/usr/share/doc/dynare/dynare.html/Steady-state.html is in dynare-doc 4.5.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996-2017, Dynare Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at http://www.gnu.org/licenses/fdl.txt. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Steady state (Dynare Reference Manual)</title>
<meta name="description" content="Steady state (Dynare Reference Manual)">
<meta name="keywords" content="Steady state (Dynare Reference Manual)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2any">
<link href="index.html#Top" rel="start" title="Top">
<link href="Command-and-Function-Index.html#Command-and-Function-Index" rel="index" title="Command and Function Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="The-Model-file.html#The-Model-file" rel="up" title="The Model file">
<link href="Getting-information-about-the-model.html#Getting-information-about-the-model" rel="next" title="Getting information about the model">
<link href="Other-general-declarations.html#Other-general-declarations" rel="prev" title="Other general declarations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Steady-state"></a>
<div class="header">
<p>
Next: <a href="Getting-information-about-the-model.html#Getting-information-about-the-model" accesskey="n" rel="next">Getting information about the model</a>, Previous: <a href="Other-general-declarations.html#Other-general-declarations" accesskey="p" rel="prev">Other general declarations</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Steady-state-1"></a>
<h3 class="section">4.10 Steady state</h3>
<p>There are two ways of computing the steady state (<i>i.e.</i> the static
equilibrium) of a model. The first way is to let Dynare compute the
steady state using a nonlinear Newton-type solver; this should work
for most models, and is relatively simple to use. The second way is to
give more guidance to Dynare, using your knowledge of the model, by
providing it with a “steady state file”.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="#Finding-the-steady-state-with-Dynare-nonlinear-solver" accesskey="1">Finding the steady state with Dynare nonlinear solver</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Using-a-steady-state-file" accesskey="2">Using a steady state file</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="#Replace-some-equations-during-steady-state-computations" accesskey="3">Replace some equations during steady state computations</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<a name="Finding-the-steady-state-with-Dynare-nonlinear-solver"></a>
<div class="header">
<p>
Next: <a href="#Using-a-steady-state-file" accesskey="n" rel="next">Using a steady state file</a>, Up: <a href="#Steady-state" accesskey="u" rel="up">Steady state</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Finding-the-steady-state-with-Dynare-nonlinear-solver-1"></a>
<h4 class="subsection">4.10.1 Finding the steady state with Dynare nonlinear solver</h4>
<dl>
<dt><a name="index-steady"></a>Command: <strong>steady</strong> <em>;</em></dt>
<dt><a name="index-steady-1"></a>Command: <strong>steady</strong> <em>(<var>OPTIONS</var>…);</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes the steady state of a model using a nonlinear
Newton-type solver and displays it. When a steady state file is used <code>steady</code> displays the steady state and checks that it is a solution of the static model.
</p>
<p>More precisely, it computes the equilibrium value of the endogenous
variables for the value of the exogenous variables specified in the
previous <code>initval</code> or <code>endval</code> block.
</p>
<p><code>steady</code> uses an iterative procedure and takes as initial guess
the value of the endogenous variables set in the previous
<code>initval</code> or <code>endval</code> block.
</p>
<p>For complicated models, finding good numerical initial values for the
endogenous variables is the trickiest part of finding the equilibrium
of that model. Often, it is better to start with a smaller model and
add new variables one by one.
</p>
<p><em>Options</em>
</p>
<dl compact="compact">
<dt><code>maxit = <var>INTEGER</var></code></dt>
<dd><p>Determines the maximum number of iterations used in the non-linear solver. The
default value of <code>maxit</code> is 50.
