This file is indexed.

/usr/share/doc/dynare/dynare.html/Optimal-policy.html is in dynare-doc 4.5.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996-2017, Dynare Team.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at http://www.gnu.org/licenses/fdl.txt. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Optimal policy (Dynare Reference Manual)</title>

<meta name="description" content="Optimal policy (Dynare Reference Manual)">
<meta name="keywords" content="Optimal policy (Dynare Reference Manual)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2any">
<link href="index.html#Top" rel="start" title="Top">
<link href="Command-and-Function-Index.html#Command-and-Function-Index" rel="index" title="Command and Function Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="The-Model-file.html#The-Model-file" rel="up" title="The Model file">
<link href="Sensitivity-and-identification-analysis.html#Sensitivity-and-identification-analysis" rel="next" title="Sensitivity and identification analysis">
<link href="Forecasting.html#Forecasting" rel="prev" title="Forecasting">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>


</head>

<body lang="en">
<a name="Optimal-policy"></a>
<div class="header">
<p>
Next: <a href="Sensitivity-and-identification-analysis.html#Sensitivity-and-identification-analysis" accesskey="n" rel="next">Sensitivity and identification analysis</a>, Previous: <a href="Forecasting.html#Forecasting" accesskey="p" rel="prev">Forecasting</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Optimal-policy-1"></a>
<h3 class="section">4.19 Optimal policy</h3>

<p>Dynare has tools to compute optimal policies for various types of
objectives. <code>ramsey_model</code> computes automatically the First Order
Conditions (FOC) of a model, given the <code>planner_objective</code>. You can
then use other standard commands to solve, estimate or simulate this
new, expanded model.
</p>
<p>Alternatively, you can either solve for optimal policy under commitment
with <code>ramsey_policy</code>, for optimal policy under discretion with
<code>discretionary_policy</code> or for optimal simple rule with
<code>osr</code> (also implying commitment).
</p>

<a name="osr"></a>
<dl>
<dt><a name="index-osr"></a>Command: <strong>osr</strong> <em>[<var>VARIABLE_NAME</var>&hellip;];</em></dt>
<dt><a name="index-osr-1"></a>Command: <strong>osr</strong> <em>(<var>OPTIONS</var>&hellip;) [<var>VARIABLE_NAME</var>&hellip;];</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes optimal simple policy rules for
linear-quadratic problems of the form:
</p>
<blockquote>
<p><!-- MATH
 $\min_\gamma E(y'_tWy_t)$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="111" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_117.png"
 ALT="$\min_\gamma E(y'_tWy_t)$"></SPAN>
</p></blockquote>

<p>such that:
</p><blockquote>
<p><!-- MATH
 $A_1 E_ty_{t+1}+A_2 y_t+ A_3 y_{t-1}+C e_t=0$
 -->
<SPAN CLASS="MATH"><IMG
 WIDTH="265" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_118.png"
 ALT="$A_1 E_ty_{t+1}+A_2 y_t+ A_3 y_{t-1}+C e_t=0$"></SPAN>
</p></blockquote>

<p>where:
</p>
<ul>
<li> <SPAN CLASS="MATH"><IMG
 WIDTH="17" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="dynare.html_52.png"
 ALT="$E$"></SPAN> denotes the unconditional expectations operator;

</li><li> <SPAN CLASS="MATH"><IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_119.png"
 ALT="$\gamma$"></SPAN> are parameters to be optimized. They must be elements
of the matrices <SPAN CLASS="MATH"><IMG
 WIDTH="24" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_120.png"
 ALT="$A_1$"></SPAN>, <SPAN CLASS="MATH"><IMG
 WIDTH="24" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_121.png"
 ALT="$A_2$"></SPAN>, <SPAN CLASS="MATH"><IMG
 WIDTH="24" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_122.png"
 ALT="$A_3$"></SPAN>, <i>i.e.</i> be specified as
parameters in the <code>params</code>-command and be entered in the
<code>model</code>-block;

</li><li> <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_42.png"
 ALT="$y$"></SPAN> are the endogenous variables, specified in the
<code>var</code>-command, whose (co)-variance enters the loss function;

