">
##  <ManSection>
##  <Func Name="ScanMOC" Arg="list"/>
##
##  <Description>
##  returns a record containing the information encoded in the list
##  <A>list</A>.
##  The components of the result are the labels that occur in <A>list</A>.
##  If <A>list</A> is in &MOC;&nbsp;2 format (10000-format),
##  the names of components are 30000-numbers;
##  if it is in &MOC;&nbsp;3 format the names of components
##  have <C>yABC</C>-format.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "ScanMOC" );


#############################################################################
##
#F  GAPChars( <tbl>, <mocchars> )
##
##  <#GAPDoc Label="GAPChars">
##  <ManSection>
##  <Func Name="GAPChars" Arg="tbl, mocchars"/>
##
##  <Description>
##  Let <A>tbl</A> be a character table or a &MOC;
##  table record,
##  and <A>mocchars</A> be either a list of &MOC; format
##  characters
##  (as returned by <Ref Func="MOCChars"/>)
##  or a list of positive integers such as a record component encoding
##  characters, in a record produced by <Ref Func="ScanMOC"/>.
##  <P/>
##  <Ref Func="GAPChars"/> returns translations of <A>mocchars</A> to &GAP;
##  character values lists.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GAPChars" );


#############################################################################
##
#F  MOCChars( <tbl>, <gapchars> )
##
##  <#GAPDoc Label="MOCChars">
##  <ManSection>
##  <Func Name="MOCChars" Arg="tbl, gapchars"/>
##
##  <Description>
##  Let <A>tbl</A> be a character table or a &MOC;
##  table record,
##  and <A>gapchars</A> be a list of (&GAP; format) characters.
##  <Ref Func="MOCChars"/> returns translations of <A>gapchars</A>
##  to &MOC; format.
##  <Example>
##  gap> scan:= ScanMOC( str );
##  rec( y050 := [ 5, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 1, 0, 0 ], 
##    y105 := [ 0 ], y110 := [ 5, 4 ], y130 := [ 60, 4, 3, 5 ], 
##    y140 := [ 1, 2, 3, 5 ], y150 := [ 1, 1, 1, 5, 2, 0, 1, 1, 4 ], 
##    y160 := [ 1, 1, 2, 1, 3, 1, 4, 1, 4, 2 ], 
##    y170 := [ 2, 2, 1, 1, 3, 3, 1, 1, 4, 5, 1, 1 ], 
##    y210 := [ 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 1, -1, 2, 
##        2, 0 ], y220 := [ 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0 ],
##    y230 := [ 2, 1, 1, 0, 1, 1, 0, 1, 3, 0, 1, 4, -1, 5, 0, -1, 5, 0 ], 
##    y900 := [ 1, 1, 1, 1, 0, 3, -1, 0, 0, -1, 3, -1, 0, 1, 1, 4, 0, 1, 
##        -1, 0, 5, 1, -1, 0, 0 ] )
##  gap> gapchars:= GAPChars( moca5, scan.y900 );
##  [ [ 1, 1, 1, 1, 1 ], [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ], 
##    [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ], [ 4, 0, 1, -1, -1 ], 
##    [ 5, 1, -1, 0, 0 ] ]
##  gap> mocchars:= MOCChars( moca5, gapchars );
##  [ [ 1, 1, 1, 1, 0 ], [ 3, -1, 0, 0, -1 ], [ 3, -1, 0, 1, 1 ], 
##    [ 4, 0, 1, -1, 0 ], [ 5, 1, -1, 0, 0 ] ]
##  gap> Concatenation( mocchars ) = scan.y900;
##  true
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "MOCChars" );


#############################################################################
##
##  3. Interface to GAP 3
##
##  <#GAPDoc Label="interface_GAP3">
##  The following functions are used to read and write character tables in
##  &GAP;&nbsp;3 format.
##  <#/GAPDoc>
##


