/usr/share/doc/dynare/dynare.html/Estimation.html is in dynare-doc 4.5.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Copyright (C) 1996-2017, Dynare Team.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license can be found at http://www.gnu.org/licenses/fdl.txt. -->
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Estimation (Dynare Reference Manual)</title>
<meta name="description" content="Estimation (Dynare Reference Manual)">
<meta name="keywords" content="Estimation (Dynare Reference Manual)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="texi2any">
<link href="index.html#Top" rel="start" title="Top">
<link href="Command-and-Function-Index.html#Command-and-Function-Index" rel="index" title="Command and Function Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="The-Model-file.html#The-Model-file" rel="up" title="The Model file">
<link href="Model-Comparison.html#Model-Comparison" rel="next" title="Model Comparison">
<link href="Stochastic-solution-and-simulation.html#Third-order-approximation" rel="prev" title="Third order approximation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
</head>
<body lang="en">
<a name="Estimation"></a>
<div class="header">
<p>
Next: <a href="Model-Comparison.html#Model-Comparison" accesskey="n" rel="next">Model Comparison</a>, Previous: <a href="Stochastic-solution-and-simulation.html#Stochastic-solution-and-simulation" accesskey="p" rel="prev">Stochastic solution and simulation</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
<a name="Estimation-1"></a>
<h3 class="section">4.14 Estimation</h3>
<p>Provided that you have observations on some endogenous variables, it
is possible to use Dynare to estimate some or all parameters. Both
maximum likelihood (as in <cite>Ireland (2004)</cite>) and Bayesian
techniques (as in <cite>Rabanal and Rubio-Ramirez (2003)</cite>,
<cite>Schorfheide (2000)</cite> or <cite>Smets and Wouters (2003)</cite>) are
available. Using Bayesian methods, it is possible to estimate DSGE
models, VAR models, or a combination of the two techniques called
DSGE-VAR.
</p>
<p>Note that in order to avoid stochastic singularity, you must have at
least as many shocks or measurement errors in your model as you have
observed variables.
</p>
<p>The estimation using a first order approximation can benefit from the block
decomposition of the model (see <a href="Model-declaration.html#block">block</a>).
</p>
<dl>
<dt><a name="index-varobs"></a>Command: <strong>varobs</strong> <em><var>VARIABLE_NAME</var>…;</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command lists the name of observed endogenous variables for the
estimation procedure. These variables must be available in the data
file (see <a href="#estimation_005fcmd">estimation_cmd</a>).
</p>
<p>Alternatively, this command is also used in conjunction with the
<code>partial_information</code> option of <code>stoch_simul</code>, for declaring
the set of observed variables when solving the model under partial
information.
</p>
<p>Only one instance of <code>varobs</code> is allowed in a model file. If one
needs to declare observed variables in a loop, the macro-processor can
be used as shown in the second example below.
</p>
<p><em>Simple example</em>
</p>
<div class="example">
<pre class="example">varobs C y rr;
</pre></div>
<p><em>Example with a loop</em>
</p>
<div class="example">
<pre class="example">varobs
@#for co in countries
GDP_@{co}
@#endfor
;
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-observation_005ftrends"></a>Block: <strong>observation_trends</strong> <em>;</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This block specifies <em>linear</em> trends for observed variables as
functions of model parameters. In case the <code>loglinear</code>-option is used,
this corresponds to a linear trend in the logged observables, <i>i.e.</i> an exponential
trend in the level of the observables.
</p>
<p>Each line inside of the block should be of the form:
</p>
<div class="example">
<pre class="example"><var>VARIABLE_NAME</var>(<var>EXPRESSION</var>);
</pre></div>
<p>In most cases, variables shouldn’t be centered when
<code>observation_trends</code> is used.
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">observation_trends;
Y (eta);
P (mu/eta);
end;
</pre></div>
</dd></dl>
<a name="estimated_005fparams"></a><dl>
<dt><a name="index-estimated_005fparams"></a>Block: <strong>estimated_params</strong> <em>;</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This block lists all parameters to be estimated and specifies bounds
and priors as necessary.
</p>
<p>Each line corresponds to an estimated parameter.
