/usr/share/doc/dynare/dynare.html/Optimal-policy.html is in dynare-doc 4.5.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996-2017, Dynare Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at http://www.gnu.org/licenses/fdl.txt. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Optimal policy (Dynare Reference Manual)</title>
<meta name="description" content="Optimal policy (Dynare Reference Manual)">
<meta name="keywords" content="Optimal policy (Dynare Reference Manual)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2any">
<link href="index.html#Top" rel="start" title="Top">
<link href="Command-and-Function-Index.html#Command-and-Function-Index" rel="index" title="Command and Function Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="The-Model-file.html#The-Model-file" rel="up" title="The Model file">
<link href="Sensitivity-and-identification-analysis.html#Sensitivity-and-identification-analysis" rel="next" title="Sensitivity and identification analysis">
<link href="Forecasting.html#Forecasting" rel="prev" title="Forecasting">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Optimal-policy"></a>
<div class="header">
<p>
Next: <a href="Sensitivity-and-identification-analysis.html#Sensitivity-and-identification-analysis" accesskey="n" rel="next">Sensitivity and identification analysis</a>, Previous: <a href="Forecasting.html#Forecasting" accesskey="p" rel="prev">Forecasting</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Optimal-policy-1"></a>
<h3 class="section">4.19 Optimal policy</h3>
<p>Dynare has tools to compute optimal policies for various types of
objectives. <code>ramsey_model</code> computes automatically the First Order
Conditions (FOC) of a model, given the <code>planner_objective</code>. You can
then use other standard commands to solve, estimate or simulate this
new, expanded model.
</p>
<p>Alternatively, you can either solve for optimal policy under commitment
with <code>ramsey_policy</code>, for optimal policy under discretion with
<code>discretionary_policy</code> or for optimal simple rule with
<code>osr</code> (also implying commitment).
</p>
<a name="osr"></a>
<dl>
<dt><a name="index-osr"></a>Command: <strong>osr</strong> <em>[<var>VARIABLE_NAME</var>…];</em></dt>
<dt><a name="index-osr-1"></a>Command: <strong>osr</strong> <em>(<var>OPTIONS</var>…) [<var>VARIABLE_NAME</var>…];</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes optimal simple policy rules for
linear-quadratic problems of the form:
</p>
<blockquote>
<p><!-- MATH
$\min_\gamma E(y'_tWy_t)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="111" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_117.png"
ALT="$\min_\gamma E(y'_tWy_t)$"></SPAN>
</p></blockquote>
<p>such that:
</p><blockquote>
<p><!-- MATH
$A_1 E_ty_{t+1}+A_2 y_t+ A_3 y_{t-1}+C e_t=0$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="265" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_118.png"
ALT="$A_1 E_ty_{t+1}+A_2 y_t+ A_3 y_{t-1}+C e_t=0$"></SPAN>
</p></blockquote>
<p>where:
</p>
<ul>
<li> <SPAN CLASS="MATH"><IMG
WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_52.png"
ALT="$E$"></SPAN> denotes the unconditional expectations operator;
</li><li> <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_119.png"
ALT="$\gamma$"></SPAN> are parameters to be optimized. They must be elements
of the matrices <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_120.png"
ALT="$A_1$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_121.png"
ALT="$A_2$"></SPAN>, <SPAN CLASS="MATH"><IMG
WIDTH="24" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_122.png"
ALT="$A_3$"></SPAN>, <i>i.e.</i> be specified as
parameters in the <code>params</code>-command and be entered in the
<code>model</code>-block;
</li><li> <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_42.png"
ALT="$y$"></SPAN> are the endogenous variables, specified in the
<code>var</code>-command, whose (co)-variance enters the loss function;
</li><li> <SPAN CLASS="MATH"><IMG
WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_123.png"
ALT="$e$"></SPAN> are the exogenous stochastic shocks, specified in the
<code>varexo</code>-command;
</li><li> <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_124.png"
ALT="$W$"></SPAN> is the weighting matrix;
</li></ul>
<p>The linear quadratic problem consists of choosing a subset of model
parameters to minimize the weighted (co)-variance of a specified subset
of endogenous variables, subject to a linear law of motion implied by the
first order conditions of the model. A few things are worth mentioning.