#############################################################################
##
#V  GAP3CharacterTableData
##
##  <#GAPDoc Label="GAP3CharacterTableData">
##  <ManSection>
##  <Var Name="GAP3CharacterTableData"/>
##
##  <Description>
##  This is a list of pairs,
##  the first entry being the name of a component in a &GAP;&nbsp;3
##  character table and the second entry being the corresponding
##  attribute name in &GAP;&nbsp;4.
##  The variable is used by <Ref Func="GAP3CharacterTableScan"/>
##  and <Ref Func="GAP3CharacterTableString"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalVariable( "GAP3CharacterTableData",
    "list of pairs [ <GAP 3 component>, <GAP 4 attribute> ]" );


#############################################################################
##
#F  GAP3CharacterTableScan( <string> )
##
##  <#GAPDoc Label="GAP3CharacterTableScan">
##  <ManSection>
##  <Func Name="GAP3CharacterTableScan" Arg="string"/>
##
##  <Description>
##  Let <A>string</A> be a string that contains the output of the
##  &GAP;&nbsp;3 function <C>PrintCharTable</C>.
##  In other words, <A>string</A> describes a &GAP; record whose components
##  define an ordinary character table object in &GAP;&nbsp;3.
##  <Ref Func="GAP3CharacterTableScan"/> returns the corresponding
##  &GAP;&nbsp;4 character table object.
##  <P/>
##  The supported record components are given by the list
##  <Ref Var="GAP3CharacterTableData"/>.
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GAP3CharacterTableScan" );


#############################################################################
##
#F  GAP3CharacterTableString( <tbl> )
##
##  <#GAPDoc Label="GAP3CharacterTableString">
##  <ManSection>
##  <Func Name="GAP3CharacterTableString" Arg="tbl"/>
##
##  <Description>
##  For an ordinary character table <A>tbl</A>,
##  <Ref Func="GAP3CharacterTableString"/> returns
##  a string that when read into &GAP;&nbsp;3 evaluates to a character table
##  corresponding to <A>tbl</A>.
##  A similar format is printed by the &GAP;&nbsp;3 function
##  <C>PrintCharTable</C>.
##  <P/>
##  The supported record components are given by the list
##  <Ref Var="GAP3CharacterTableData"/>.
##  <P/>
##  <Example>
##  gap> tbl:= CharacterTable( "Alternating", 5 );;
##  gap> str:= GAP3CharacterTableString( tbl );;
##  gap> Print( str );
##  rec(
##  centralizers := [ 60, 4, 3, 5, 5 ],
##  fusions := [ rec( map := [ 1, 3, 4, 7, 7 ], name := "Sym(5)" ) ],
##  identifier := "Alt(5)",
##  irreducibles := [
##  [ 1, 1, 1, 1, 1 ],
##  [ 4, 0, 1, -1, -1 ],
##  [ 5, 1, -1, 0, 0 ],
##  [ 3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3 ],
##  [ 3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4 ]
##  ],
##  orders := [ 1, 2, 3, 5, 5 ],
##  powermap := [ , [ 1, 1, 3, 5, 4 ], [ 1, 2, 1, 5, 4 ], , [ 1, 2, 3, 1, \
##  1 ] ],
##  size := 60,
##  text := "computed using generic character table for alternating groups\
##  ",
##  operations := CharTableOps )
##  gap> scan:= GAP3CharacterTableScan( str );
##  CharacterTable( "Alt(5)" )
##  gap> TransformingPermutationsCharacterTables( tbl, scan );
##  rec( columns := (), group := Group([ (4,5) ]), rows := () )
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "GAP3CharacterTableString" );