</li><li> <SPAN CLASS="MATH"><IMG
 WIDTH="12" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
 SRC="dynare.html_123.png"
 ALT="$e$"></SPAN> are the exogenous stochastic shocks, specified in the
<code>varexo</code>-command;

</li><li> <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="dynare.html_124.png"
 ALT="$W$"></SPAN> is the weighting matrix;

</li></ul>

<p>The linear quadratic problem consists of choosing a subset of model
parameters to minimize the weighted (co)-variance of a specified subset
of endogenous variables, subject to a linear law of motion implied by the
first order conditions of the model. A few things are worth mentioning.
First, <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_42.png"
 ALT="$y$"></SPAN> denotes the selected endogenous variables&rsquo; deviations
from their steady state, <i>i.e.</i> in case they are not already mean 0 the
variables entering the loss function are automatically demeaned so that
the centered second moments are minimized. Second, <code>osr</code> only solves
linear quadratic problems of the type resulting from combining the
specified quadratic loss function with a first order approximation to the
model&rsquo;s equilibrium conditions. The reason is that the first order
state-space representation is used to compute the unconditional
(co)-variances. Hence, <code>osr</code> will automatically select
<code>order=1</code>. Third, because the objective involves minimizing a
weighted sum of unconditional second moments, those second moments must
be finite. In particular, unit roots in <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_42.png"
 ALT="$y$"></SPAN> are not allowed.
</p>
<p>The subset of the model parameters over which the optimal simple rule is
to be optimized, <SPAN CLASS="MATH"><IMG
 WIDTH="14" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_119.png"
 ALT="$\gamma$"></SPAN>, must be listed with <code>osr_params</code>.
</p>
<p>The weighting matrix <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="dynare.html_124.png"
 ALT="$W$"></SPAN> used for the quadratic objective function
is specified in the <code>optim_weights</code>-block. By attaching weights to
endogenous variables, the subset of endogenous variables entering the
objective function, <SPAN CLASS="MATH"><IMG
 WIDTH="13" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
 SRC="dynare.html_42.png"
 ALT="$y$"></SPAN>, is implicitly specified.
</p>

<p>The linear quadratic problem is solved using the numerical optimizer specified with <a href="#opt_005falgo">opt_algo</a>.
</p>
<p><em>Options</em>
</p>
<p>The <code>osr</code> command will subsequently run <code>stoch_simul</code> and
accepts the same options, including restricting the endogenous variables
by listing them after the command, as <code>stoch_simul</code>
(see <a href="Stochastic-solution-and-simulation.html#Computing-the-stochastic-solution">Computing the stochastic solution</a>) plus
</p>
<dl compact="compact">
<dt><code>opt_algo = <var>INTEGER</var></code></dt>
<dd><a name="opt_005falgo"></a><p>Specifies the optimizer for minimizing the objective function. The same solvers as for <code>mode_compute</code> (see <a href="Estimation.html#mode_005fcompute">mode_compute</a>) are available, except for 5,6, and 10. 
</p>
</dd>
<dt><code>optim = (<var>NAME</var>, <var>VALUE</var>, ...)</code></dt>
<dd><p>A list of <var>NAME</var> and <var>VALUE</var> pairs. Can be used to set options for the optimization routines. The set of available options depends on the selected optimization routine (<i>i.e.</i> on the value of option <a href="#opt_005falgo">opt_algo</a>). See <a href="Estimation.html#optim">optim</a>.
</p>
</dd>
<dt><code>maxit = <var>INTEGER</var></code></dt>
<dd><p>Determines the maximum number of iterations used in <code>opt_algo=4</code>.  This option is now deprecated and will be 
removed in a future release of Dynare. Use <code>optim</code> instead to set optimizer-specific values. Default: <code>1000</code>
</p>
</dd>
<dt><code>tolf = <var>DOUBLE</var></code></dt>
<dd><p>Convergence criterion for termination based on the function value used in <code>opt_algo=4</code>. Iteration will cease when it proves impossible to
improve the function value by more than tolf.  This option is now deprecated and will be 
removed in a future release of Dynare. Use <code>optim</code> instead to set optimizer-specific values. Default: <code>e-7</code>
</p>
</dd>
<dt><code>silent_optimizer</code></dt>
<dd><p>see <a href="Estimation.html#silent_005foptimizer">silent_optimizer</a>
</p>
</dd>
<dt><code>huge_number = <var>DOUBLE</var></code></dt>
<dd><p>Value for replacing the infinite bounds on parameters by finite numbers. Used by some optimizers for numerical reasons (see <a href="Estimation.html#huge_005fnumber">huge_number</a>).
Users need to make sure that the optimal parameters are not larger than this value. Default: <code>1e7</code>
</p>
</dd>
</dl>