First, <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_42.png"
ALT="$y$"></SPAN> denotes the selected endogenous variables’ deviations
from their steady state, <i>i.e.</i> in case they are not already mean 0 the
variables entering the loss function are automatically demeaned so that
the centered second moments are minimized. Second, <code>osr</code> only solves
linear quadratic problems of the type resulting from combining the
specified quadratic loss function with a first order approximation to the
model’s equilibrium conditions. The reason is that the first order
state-space representation is used to compute the unconditional
(co)-variances. Hence, <code>osr</code> will automatically select
<code>order=1</code>. Third, because the objective involves minimizing a
weighted sum of unconditional second moments, those second moments must
be finite. In particular, unit roots in <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_42.png"
ALT="$y$"></SPAN> are not allowed.
</p>
<p>The subset of the model parameters over which the optimal simple rule is
to be optimized, <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_119.png"
ALT="$\gamma$"></SPAN>, must be listed with <code>osr_params</code>.
</p>
<p>The weighting matrix <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_124.png"
ALT="$W$"></SPAN> used for the quadratic objective function
is specified in the <code>optim_weights</code>-block. By attaching weights to
endogenous variables, the subset of endogenous variables entering the
objective function, <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_42.png"
ALT="$y$"></SPAN>, is implicitly specified.
</p>
<p>The linear quadratic problem is solved using the numerical optimizer specified with <a href="#opt_005falgo">opt_algo</a>.
</p>
<p><em>Options</em>
</p>
<p>The <code>osr</code> command will subsequently run <code>stoch_simul</code> and
accepts the same options, including restricting the endogenous variables
by listing them after the command, as <code>stoch_simul</code>
(see <a href="Stochastic-solution-and-simulation.html#Computing-the-stochastic-solution">Computing the stochastic solution</a>) plus
</p>
<dl compact="compact">
<dt><code>opt_algo = <var>INTEGER</var></code></dt>
<dd><a name="opt_005falgo"></a><p>Specifies the optimizer for minimizing the objective function. The same solvers as for <code>mode_compute</code> (see <a href="Estimation.html#mode_005fcompute">mode_compute</a>) are available, except for 5,6, and 10.
</p>
</dd>
<dt><code>optim = (<var>NAME</var>, <var>VALUE</var>, ...)</code></dt>
<dd><p>A list of <var>NAME</var> and <var>VALUE</var> pairs. Can be used to set options for the optimization routines. The set of available options depends on the selected optimization routine (<i>i.e.</i> on the value of option <a href="#opt_005falgo">opt_algo</a>). See <a href="Estimation.html#optim">optim</a>.
</p>
</dd>
<dt><code>maxit = <var>INTEGER</var></code></dt>
<dd><p>Determines the maximum number of iterations used in <code>opt_algo=4</code>. This option is now deprecated and will be
removed in a future release of Dynare. Use <code>optim</code> instead to set optimizer-specific values. Default: <code>1000</code>
</p>
</dd>
<dt><code>tolf = <var>DOUBLE</var></code></dt>
<dd><p>Convergence criterion for termination based on the function value used in <code>opt_algo=4</code>. Iteration will cease when it proves impossible to
improve the function value by more than tolf. This option is now deprecated and will be
removed in a future release of Dynare. Use <code>optim</code> instead to set optimizer-specific values. Default: <code>e-7</code>
</p>
</dd>
<dt><code>silent_optimizer</code></dt>
<dd><p>see <a href="Estimation.html#silent_005foptimizer">silent_optimizer</a>
</p>
</dd>
<dt><code>huge_number = <var>DOUBLE</var></code></dt>
<dd><p>Value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons (see <a href="Estimation.html#huge_005fnumber">huge_number</a>).