</p>
</dd>
<dt><code>tolf = <var>DOUBLE</var></code></dt>
<dd><p>Convergence criterion for termination based on the function value. Iteration will cease when the residuals are smaller
than <code>tolf</code>. Default: <code>eps^(1/3)</code>
</p>
</dd>
<dt><code>solve_algo = <var>INTEGER</var></code></dt>
<dd><a name="solve_005falgo"></a><p>Determines the non-linear solver to use. Possible values for the option are:
</p>
<dl compact="compact">
<dt><code>0</code></dt>
<dd><p>Use <code>fsolve</code> (under MATLAB, only available if you have the
Optimization Toolbox; always available under Octave)
</p>
</dd>
<dt><code>1</code></dt>
<dd><p>Use Dynare’s own nonlinear equation solver (a Newton-like algorithm with
line-search)
</p>
</dd>
<dt><code>2</code></dt>
<dd><p>Splits the model into recursive blocks and solves each block in turn
using the same solver as value <code>1</code>
</p>
</dd>
<dt><code>3</code></dt>
<dd><p>Use Chris Sims’ solver
</p>
</dd>
<dt><code>4</code></dt>
<dd><p>Splits the model into recursive blocks and solves each block in turn
using a trust-region solver with autoscaling.
</p>
</dd>
<dt><code>5</code></dt>
<dd><p>Newton algorithm with a sparse Gaussian elimination (SPE) (requires
<code>bytecode</code> option, see <a href="Model-declaration.html#Model-declaration">Model declaration</a>)
</p>
</dd>
<dt><code>6</code></dt>
<dd><p>Newton algorithm with a sparse LU solver at each iteration (requires
<code>bytecode</code> and/or <code>block</code> option, see <a href="Model-declaration.html#Model-declaration">Model declaration</a>)
</p>
</dd>
<dt><code>7</code></dt>
<dd><p>Newton algorithm with a Generalized Minimal Residual (GMRES) solver at
each iteration (requires <code>bytecode</code> and/or <code>block</code> option,
see <a href="Model-declaration.html#Model-declaration">Model declaration</a>; not available under Octave)
</p>
</dd>
<dt><code>8</code></dt>
<dd><p>Newton algorithm with a Stabilized Bi-Conjugate Gradient (BICGSTAB)
solver at each iteration (requires <code>bytecode</code> and/or <code>block</code>
option, see <a href="Model-declaration.html#Model-declaration">Model declaration</a>)
</p>
</dd>
<dt><code>9</code></dt>
<dd><p>Trust-region algorithm on the entire model.
</p>
</dd>
<dt><code>10</code></dt>
<dd><p>Levenberg-Marquardt mixed complementarity problem (LMMCP) solver
(<cite>Kanzow and Petra 2004</cite>)
</p>
</dd>
<dt><code>11</code></dt>
<dd><p>PATH mixed complementarity problem solver of <cite>Ferris and Munson (1999)</cite>. The complementarity
conditions are specified with an <code>mcp</code> equation tag, see <a href="Deterministic-simulation.html#lmmcp">lmmcp</a>. Dynare only provides the interface
for using the solver. Due to licence restrictions, you have to download the solver’s most current version yourself
from <a href="http://pages.cs.wisc.edu/~ferris/path.html">http://pages.cs.wisc.edu/~ferris/path.html</a> and place it in Matlab’s search path.
</p>
</dd>
</dl>
<p>Default value is <code>4</code>.
</p>
</dd>
<dt><code>homotopy_mode = <var>INTEGER</var></code></dt>
<dd><p>Use a homotopy (or divide-and-conquer) technique to solve for the
steady state. If you use this option, you must specify a
<code>homotopy_setup</code> block. This option can take three possible
values:
</p>
<dl compact="compact">
<dt><code>1</code></dt>
<dd><p>In this mode, all the parameters are changed simultaneously, and the
distance between the boundaries for each parameter is divided in as
many intervals as there are steps (as defined by <code>homotopy_steps</code>
option); the problem is solves as many times as there are steps.
</p>
</dd>
<dt><code>2</code></dt>
<dd><p>Same as mode <code>1</code>, except that only one parameter is changed at a
time; the problem is solved as many times as steps times number of
parameters.
</p>
</dd>
<dt><code>3</code></dt>
<dd><p>Dynare tries first the most extreme values. If it fails to compute the
steady state, the interval between initial and desired values is
divided by two for all parameters. Every time that it is impossible to
find a steady state, the previous interval is divided by two. When it
succeeds to find a steady state, the previous interval is multiplied
by two. In that last case <code>homotopy_steps</code> contains the maximum
number of computations attempted before giving up.