<p>The value of the objective is stored in the variable
<code>oo_.osr.objective_function</code> and the value of parameters at the
optimum is stored in <code>oo_.osr.optim_params</code>. See below for more
details.
</p>
<p>After running <code>osr</code> the parameters entering the simple rule will be
set to their optimal value so that subsequent runs of <code>stoch_simul</code>
will be conducted at these values.
</p>
</dd></dl>

<a name="osr_005fparams"></a><dl>
<dt><a name="index-osr_005fparams"></a>Command: <strong>osr_params</strong> <em><var>PARAMETER_NAME</var>&hellip;;</em></dt>
<dd><p>This command declares parameters to be optimized by <code>osr</code>.
</p></dd></dl>

<a name="optim_005fweights"></a><dl>
<dt><a name="index-optim_005fweights"></a>Block: <strong>optim_weights</strong> <em>;</em></dt>
<dd>
<p>This block specifies quadratic objectives for optimal policy problems
</p>
<p>More precisely, this block specifies the nonzero elements of the weight
matrix <SPAN CLASS="MATH"><IMG
 WIDTH="22" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
 SRC="dynare.html_124.png"
 ALT="$W$"></SPAN> used in the quadratic form of the objective function in
<code>osr</code>.
</p>
<p>An element of the diagonal of the weight matrix is given by a line of the
form:
</p><div class="example">
<pre class="example"><var>VARIABLE_NAME</var> <var>EXPRESSION</var>;
</pre></div>

<p>An off-the-diagonal element of the weight matrix is given by a line of
the form:
</p><div class="example">
<pre class="example"><var>VARIABLE_NAME</var>,  <var>VARIABLE_NAME</var> <var>EXPRESSION</var>;
</pre></div>

</dd></dl>

<p><em>Example</em>
</p>
<div class="example">
<pre class="example">var y inflation r; 
varexo y_ inf_;

parameters delta sigma alpha kappa gammarr gammax0 gammac0 gamma_y_ gamma_inf_;

delta =  0.44;
kappa =  0.18;
alpha =  0.48;
sigma = -0.06;

gammarr = 0;
gammax0 = 0.2;
gammac0 = 1.5;
gamma_y_ = 8;
gamma_inf_ = 3;

model(linear); 
y  = delta * y(-1)  + (1-delta)*y(+1)+sigma *(r - inflation(+1)) + y_;
inflation  =   alpha * inflation(-1) + (1-alpha) * inflation(+1) + kappa*y + inf_;
r = gammax0*y(-1)+gammac0*inflation(-1)+gamma_y_*y_+gamma_inf_*inf_; 
end;

shocks; 
var y_; stderr 0.63; 
var inf_; stderr 0.4; 
end;

optim_weights; 
inflation 1; 
y 1; 
y, inflation 0.5; 
end;

osr_params gammax0 gammac0 gamma_y_ gamma_inf_; 
osr y; 
</pre></div>


<a name="osr_005fparams_005fbounds"></a><dl>
<dt><a name="index-osr_005fparams_005fbounds"></a>Block: <strong>osr_params_bounds</strong> <em>;</em></dt>
<dd>
<p>This block declares lower and upper bounds for parameters in the optimal simple rule. If not specified
the optimization is unconstrained.
</p>
<p>Each line has the following syntax:
</p>
<div class="example">
<pre class="example">PARAMETER_NAME, LOWER_BOUND, UPPER_BOUND;
</pre></div>