Users need to make sure that the optimal parameters are not larger than this value. Default: <code>1e7</code>
</p>
</dd>
</dl>
<p>The value of the objective is stored in the variable
<code>oo_.osr.objective_function</code> and the value of parameters at the
optimum is stored in <code>oo_.osr.optim_params</code>. See below for more
details.
</p>
<p>After running <code>osr</code> the parameters entering the simple rule will be
set to their optimal value so that subsequent runs of <code>stoch_simul</code>
will be conducted at these values.
</p>
</dd></dl>
<a name="osr_005fparams"></a><dl>
<dt><a name="index-osr_005fparams"></a>Command: <strong>osr_params</strong> <em><var>PARAMETER_NAME</var>…;</em></dt>
<dd><p>This command declares parameters to be optimized by <code>osr</code>.
</p></dd></dl>
<a name="optim_005fweights"></a><dl>
<dt><a name="index-optim_005fweights"></a>Block: <strong>optim_weights</strong> <em>;</em></dt>
<dd>
<p>This block specifies quadratic objectives for optimal policy problems
</p>
<p>More precisely, this block specifies the nonzero elements of the weight
matrix <SPAN CLASS="MATH"><IMG
WIDTH="22" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_124.png"
ALT="$W$"></SPAN> used in the quadratic form of the objective function in
<code>osr</code>.
</p>
<p>An element of the diagonal of the weight matrix is given by a line of the
form:
</p><div class="example">
<pre class="example"><var>VARIABLE_NAME</var> <var>EXPRESSION</var>;
</pre></div>
<p>An off-the-diagonal element of the weight matrix is given by a line of
the form:
</p><div class="example">
<pre class="example"><var>VARIABLE_NAME</var>, <var>VARIABLE_NAME</var> <var>EXPRESSION</var>;
</pre></div>
</dd></dl>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">var y inflation r;
varexo y_ inf_;
parameters delta sigma alpha kappa gammarr gammax0 gammac0 gamma_y_ gamma_inf_;
delta = 0.44;
kappa = 0.18;
alpha = 0.48;
sigma = -0.06;
gammarr = 0;
gammax0 = 0.2;
gammac0 = 1.5;
gamma_y_ = 8;
gamma_inf_ = 3;
model(linear);
y = delta * y(-1) + (1-delta)*y(+1)+sigma *(r - inflation(+1)) + y_;
inflation = alpha * inflation(-1) + (1-alpha) * inflation(+1) + kappa*y + inf_;
r = gammax0*y(-1)+gammac0*inflation(-1)+gamma_y_*y_+gamma_inf_*inf_;
end;
shocks;
var y_; stderr 0.63;
var inf_; stderr 0.4;
end;
optim_weights;
inflation 1;
y 1;
y, inflation 0.5;
end;
osr_params gammax0 gammac0 gamma_y_ gamma_inf_;
osr y;
</pre></div>
<a name="osr_005fparams_005fbounds"></a><dl>
<dt><a name="index-osr_005fparams_005fbounds"></a>Block: <strong>osr_params_bounds</strong> <em>;</em></dt>
<dd>
<p>This block declares lower and upper bounds for parameters in the optimal simple rule. If not specified
the optimization is unconstrained.
</p>
<p>Each line has the following syntax:
</p>
<div class="example">
<pre class="example">PARAMETER_NAME, LOWER_BOUND, UPPER_BOUND;
</pre></div>
<p>Note that the use of this block requires the use of a constrained optimizer, <i>i.e.</i> setting <a href="#opt_005falgo">opt_algo</a> to
1,2,5, or 9.