</p></dd>
</dl>
</dd>
<dt><code>homotopy_steps = <var>INTEGER</var></code></dt>
<dd><p>Defines the number of steps when performing a homotopy. See
<code>homotopy_mode</code> option for more details.
</p>
</dd>
<dt><code>homotopy_force_continue = <var>INTEGER</var></code></dt>
<dd><p>This option controls what happens when homotopy fails.
</p>
<dl compact="compact">
<dt><code>0</code></dt>
<dd><p><code>steady</code> fails with an error message
</p>
</dd>
<dt><code>1</code></dt>
<dd><p><code>steady</code> keeps the values of the last homotopy step that was
successful and continues. BE CAREFUL: parameters and/or exogenous
variables are NOT at the value expected by the user
</p></dd>
</dl>
<p>Default is <code>0</code>.
</p>
</dd>
<dt><code>nocheck</code></dt>
<dd><p>Don’t check the steady state values when they are provided explicitly either by a steady state file or a <code>steady_state_model</code> block. This is useful for models with unit roots as, in this case, the steady state is not unique or doesn’t exist.
</p>
</dd>
<dt><code>markowitz = <var>DOUBLE</var></code></dt>
<dd><p>Value of the Markowitz criterion, used to select the pivot. Only used
when <code>solve_algo = 5</code>. Default: <code>0.5</code>.
</p>
</dd>
</dl>
<p><em>Example</em>
</p>
<p>See <a href="Initial-and-terminal-conditions.html#Initial-and-terminal-conditions">Initial and terminal conditions</a>.
</p>
</dd></dl>
<p>After computation, the steady state is available in the following
variable:
</p>
<dl>
<dt><a name="index-oo_005f_002esteady_005fstate"></a>MATLAB/Octave variable: <strong>oo_.steady_state</strong></dt>
<dd>
<p>Contains the computed steady state.
</p>
<p>Endogenous variables are ordered in order of declaration used in
<code>var</code> command (which is also the order used in <code>M_.endo_names</code>).
</p>
</dd></dl>
<dl>
<dt><a name="index-homotopy_005fsetup"></a>Block: <strong>homotopy_setup</strong> <em>;</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This block is used to declare initial and final values when using
a homotopy method. It is used in conjunction with the option
<code>homotopy_mode</code> of the <code>steady</code> command.
</p>
<p>The idea of homotopy (also called divide-and-conquer by some authors)
is to subdivide the problem of finding the steady state into smaller
problems. It assumes that you know how to compute the steady state for
a given set of parameters, and it helps you finding the steady state
for another set of parameters, by incrementally moving from one to
another set of parameters.
</p>
<p>The purpose of the <code>homotopy_setup</code> block is to declare the final
(and possibly also the initial) values for the parameters or exogenous
that will be changed during the homotopy. It should contain lines of
the form:
</p>
<div class="example">
<pre class="example"><var>VARIABLE_NAME</var>, <var>EXPRESSION</var>, <var>EXPRESSION</var>;
</pre></div>
<p>This syntax specifies the initial and final values of a given
parameter/exogenous.
</p>
<p>There is an alternative syntax:
</p><div class="example">
<pre class="example"><var>VARIABLE_NAME</var>, <var>EXPRESSION</var>;
</pre></div>
<p>Here only the final value is specified for a given
parameter/exogenous; the initial value is taken from the preceeding
<code>initval</code> block.
</p>
<p>A necessary condition for a successful homotopy is that Dynare must be
able to solve the steady state for the initial parameters/exogenous
without additional help (using the guess values given in the
<code>initval</code> block).
</p>
<p>If the homotopy fails, a possible solution is to increase the number
of steps (given in <code>homotopy_steps</code> option of <code>steady</code>).
</p>
<p><em>Example</em>
</p>
<p>In the following example, Dynare will first compute the steady state
for the initial values (<code>gam=0.5</code> and <code>x=1</code>), and then
subdivide the problem into 50 smaller problems to find the steady
state for the final values (<code>gam=2</code> and <code>x=2</code>).