<p>Note that the use of this block requires the use of a constrained optimizer, <i>i.e.</i> setting <a href="#opt_005falgo">opt_algo</a> to 
1,2,5, or 9.
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">

osr_param_bounds;
gamma_inf_, 0, 2.5;
end;

osr(solve_algo=9) y; 
</pre></div>

</dd></dl>


<dl>
<dt><a name="index-oo_005f_002eosr_002eobjective_005ffunction"></a>MATLAB/Octave variable: <strong>oo_.osr.objective_function</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this variable contains the value of
the objective under optimal policy.
</p></dd></dl>

<dl>
<dt><a name="index-oo_005f_002eosr_002eoptim_005fparams"></a>MATLAB/Octave variable: <strong>oo_.osr.optim_params</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this variable contains the value of parameters
at the optimum, stored in fields of the form
<code>oo_.osr.optim_params.<var>PARAMETER_NAME</var></code>.
</p></dd></dl>

<dl>
<dt><a name="index-M_005f_002eosr_002eparam_005fnames"></a>MATLAB/Octave variable: <strong>M_.osr.param_names</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this cell contains the names of the parameters
</p></dd></dl>

<dl>
<dt><a name="index-M_005f_002eosr_002eparam_005findices"></a>MATLAB/Octave variable: <strong>M_.osr.param_indices</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this vector contains the indices of the OSR parameters
in <var>M_.params</var>.
</p></dd></dl>

<dl>
<dt><a name="index-M_005f_002eosr_002eparam_005fbounds"></a>MATLAB/Octave variable: <strong>M_.osr.param_bounds</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this two by number of OSR parameters
matrix contains the lower and upper bounds of the parameters in the first and second
column, respectively.
</p></dd></dl>

<dl>
<dt><a name="index-M_005f_002eosr_002evariable_005fweights"></a>MATLAB/Octave variable: <strong>M_.osr.variable_weights</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this sparse matrix
contains the weighting matrix associated with the variables in the
objective function.
</p></dd></dl>

<dl>
<dt><a name="index-M_005f_002eosr_002evariable_005findices"></a>MATLAB/Octave variable: <strong>M_.osr.variable_indices</strong></dt>
<dd><p>After an execution of the <code>osr</code> command, this vector contains the 
indices of the variables entering the objective function in <code>M_.endo_names</code>.
</p></dd></dl>

<a name="Ramsey"></a>
<dl>
<dt><a name="index-ramsey_005fmodel"></a>Command: <strong>ramsey_model</strong> <em>(<var>OPTIONS</var>&hellip;);</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes the First Order Conditions for maximizing the policy maker objective function subject to the
constraints provided by the equilibrium path of the private economy.
</p>
<p>The planner objective must be declared with the <code>planner_objective</code> command.
</p>
<p>This command only creates the expanded model, it doesn&rsquo;t perform any
computations. It needs to be followed by other instructions to actually
perform desired computations. Note that it is the only way to perform
perfect foresight simulation of the Ramsey policy problem.
</p>
<p>See <a href="Auxiliary-variables.html#Auxiliary-variables">Auxiliary variables</a>, for an explanation of how Lagrange multipliers are
automatically created.
</p>
<p><em>Options</em>
</p>
<p>This command accepts the following options:
</p>
<dl compact="compact">
<dd>
<a name="planner_005fdiscount"></a></dd>
<dt><code>planner_discount = <var>EXPRESSION</var></code></dt>
<dd><p>Declares or reassigns the discount factor of the central planner
<code>optimal_policy_discount_factor</code>. Default: <code>1.0</code>
</p>
</dd>
<dt><code>instruments = (<var>VARIABLE_NAME</var>,&hellip;)</code></dt>
<dd><p>Declares instrument variables for the computation of the steady state
under optimal policy. Requires a <code>steady_state_model</code> block or a
<code>&hellip;_steadystate.m</code> file. See below.
</p>
</dd>
</dl>