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">
osr_param_bounds;
gamma_inf_, 0, 2.5;
end;
osr(solve_algo=9) y;
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eosr_002eobjective_005ffunction"></a>MATLAB/Octave variable: <strong>oo_.osr.objective_function</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this variable contains the value of
the objective under optimal policy.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eosr_002eoptim_005fparams"></a>MATLAB/Octave variable: <strong>oo_.osr.optim_params</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this variable contains the value of parameters
at the optimum, stored in fields of the form
<code>oo_.osr.optim_params.<var>PARAMETER_NAME</var></code>.
</p></dd></dl>
<dl>
<dt><a name="index-M_005f_002eosr_002eparam_005fnames"></a>MATLAB/Octave variable: <strong>M_.osr.param_names</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this cell contains the names of the parameters
</p></dd></dl>
<dl>
<dt><a name="index-M_005f_002eosr_002eparam_005findices"></a>MATLAB/Octave variable: <strong>M_.osr.param_indices</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this vector contains the indices of the OSR parameters
in <var>M_.params</var>.
</p></dd></dl>
<dl>
<dt><a name="index-M_005f_002eosr_002eparam_005fbounds"></a>MATLAB/Octave variable: <strong>M_.osr.param_bounds</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this two by number of OSR parameters
matrix contains the lower and upper bounds of the parameters in the first and second
column, respectively.
</p></dd></dl>
<dl>
<dt><a name="index-M_005f_002eosr_002evariable_005fweights"></a>MATLAB/Octave variable: <strong>M_.osr.variable_weights</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this sparse matrix
contains the weighting matrix associated with the variables in the
objective function.
</p></dd></dl>
<dl>
<dt><a name="index-M_005f_002eosr_002evariable_005findices"></a>MATLAB/Octave variable: <strong>M_.osr.variable_indices</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this vector contains the
indices of the variables entering the objective function in <code>M_.endo_names</code>.
</p></dd></dl>
<a name="Ramsey"></a>
<dl>
<dt><a name="index-ramsey_005fmodel"></a>Command: <strong>ramsey_model</strong> <em>(<var>OPTIONS</var>…);</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes the First Order Conditions for maximizing the policy maker objective function subject to the
constraints provided by the equilibrium path of the private economy.
</p>
<p>The planner objective must be declared with the <code>planner_objective</code> command.
</p>
<p>This command only creates the expanded model, it doesn’t perform any
computations. It needs to be followed by other instructions to actually
perform desired computations. Note that it is the only way to perform
perfect foresight simulation of the Ramsey policy problem.
</p>
<p>See <a href="Auxiliary-variables.html#Auxiliary-variables">Auxiliary variables</a>, for an explanation of how Lagrange multipliers are
automatically created.
</p>
<p><em>Options</em>
</p>
<p>This command accepts the following options:
</p>
<dl compact="compact">
<dd>
<a name="planner_005fdiscount"></a></dd>
<dt><code>planner_discount = <var>EXPRESSION</var></code></dt>
<dd><p>Declares or reassigns the discount factor of the central planner
<code>optimal_policy_discount_factor</code>. Default: <code>1.0</code>
</p>
</dd>
<dt><code>instruments = (<var>VARIABLE_NAME</var>,…)</code></dt>
<dd><p>Declares instrument variables for the computation of the steady state
under optimal policy. Requires a <code>steady_state_model</code> block or a
<code>…_steadystate.m</code> file. See below.
</p>
</dd>
</dl>
<p><em>Steady state</em>
<a name="Ramsey-steady-state"></a></p>
<p>Dynare takes advantage of the fact that the Lagrange multipliers appear
linearly in the equations of the steady state of the model under optimal
policy. Nevertheless, it is in general very difficult to compute the
steady state with simply a numerical guess in <code>initval</code> for the
endogenous variables.