</p>
<div class="example">
<pre class="example">var c k;
varexo x;
parameters alph gam delt bet aa;
alph=0.5;
delt=0.02;
aa=0.5;
bet=0.05;
model;
c + k - aa*x*k(-1)^alph - (1-delt)*k(-1);
c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam);
end;
initval;
x = 1;
k = ((delt+bet)/(aa*x*alph))^(1/(alph-1));
c = aa*x*k^alph-delt*k;
end;
homotopy_setup;
gam, 0.5, 2;
x, 2;
end;
steady(homotopy_mode = 1, homotopy_steps = 50);
</pre></div>
</dd></dl>
<hr>
<a name="Using-a-steady-state-file"></a>
<div class="header">
<p>
Next: <a href="#Replace-some-equations-during-steady-state-computations" accesskey="n" rel="next">Replace some equations during steady state computations</a>, Previous: <a href="#Finding-the-steady-state-with-Dynare-nonlinear-solver" accesskey="p" rel="prev">Finding the steady state with Dynare nonlinear solver</a>, Up: <a href="#Steady-state" accesskey="u" rel="up">Steady state</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Using-a-steady-state-file-1"></a>
<h4 class="subsection">4.10.2 Using a steady state file</h4>
<p>If you know how to compute the steady state for your model, you can
provide a MATLAB/Octave function doing the computation instead of
using <code>steady</code>. Again, there are two options for doing that:
</p>
<ul>
<li> The easiest way is to write a <code>steady_state_model</code> block, which
is described below in more details. See also <samp>fs2000.mod</samp> in the
<samp>examples</samp> directory for an example.
<p>The steady state file generated by Dynare will be called
<samp><var>FILENAME</var>_steadystate2.m</samp>.
</p>
</li><li> You can write the corresponding MATLAB function by hand. If your
MOD-file is called <samp><var>FILENAME</var>.mod</samp>, the steady state file
must be called <samp><var>FILENAME</var>_steadystate.m</samp>. See
<samp>NK_baseline_steadystate.m</samp> in the <samp>examples</samp> directory for
an example. This option gives a bit more flexibility, at the expense
of a heavier programming burden and a lesser efficiency.
</li></ul>
<p>Note that both files allow to update parameters in each call of
the function. This allows for example to calibrate a model to a labor
supply of 0.2 in steady state by setting the labor disutility parameter
to a corresponding value (see <samp>NK_baseline_steadystate.m</samp> in the
<samp>examples</samp> directory). They can also be used in estimation
where some parameter may be a function of an estimated parameter
and needs to be updated for every parameter draw. For example, one might
want to set the capital utilization cost parameter as a function
of the discount rate to ensure that capacity utilization is 1 in steady
state. Treating both parameters as independent or not updating one as
a function of the other would lead to wrong results. But this also means
that care is required. Do not accidentally overwrite your parameters
with new values as it will lead to wrong results.
</p>
<a name="steady_005fstate_005fmodel"></a><dl>
<dt><a name="index-steady_005fstate_005fmodel"></a>Block: <strong>steady_state_model</strong> <em>;</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>When the analytical solution of the model is known, this command can
be used to help Dynare find the steady state in a more efficient and
reliable way, especially during estimation where the steady state has
to be recomputed for every point in the parameter space.
</p>
<p>Each line of this block consists of a variable (either an endogenous,
a temporary variable or a parameter) which is assigned an expression
(which can contain parameters, exogenous at the steady state, or any
endogenous or temporary variable already declared above). Each line
therefore looks like:
</p>
<div class="example">
<pre class="example"><var>VARIABLE_NAME</var> = <var>EXPRESSION</var>;
</pre></div>
<p>Note that it is also possible to assign several variables at the same
time, if the main function in the right hand side is a MATLAB/Octave
function returning several arguments:
</p>
<div class="example">
<pre class="example">[ <var>VARIABLE_NAME</var>, <var>VARIABLE_NAME</var>… ] = <var>EXPRESSION</var>;
</pre></div>
<p>Dynare will automatically generate a steady state file (of the form
<samp><var>FILENAME</var>_steadystate2.m</samp>) using the information provided in
this block.