<p><em>Steady state</em>
<a name="Ramsey-steady-state"></a></p>
<p>Dynare takes advantage of the fact that the Lagrange multipliers appear
linearly in the equations of the steady state of the model under optimal
policy. Nevertheless, it is in general very difficult to compute the
steady state with simply a numerical guess in <code>initval</code> for the
endogenous variables.
</p>
<p>It greatly facilitates the computation, if the user provides an
analytical solution for the steady state (in <code>steady_state_model</code>
block or in a <code>&hellip;_steadystate.m</code> file). In this case, it is
necessary to provide a steady state solution CONDITIONAL on the value
of the instruments in the optimal policy problem and declared with
option <code>instruments</code>. Note that choosing the instruments is
partly a matter of interpretation and you can choose instruments that
are handy from a mathematical point of view but different from the
instruments you would refer to in the analysis of the paper. A typical
example is choosing inflation or nominal interest rate as an
instrument.
</p>

</dd></dl>

<dl>
<dt><a name="index-ramsey_005fconstraints"></a>Block: <strong>ramsey_constraints</strong></dt>
<dd><a name="ramsey_005fconstraints"></a>
<p><em>Description</em>
</p>
<p>This block lets you define constraints on the variables in the Ramsey
problem. The constraints take the form of a variable, an inequality
operator (<code>&gt;</code> or <code>&lt;</code>) and a constant.
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">ramsey_constraints;
i &gt; 0;
end;
</pre></div>
</dd></dl>
 
<dl>
<dt><a name="index-ramsey_005fpolicy"></a>Command: <strong>ramsey_policy</strong> <em>[<var>VARIABLE_NAME</var>&hellip;];</em></dt>
<dt><a name="index-ramsey_005fpolicy-1"></a>Command: <strong>ramsey_policy</strong> <em>(<var>OPTIONS</var>&hellip;) [<var>VARIABLE_NAME</var>&hellip;];</em></dt>
<dd><a name="ramsey_005fpolicy"></a>
<p><em>Description</em>
</p>
<p>This command computes the first order approximation of the policy that
maximizes the policy maker&rsquo;s objective function subject to the
constraints provided by the equilibrium path of the private economy and under 
commitment to this optimal policy. The Ramsey policy is computed
by approximating the equilibrium system around the perturbation point where the 
Lagrange multipliers are at their steady state, <i>i.e.</i> where the Ramsey planner acts 
as if the initial multipliers had 
been set to 0 in the distant past, giving them time to converge to their steady 
state value. Consequently, the optimal decision rules are computed around this steady state 
of the endogenous variables and the Lagrange multipliers.
</p>
<p>This first order approximation to the optimal policy conducted by Dynare is not to be 
confused with a naive linear quadratic approach to optimal policy that can lead to 
spurious welfare rankings (see <cite>Kim and Kim (2003)</cite>). In the latter, the optimal policy 
would be computed subject to the first order approximated FOCs of the 
private economy. In contrast, Dynare first computes the FOCs of the Ramsey planner&rsquo;s problem
subject to the nonlinear constraints that are the FOCs of the private economy 
and only then approximates these FOCs of planner&rsquo;s problem to first order. Thereby, the second
order terms that are required for a second-order correct welfare evaluation are 
preserved.
</p>
<p>Note that the variables in the list after the <code>ramsey_policy</code>-command can also contain multiplier 
names. In that case, Dynare will for example display the IRFs of the respective multipliers when <code>irf&gt;0</code>.
</p>
<p>The planner objective must be declared with the <code>planner_objective</code> command.
</p>
<p>See <a href="Auxiliary-variables.html#Auxiliary-variables">Auxiliary variables</a>, for an explanation of how this operator is handled
internally and how this affects the output.
</p>
<p><em>Options</em>
</p>
<p>This command accepts all options of <code>stoch_simul</code>, plus:
</p>
<dl compact="compact">
<dt><code>planner_discount = <var>EXPRESSION</var></code></dt>
<dd><p>See <a href="#planner_005fdiscount">planner_discount</a>.
</p>
</dd>
<dt><code>instruments = (<var>VARIABLE_NAME</var>,&hellip;)</code></dt>
<dd><p>Declares instrument variables for the computation of the steady state
under optimal policy. Requires a <code>steady_state_model</code> block or a
<code>&hellip;_steadystate.m</code> file. See below.
</p>
</dd>
</dl>