#############################################################################
##
##  4. Interface to the Cambridge format
##
##  <#GAPDoc Label="interface_cambridge">
##  The following functions deal with the so-called Cambridge format,
##  in which the source data of the character tables in the 
##  &ATLAS; of Finite Groups&nbsp;<Cite Key="CCN85"/> and in the
##  &ATLAS; of Brauer Characters&nbsp;<Cite Key="JLPW95"/> are stored.
##  Each such table is stored on a file of its own.
##  The line length is at most <M>78</M>,
##  and each item of the table starts in a new line, behind one of the
##  following prefixes.
##  <P/>
##  <List>
##  <Mark><C>#23</C></Mark>
##  <Item>
##    a description and the name(s) of the simple group
##  </Item>
##  <Mark><C>#7</C></Mark>
##  <Item>
##    integers describing the column widths
##  </Item>
##  <Mark><C>#9</C></Mark>
##  <Item>
##    the symbols <C>;</C> and <C>@</C>, denoting columns between tables and
##    columns that belong to conjugacy classes, respectively
##  </Item>
##  <Mark><C>#1</C></Mark>
##  <Item>
##    the symbol <C>|</C> in columns between tables, and centralizer orders
##    otherwise
##  </Item>
##  <Mark><C>#2</C></Mark>
##  <Item>
##    the symbols <C>p</C> (in the first column only),
##    <C>power</C> (in the second column only, which belongs to the class
##    of the identity element), <C>|</C> in other columns between tables,
##    and descriptions of the powers of classes otherwise
##  </Item>
##  <Mark><C>#3</C></Mark>
##  <Item>
##    the symbols <C>p'</C> (in the first column only),
##    <C>part</C> (in the second column only, which belongs to the class
##    of the identity element), <C>|</C> in other columns between tables,
##    and descriptions of the <M>p</M>-prime parts of classes otherwise
##  </Item>
##  <Mark><C>#4</C></Mark>
##  <Item>
##    the symbols <C>ind</C> and <C>fus</C> in columns between tables,
##    and class names otherwise
##  </Item>
##  <Mark><C>#5</C></Mark>
##  <Item>
##    either <C>|</C> or strings composed from the symbols <C>+</C>,
##    <C>-</C>, <C>o</C>, and integers in columns where the lines
##    starting with <C>#4</C> contain <C>ind</C>;
##    the symbols <C>:</C>, <C>.</C>, <C>?</C> in columns where these
##    lines contain <C>fus</C>;
##    character values or <C>|</C> otherwise
##  </Item>
##  <Mark><C>#6</C></Mark>
##  <Item>
##    the symbols <C>|</C>, <C>ind</C>, <C>and</C>, and <C>fus</C>
##    in columns between tables;
##    the symbol <C>|</C> and element orders of preimage classes in downward
##    extensions otherwise
##  </Item>
##  <Mark><C>#8</C></Mark>
##  <Item>
##    the last line of the data, may contain the date of the last change
##  </Item>
##  <Mark><C>#C</C></Mark>
##  <Item>
##    comments.
##  </Item>
##  </List>
##  <#/GAPDoc>
##


#############################################################################
##
#F  CambridgeMaps( <tbl> )
##
##  <#GAPDoc Label="CambridgeMaps">
##  <ManSection>
##  <Func Name="CambridgeMaps" Arg="tbl"/>
##
##  <Description>
##  For a character table <A>tbl</A>, <Ref Func="CambridgeMaps"/> returns
##  a record with the following components.
##  <P/>
##  <List>
##  <Mark><C>name</C></Mark>
##  <Item>
##    a list of strings denoting class names,
##  </Item>
##  <Mark><C>power</C></Mark>
##  <Item>
##    a list of strings, the <M>i</M>-th entry encodes the <M>p</M>-th powers 
##    of the <M>i</M>-th class,
##    for all prime divisors <M>p</M> of the group order,
##  </Item>
##  <Mark><C>prime</C></Mark>
##  <Item>
##    a list of strings, the <M>i</M>-th entry encodes the <M>p</M>-prime
##    parts of the <M>i</M>-th class,
##    for all prime divisors <M>p</M> of the group order.
##  </Item>
##  </List>
##  <P/>
##  The meaning of the entries of the lists is defined in
##  <Cite Key="CCN85" Where="Chapter&nbsp;7, Sections&nbsp;3&ndash;5"/>).
##  <P/>
##  <Ref Func="CambridgeMaps"/> is used for example by
##  <Ref Func="Display" Label="for a character table" BookName="ref"/>
##  in the case that the <C>powermap</C> option has the value
##  <C>"ATLAS"</C>.
##  <P/>
##  <Example>
##  gap> CambridgeMaps( CharacterTable( "A5" ) );
##  rec( names := [ "1A", "2A", "3A", "5A", "B*" ], 
##    power := [ "", "A", "A", "A", "A" ], 
##    prime := [ "", "A", "A", "A", "A" ] )
##  gap> CambridgeMaps( CharacterTable( "A5" ) mod 2 );
##  rec( names := [ "1A", "3A", "5A", "B*" ], 
##    power := [ "", "A", "A", "A" ], prime := [ "", "A", "A", "A" ] )
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "CambridgeMaps" );