</p>
<p><em>Steady state file for deterministic models</em>
</p>
<p><code>steady_state_model</code> block works also with deterministic
models. An <code>initval</code> block and, when necessary, an <code>endval</code>
block, is used to set the value of the exogenous variables. Each
<code>initval</code> or <code>endval</code> block must be followed by <code>steady</code>
to execute the function created by <code>steady_state_model</code> and set the
initial, respectively terminal, steady state.
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">var m P c e W R k d n l gy_obs gp_obs y dA;
varexo e_a e_m;
parameters alp bet gam mst rho psi del;
…
// parameter calibration, (dynamic) model declaration, shock calibration…
…
steady_state_model;
dA = exp(gam);
gst = 1/dA; // A temporary variable
m = mst;
// Three other temporary variables
khst = ( (1-gst*bet*(1-del)) / (alp*gst^alp*bet) )^(1/(alp-1));
xist = ( ((khst*gst)^alp - (1-gst*(1-del))*khst)/mst )^(-1);
nust = psi*mst^2/( (1-alp)*(1-psi)*bet*gst^alp*khst^alp );
n = xist/(nust+xist);
P = xist + nust;
k = khst*n;
l = psi*mst*n/( (1-psi)*(1-n) );
c = mst/P;
d = l - mst + 1;
y = k^alp*n^(1-alp)*gst^alp;
R = mst/bet;
// You can use MATLAB functions which return several arguments
[W, e] = my_function(l, n);
gp_obs = m/dA;
gy_obs = dA;
end;
steady;
</pre></div>
</dd></dl>
<a name="equation_005ftag_005ffor_005fconditional_005fsteady_005fstate"></a><hr>
<a name="Replace-some-equations-during-steady-state-computations"></a>
<div class="header">
<p>
Previous: <a href="#Using-a-steady-state-file" accesskey="p" rel="prev">Using a steady state file</a>, Up: <a href="#Steady-state" accesskey="u" rel="up">Steady state</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Replace-some-equations-during-steady-state-computations-1"></a>
<h4 class="subsection">4.10.3 Replace some equations during steady state computations</h4>
<p>When there is no steady state file, Dynare computes the steady state
by solving the static model, <i>i.e.</i> the model from the <samp>.mod</samp>
file from which leads and lags have been removed.
</p>
<p>In some specific cases, one may want to have more control over the way
this static model is created. Dynare therefore offers the possibility
to explicitly give the form of equations that should be in the static
model.
</p>
<p>More precisely, if an equation is prepended by a <code>[static]</code> tag,
then it will appear in the static model used for steady state
computation, but that equation will not be used for other
computations. For every equation tagged in this way, you must tag
another equation with <code>[dynamic]</code>: that equation will not be used
for steady state computation, but will be used for other computations.
</p>
<p>This functionality can be useful on models with a unit root, where
there is an infinity of steady states. An equation (tagged
<code>[dynamic]</code>) would give the law of motion of the nonstationary
variable (like a random walk). To pin down one specific steady state,
an equation tagged <code>[static]</code> would affect a constant value to
the nonstationary variable.
</p>
<p><em>Example</em>
</p>
<p>This is a trivial example with two endogenous variables. The second equation
takes a different form in the static model.
</p>
<div class="example">
<pre class="example">var c k;
varexo x;
…
model;
c + k - aa*x*k(-1)^alph - (1-delt)*k(-1);
[dynamic] c^(-gam) - (1+bet)^(-1)*(aa*alph*x(+1)*k^(alph-1) + 1 - delt)*c(+1)^(-gam);
[static] k = ((delt+bet)/(x*aa*alph))^(1/(alph-1));
end;
</pre></div>
<hr>
<div class="header">
<p>
Previous: <a href="#Using-a-steady-state-file" accesskey="p" rel="prev">Using a steady state file</a>, Up: <a href="#Steady-state" accesskey="u" rel="up">Steady state</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|