<p>Note that only a first order approximation of the optimal Ramsey policy is 
available, leading to a second-order accurate welfare ranking 
(<i>i.e.</i> <code>order=1</code> must be specified).
</p>
<p><em>Output</em>
</p>
<p>This command generates all the output variables of <code>stoch_simul</code>. For specifying
the initial values for the endogenous state variables (except for the Lagrange
multipliers), see <a href="Initial-and-terminal-conditions.html#histval">histval</a>.
</p>
<a name="index-oo_005f_002eplanner_005fobjective_005fvalue"></a>
<a name="planner_005fobjective_005fvalue"></a>
<p>In addition, it stores the value of planner objective function under
Ramsey policy in <code>oo_.planner_objective_value</code>, given the initial values 
of the endogenous state variables. If not specified with <code>histval</code>, they are 
taken to be at their steady state values. The result is a 1 by 2 
vector, where the first entry stores the value of the planner objective when the initial Lagrange
multipliers associated with the planner&rsquo;s problem are set to their steady state
values (see <a href="#ramsey_005fpolicy">ramsey_policy</a>).
</p>
<p>In contrast, the second entry stores the value of the planner objective with 
initial Lagrange multipliers of the planner&rsquo;s problem set to 0, <i>i.e.</i> it is assumed 
that the planner exploits its ability to surprise private agents in the first
period of implementing Ramsey policy. This is the value of implementating
optimal policy for the first time and committing not to re-optimize in the future.
</p>
<p>Because it entails computing at least a second order approximation, this
computation is skipped with a message when the model is too large (more than 180 state
variables, including lagged Lagrange multipliers).
<em>Steady state</em>
See <a href="#Ramsey-steady-state">Ramsey steady state</a>.
</p>

</dd></dl>

<a name="discretionary_005fpolicy"></a><dl>
<dt><a name="index-discretionary_005fpolicy"></a>Command: <strong>discretionary_policy</strong> <em>[<var>VARIABLE_NAME</var>&hellip;];</em></dt>
<dt><a name="index-discretionary_005fpolicy-1"></a>Command: <strong>discretionary_policy</strong> <em>(<var>OPTIONS</var>&hellip;) [<var>VARIABLE_NAME</var>&hellip;];</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command computes an approximation of the optimal policy under
discretion. The algorithm implemented is essentially an LQ solver, and
is described by <cite>Dennis (2007)</cite>.
</p>
<p>You should ensure that your model is linear and your objective is
quadratic. Also, you should set the <code>linear</code> option of the
<code>model</code> block.
</p>
<p><em>Options</em>
</p>
<p>This command accepts the same options than <code>ramsey_policy</code>, plus:
</p>
<dl compact="compact">
<dt><code>discretionary_tol = <var>NON-NEGATIVE DOUBLE</var></code></dt>
<dd><p>Sets the tolerance level used to assess convergence of the solution
algorithm. Default: <code>1e-7</code>.
</p>
</dd>
<dt><code>maxit = <var>INTEGER</var></code></dt>
<dd><p>Maximum number of iterations. Default: <code>3000</code>.
</p>
</dd>
</dl>

</dd></dl>


<a name="planner_005fobjective"></a><dl>
<dt><a name="index-planner_005fobjective"></a>Command: <strong>planner_objective</strong> <em><var>MODEL_EXPRESSION</var>;</em></dt>
<dd>
<p>This command declares the policy maker objective, for use with
<code>ramsey_policy</code> or <code>discretionary_policy</code>.
</p>
<p>You need to give the one-period objective, not the discounted lifetime
objective. The discount factor is given by the <code>planner_discount</code>
option of <code>ramsey_policy</code> and <code>discretionary_policy</code>. The
objective function can only contain current endogenous variables and no
exogenous ones. This limitation is easily circumvented by defining an
appropriate auxiliary variable in the model.
</p>
<p>With <code>ramsey_policy</code>, you are not limited to quadratic
objectives: you can give any arbitrary nonlinear expression.
</p>
<p>With <code>discretionary_policy</code>, the objective function must be quadratic.
</p></dd></dl>

<hr>
<div class="header">
<p>
Next: <a href="Sensitivity-and-identification-analysis.html#Sensitivity-and-identification-analysis" accesskey="n" rel="next">Sensitivity and identification analysis</a>, Previous: <a href="Forecasting.html#Forecasting" accesskey="p" rel="prev">Forecasting</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>