</p>
<p>It greatly facilitates the computation, if the user provides an
analytical solution for the steady state (in <code>steady_state_model</code>
block or in a <code>…_steadystate.m</code> file). In this case, it is
necessary to provide a steady state solution CONDITIONAL on the value
of the instruments in the optimal policy problem and declared with
option <code>instruments</code>. Note that choosing the instruments is
partly a matter of interpretation and you can choose instruments that
are handy from a mathematical point of view but different from the
instruments you would refer to in the analysis of the paper. A typical
example is choosing inflation or nominal interest rate as an
instrument.
</p>
</dd></dl>
<dl>
<dt><a name="index-ramsey_005fconstraints"></a>Block: <strong>ramsey_constraints</strong></dt>
<dd><a name="ramsey_005fconstraints"></a>
<p><em>Description</em>
</p>
<p>This block lets you define constraints on the variables in the Ramsey
problem. The constraints take the form of a variable, an inequality
operator (<code>></code> or <code><</code>) and a constant.
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">ramsey_constraints;
i > 0;
end;
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-ramsey_005fpolicy"></a>Command: <strong>ramsey_policy</strong> <em>[<var>VARIABLE_NAME</var>…];</em></dt>
<dt><a name="index-ramsey_005fpolicy-1"></a>Command: <strong>ramsey_policy</strong> <em>(<var>OPTIONS</var>…) [<var>VARIABLE_NAME</var>…];</em></dt>
<dd><a name="ramsey_005fpolicy"></a>
<p><em>Description</em>
</p>
<p>This command computes the first order approximation of the policy that
maximizes the policy maker’s objective function subject to the
constraints provided by the equilibrium path of the private economy and under
commitment to this optimal policy. The Ramsey policy is computed
by approximating the equilibrium system around the perturbation point where the
Lagrange multipliers are at their steady state, <i>i.e.</i> where the Ramsey planner acts
as if the initial multipliers had
been set to 0 in the distant past, giving them time to converge to their steady
state value. Consequently, the optimal decision rules are computed around this steady state
of the endogenous variables and the Lagrange multipliers.
</p>
<p>This first order approximation to the optimal policy conducted by Dynare is not to be
confused with a naive linear quadratic approach to optimal policy that can lead to
spurious welfare rankings (see <cite>Kim and Kim (2003)</cite>). In the latter, the optimal policy
would be computed subject to the first order approximated FOCs of the
private economy. In contrast, Dynare first computes the FOCs of the Ramsey planner’s problem
subject to the nonlinear constraints that are the FOCs of the private economy
and only then approximates these FOCs of planner’s problem to first order. Thereby, the second
order terms that are required for a second-order correct welfare evaluation are
preserved.
</p>
<p>Note that the variables in the list after the <code>ramsey_policy</code>-command can also contain multiplier
names. In that case, Dynare will for example display the IRFs of the respective multipliers when <code>irf>0</code>.
</p>
<p>The planner objective must be declared with the <code>planner_objective</code> command.
</p>
<p>See <a href="Auxiliary-variables.html#Auxiliary-variables">Auxiliary variables</a>, for an explanation of how this operator is handled
internally and how this affects the output.
</p>
<p><em>Options</em>
</p>
<p>This command accepts all options of <code>stoch_simul</code>, plus:
</p>
<dl compact="compact">
<dt><code>planner_discount = <var>EXPRESSION</var></code></dt>
<dd><p>See <a href="#planner_005fdiscount">planner_discount</a>.
</p>
</dd>
<dt><code>instruments = (<var>VARIABLE_NAME</var>,…)</code></dt>
<dd><p>Declares instrument variables for the computation of the steady state
under optimal policy. Requires a <code>steady_state_model</code> block or a
<code>…_steadystate.m</code> file. See below.
</p>
</dd>
</dl>
<p>Note that only a first order approximation of the optimal Ramsey policy is
available, leading to a second-order accurate welfare ranking
(<i>i.e.</i> <code>order=1</code> must be specified).
</p>
<p><em>Output</em>
</p>
<p>This command generates all the output variables of <code>stoch_simul</code>. For specifying
the initial values for the endogenous state variables (except for the Lagrange
multipliers), see <a href="Initial-and-terminal-conditions.html#histval">histval</a>.