#############################################################################
##
#F  StringOfCambridgeFormat( <tbls> )
##
##  <#GAPDoc Label="StringOfCambridgeFormat">
##  <ManSection>
##  <Func Name="StringOfCambridgeFormat" Arg="tbls"/>
##
##  <Description>
##  <E>(This function is experimental.)</E>
##  <P/>
##  Let <A>tbls</A> be a list of character tables,
##  which are central extensions of the first entry in <A>tbls</A>,
##  and such that the factor fusion to the first entry is stored on all
##  other tables in the list.
##  <P/>
##  <Ref Func="StringOfCambridgeFormat"/> returns a string that encodes an
##  approximation of the Cambridge format file for the first entry in
##  <A>tbls</A>.
##  Differences to the original format may occur for irrational character
##  values; the descriptions of these values have been chosen deliberately
##  for the original files, it is not obvious how to compute these
##  descriptions from the character tables in question.
##  <P/>
##  <Example>
##  gap> t:= CharacterTable( "A5" );;  2t:= CharacterTable( "2.A5" );;
##  gap> Print( StringOfCambridgeFormat( [ t, 2t ] ) );
##  #23 ? A5
##  #7 4 4 4 4 4 4 
##  #9 ; @ @ @ @ @ 
##  #1 | 60 4 3 5 5 
##  #2 p power A A A A 
##  #3 p' part A A A A 
##  #4 ind 1A 2A 3A 5A B* 
##  #5 + 1 1 1 1 1 
##  #5 + 3 -1 0 -b5 * 
##  #5 + 3 -1 0 * -b5 
##  #5 + 4 0 1 -1 -1 
##  #5 + 5 1 -1 0 0 
##  #6 ind 1 4 3 5 5 
##  #6 | 2 | 6 10 10 
##  #5 - 2 0 -1 b5 * 
##  #5 - 2 0 -1 * b5 
##  #5 - 4 0 1 -1 -1 
##  #5 - 6 0 0 1 1 
##  #8
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "StringOfCambridgeFormat" );


#############################################################################
##
##  5. Interface to the MAGMA display format
##
##  <#GAPDoc Label="interface_magma">
##  This interface is intended to convert character tables given in
##  <Package>MAGMA</Package>'s display format into &GAP; character tables.
##  <P/>
##  The function <Ref Func="BosmaBase"/> is used for the translation of
##  irrational values; this function may be of interest independent of the
##  conversion of character tables.
##  <#/GAPDoc>
##