</p>
<a name="index-oo_005f_002eplanner_005fobjective_005fvalue"></a>
<a name="planner_005fobjective_005fvalue"></a>
<p>In addition, it stores the value of planner objective function under
Ramsey policy in <code>oo_.planner_objective_value</code>, given the initial values
of the endogenous state variables. If not specified with <code>histval</code>, they are
taken to be at their steady state values. The result is a 1 by 2
vector, where the first entry stores the value of the planner objective when the initial Lagrange
multipliers associated with the planner’s problem are set to their steady state
values (see <a href="#ramsey_005fpolicy">ramsey_policy</a>).
</p>
<p>In contrast, the second entry stores the value of the planner objective with
initial Lagrange multipliers of the planner’s problem set to 0, <i>i.e.</i> it is assumed
that the planner exploits its ability to surprise private agents in the first
period of implementing Ramsey policy. This is the value of implementating
optimal policy for the first time and committing not to re-optimize in the future.
</p>
<p>Because it entails computing at least a second order approximation, this
computation is skipped with a message when the model is too large (more than 180 state
variables, including lagged Lagrange multipliers).
<em>Steady state</em>
See <a href="#Ramsey-steady-state">Ramsey steady state</a>.
</p>
</dd></dl>
<a name="discretionary_005fpolicy"></a><dl>
<dt><a name="index-discretionary_005fpolicy"></a>Command: <strong>discretionary_policy</strong> <em>[<var>VARIABLE_NAME</var>…];</em></dt>
<dt><a name="index-discretionary_005fpolicy-1"></a>Command: <strong>discretionary_policy</strong> <em>(<var>OPTIONS</var>…) [<var>VARIABLE_NAME</var>…];</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes an approximation of the optimal policy under
discretion. The algorithm implemented is essentially an LQ solver, and
is described by <cite>Dennis (2007)</cite>.
</p>
<p>You should ensure that your model is linear and your objective is
quadratic. Also, you should set the <code>linear</code> option of the
<code>model</code> block.
</p>
<p><em>Options</em>
</p>
<p>This command accepts the same options than <code>ramsey_policy</code>, plus:
</p>
<dl compact="compact">
<dt><code>discretionary_tol = <var>NON-NEGATIVE DOUBLE</var></code></dt>
<dd><p>Sets the tolerance level used to assess convergence of the solution
algorithm. Default: <code>1e-7</code>.
</p>
</dd>
<dt><code>maxit = <var>INTEGER</var></code></dt>
<dd><p>Maximum number of iterations. Default: <code>3000</code>.
</p>
</dd>
</dl>
</dd></dl>
<a name="planner_005fobjective"></a><dl>
<dt><a name="index-planner_005fobjective"></a>Command: <strong>planner_objective</strong> <em><var>MODEL_EXPRESSION</var>;</em></dt>
<dd>
<p>This command declares the policy maker objective, for use with
<code>ramsey_policy</code> or <code>discretionary_policy</code>.
</p>
<p>You need to give the one-period objective, not the discounted lifetime
objective. The discount factor is given by the <code>planner_discount</code>
option of <code>ramsey_policy</code> and <code>discretionary_policy</code>. The
objective function can only contain current endogenous variables and no
exogenous ones. This limitation is easily circumvented by defining an
appropriate auxiliary variable in the model.
</p>
<p>With <code>ramsey_policy</code>, you are not limited to quadratic
objectives: you can give any arbitrary nonlinear expression.
</p>
<p>With <code>discretionary_policy</code>, the objective function must be quadratic.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Sensitivity-and-identification-analysis.html#Sensitivity-and-identification-analysis" accesskey="n" rel="next">Sensitivity and identification analysis</a>, Previous: <a href="Forecasting.html#Forecasting" accesskey="p" rel="prev">Forecasting</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|