#############################################################################
##
#F  BosmaBase( <n> )
##
##  <#GAPDoc Label="BosmaBase">
##  <ManSection>
##  <Func Name="BosmaBase" Arg="n"/>
##
##  <Description>
##  For a positive integer <A>n</A> that is not congruent to <M>2</M> modulo
##  <M>4</M>, <Ref Func="BosmaBase"/> returns the list of exponents <M>i</M>
##  for which <C>E(<A>n</A>)^</C><M>i</M> belongs to the canonical basis of
##  the <A>n</A>-th cyclotomic field that is defined in
##  <Cite Key="Bos90" Where="Section&nbsp;5"/>.
##  <P/>
##  As a set, this basis is defined as follows.
##  Let <M>P</M> denote the set of prime divisors of <A>n</A> and
##  <A>n</A> <M>= \prod_{{p \in P}} n_p</M>.
##  Let <M>e_l =</M> <C>E</C><M>(l)</M> for any positive integer <M>l</M>,
##  and
##  <M>\{ e_{{m_1}}^j \}_{{j \in J}} \otimes \{ e_{{m_2}}^k \}_{{k \in K}} =
##  \{ e_{{m_1}}^j \cdot e_{{m_2}}^k \}_{{j \in J, k \in K}}</M>
##  for any positive integers <M>m_1</M>, <M>m_2</M>.
##  (This notation is the same as the one used in the description of
##  <Ref Func="ZumbroichBase" BookName="ref"/>.)
##  <P/>
##  Then the basis is
##  <Display Mode="M">
##  B_n = \bigotimes_{{p \in P}} B_{{n_p}}
##  </Display>
##  where
##  <Display Mode="M">
##  B_{{n_p}} = \{ e_{{n_p}}^k; 0 \leq k \leq \varphi(n_p)-1 \};
##  </Display>
##  here <M>\varphi</M> denotes Euler's function,
##  see <Ref Func="Phi" BookName="ref"/>.
##  <P/>
##  <M>B_n</M> consists of roots of unity, it is an integral basis
##  (that is, exactly the integral elements in <M>&QQ;_n</M> have integral
##  coefficients w.r.t.&nbsp;<M>B_n</M>,
##  cf.&nbsp;<Ref Func="IsIntegralCyclotomic" BookName="ref"/>),
##  and for any divisor <M>m</M> of <A>n</A> that is not congruent to
##  <M>2</M> modulo <M>4</M>, <M>B_m</M> is a subset of <M>B_n</M>.
##  <P/>
##  Note that the list <M>l</M>, say, that is returned by
##  <Ref Func="BosmaBase"/> is in general not a set.
##  The ordering of the elements in <M>l</M> fits to the coefficient lists
##  for irrational values used by <Package>MAGMA</Package>'s display format.
##  <P/>
##  <Example>
##  gap> b:= BosmaBase( 8 );
##  [ 0, 1, 2, 3 ]
##  gap> b:= Basis( CF(8), List( b, i -> E(8)^i ) );
##  Basis( CF(8), [ 1, E(8), E(4), E(8)^3 ] )
##  gap> Coefficients( b, Sqrt(2) );
##  [ 0, 1, 0, -1 ]
##  gap> Coefficients( b, Sqrt(-2) );
##  [ 0, 1, 0, 1 ]
##  gap> b:= BosmaBase( 15 );
##  [ 0, 5, 3, 8, 6, 11, 9, 14 ]
##  gap> b:= List( b, i -> E(15)^i );
##  [ 1, E(3), E(5), E(15)^8, E(5)^2, E(15)^11, E(5)^3, E(15)^14 ]
##  gap> Coefficients( Basis( CF(15), b ), EB(15) );
##  [ -1, -1, 0, 0, -1, -2, -1, -2 ]
##  gap> BosmaBase( 48 );
##  [ 0, 3, 6, 9, 12, 15, 18, 21, 16, 19, 22, 25, 28, 31, 34, 37 ]
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
DeclareGlobalFunction( "BosmaBase" );


#############################################################################
##
#F  GAPTableOfMagmaFile( <file>, <identifier> )
##
##  <#GAPDoc Label="GAPTableOfMagmaFile">
##  <ManSection>
##  <Func Name="GAPTableOfMagmaFile" Arg="file, identifier"/>
##
##  <Description>
##  Let <A>file</A> be the name of a file that contains a character table in
##  <Package>MAGMA</Package>'s display format,
##  and <A>identifier</A> be a string.
##  <Ref Func="GAPTableOfMagmaFile"/> returns the corresponding &GAP;
##  character table.
##  <P/>
##  <Example>
##  gap> tmpdir:= DirectoryTemporary();;
##  gap> file:= Filename( tmpdir, "magmatable" );;
##  gap> str:= "\
##  > Character Table of Group G\n\
##  > --------------------------\n\
##  > \n\
##  > ---------------------------\n\
##  > Class |   1  2  3    4    5\n\
##  > Size  |   1 15 20   12   12\n\
##  > Order |   1  2  3    5    5\n\
##  > ---------------------------\n\
##  > p  =  2   1  1  3    5    4\n\
##  > p  =  3   1  2  1    5    4\n\
##  > p  =  5   1  2  3    1    1\n\
##  > ---------------------------\n\
##  > X.1   +   1  1  1    1    1\n\
##  > X.2   +   3 -1  0   Z1 Z1#2\n\
##  > X.3   +   3 -1  0 Z1#2   Z1\n\
##  > X.4   +   4  0  1   -1   -1\n\
##  > X.5   +   5  1 -1    0    0\n\
##  > \n\
##  > Explanation of Character Value Symbols\n\
##  > --------------------------------------\n\
##  > \n\
##  > # denotes algebraic conjugation, that is,\n\
##  > #k indicates replacing the root of unity w by w^k\n\
##  > \n\
##  > Z1     = (CyclotomicField(5: Sparse := true)) ! [\n\
##  > RationalField() | 1, 0, 1, 1 ]\n\
##  > ";;
##  gap> FileString( file, str );;
##  gap> tbl:= GAPTableOfMagmaFile( file, "MagmaA5" );;
##  gap> Display( tbl );
##  MagmaA5
##  
##       2  2  2  .  .  .
##       3  1  .  1  .  .
##       5  1  .  .  1  1
##  
##         1a 2a 3a 5a 5b
##      2P 1a 1a 3a 5b 5a
##      3P 1a 2a 1a 5b 5a
##      5P 1a 2a 3a 1a 1a
##  
##  X.1     1  1  1  1  1
##  X.2     3 -1  .  A *A
##  X.3     3 -1  . *A  A
##  X.4     4  .  1 -1 -1
##  X.5     5  1 -1  .  .
##  
##  A = -E(5)-E(5)^4
##    = (1-Sqrt(5))/2 = -b5
##  gap> str:= "\
##  > Character Table of Group G\n\
##  > --------------------------\n\
##  > \n\
##  > ------------------------------\n\
##  > Class |   1  2   3   4   5   6\n\
##  > Size  |   1  1   1   1   1   1\n\
##  > Order |   1  2   3   3   6   6\n\
##  > ------------------------------\n\
##  > p  =  2   1  1   4   3   3   4\n\
##  > p  =  3   1  2   1   1   2   2\n\
##  > ------------------------------\n\
##  > X.1   +   1  1   1   1   1   1\n\
##  > X.2   +   1 -1   1   1  -1  -1\n\
##  > X.3   0   1  1   J-1-J-1-J   J\n\
##  > X.4   0   1 -1   J-1-J 1+J  -J\n\
##  > X.5   0   1  1-1-J   J   J-1-J\n\
##  > X.6   0   1 -1-1-J   J  -J 1+J\n\
##  > \n\
##  > \n\
##  > Explanation of Character Value Symbols\n\
##  > --------------------------------------\n\
##  > \n\
##  > J = RootOfUnity(3)\n\
##  > ";;
##  gap> FileString( file, str );;
##  gap> tbl:= GAPTableOfMagmaFile( file, "MagmaC6" );;
##  gap> Display( tbl );
##  MagmaC6
##  
##       2  1  1  1  1   1   1
##       3  1  1  1  1   1   1
##  
##         1a 2a 3a 3b  6a  6b
##      2P 1a 1a 3b 3a  3a  3b
##      3P 1a 2a 1a 1a  2a  2a
##  
##  X.1     1  1  1  1   1   1
##  X.2     1 -1  1  1  -1  -1
##  X.3     1  1  A /A  /A   A
##  X.4     1 -1  A /A -/A  -A
##  X.5     1  1 /A  A   A  /A
##  X.6     1 -1 /A  A  -A -/A
##  
##  A = E(3)
##    = (-1+Sqrt(-3))/2 = b3
##  </Example>
##  </Description>
##  </ManSection>
##  <#/GAPDoc>
##
##  The MAGMA output for the above two examples is obtained by the following
##  commands.
##
##  > G := Alt(5);
##  > CT := CharacterTable(G);
##  > CT;
##
##  > G:= CyclicGroup(6);    
##  > CT:= CharacterTable(G);
##  > CT;
##
DeclareGlobalFunction( "GAPTableOfMagmaFile" );


#############################################################################
##
#E