</p>
<p>In a maximum likelihood estimation, each line follows this syntax:
</p>
<div class="example">
<pre class="example">stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
, INITIAL_VALUE [, LOWER_BOUND, UPPER_BOUND ];
</pre></div>
<p>In a Bayesian estimation, each line follows this syntax:
</p>
<div class="example">
<pre class="example">stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 |
PARAMETER_NAME | DSGE_PRIOR_WEIGHT
[, INITIAL_VALUE [, LOWER_BOUND, UPPER_BOUND]], PRIOR_SHAPE,
PRIOR_MEAN, PRIOR_STANDARD_ERROR [, PRIOR_3RD_PARAMETER [,
PRIOR_4TH_PARAMETER [, SCALE_PARAMETER ] ] ];
</pre></div>
<p>The first part of the line consists of one of the three following
alternatives:
</p>
<dl compact="compact">
<dt><code>stderr <var>VARIABLE_NAME</var></code></dt>
<dd><p>Indicates that the standard error of the exogenous variable
<var>VARIABLE_NAME</var>, or of the observation error/measurement errors associated with
endogenous observed variable <var>VARIABLE_NAME</var>, is to be estimated
</p>
</dd>
<dt><code>corr <var>VARIABLE_NAME1</var>, <var>VARIABLE_NAME2</var></code></dt>
<dd><p>Indicates that the correlation between the exogenous variables
<var>VARIABLE_NAME1</var> and <var>VARIABLE_NAME2</var>, or the correlation of
the observation errors/measurement errors associated with endogenous observed variables
<var>VARIABLE_NAME1</var> and <var>VARIABLE_NAME2</var>, is to be estimated. Note that correlations set by previous <code>shocks</code>-blocks or <code>estimation</code>-commands are kept at their value set prior to estimation if they are not estimated again subsequently. Thus, the treatment is the same as in the case of deep parameters set during model calibration and not estimated.
</p>
</dd>
<dt><code><var>PARAMETER_NAME</var></code></dt>
<dd><p>The name of a model parameter to be estimated
</p>
</dd>
<dt><code>DSGE_PRIOR_WEIGHT</code></dt>
<dd><p>…
</p>
</dd>
</dl>
<p>The rest of the line consists of the following fields, some of them
being optional:
</p>
<dl compact="compact">
<dt><code><var>INITIAL_VALUE</var></code></dt>
<dd><p>Specifies a starting value for the posterior mode optimizer or the
maximum likelihood estimation. If unset, defaults to the prior mean.
</p>
</dd>
<dt><code><var>LOWER_BOUND</var></code></dt>
<dd><a name="lower_005fbound"></a><p>Specifies a lower bound for the parameter value in maximum
likelihood estimation. In a Bayesian estimation context, sets a lower bound
only effective while maximizing the posterior kernel. This lower bound does not
modify the shape of the prior density, and is only aimed at helping the
optimizer in identifying the posterior mode (no consequences for the MCMC). For
some prior densities (namely inverse gamma, gamma, uniform, beta or Weibull) it is
possible to shift the support of the prior distributions to the left or the right using
<a href="#prior_005f3rd_005fparameter">prior_3rd_parameter</a>. In this case the prior density is effectively
modified (note that the truncated Gaussian density is not implemented in
Dynare). If unset, defaults to minus infinity (ML) or the natural lower bound
of the prior (Bayesian estimation).
</p>
</dd>
<dt><code><var>UPPER_BOUND</var></code></dt>
<dd><p>Same as <a href="#lower_005fbound">lower_bound</a>, but specifying an upper bound instead.
</p>
</dd>
<dt><code><var>PRIOR_SHAPE</var></code></dt>
<dd><p>A keyword specifying the shape of the prior density.
The possible values are: <code>beta_pdf</code>,
<code>gamma_pdf</code>, <code>normal_pdf</code>,
<code>uniform_pdf</code>, <code>inv_gamma_pdf</code>,
<code>inv_gamma1_pdf</code>, <code>inv_gamma2_pdf</code> and <code>weibull_pdf</code>. Note
that <code>inv_gamma_pdf</code> is equivalent to
<code>inv_gamma1_pdf</code>
</p>
</dd>
<dt><code><var>PRIOR_MEAN</var></code></dt>
<dd><a name="prior_005fmean"></a><p>The mean of the prior distribution
</p>
</dd>
<dt><code><var>PRIOR_STANDARD_ERROR</var></code></dt>
<dd><a name="prior_005fstandard_005ferror"></a><p>The standard error of the prior distribution
</p>
</dd>
<dt><code><var>PRIOR_3RD_PARAMETER</var></code></dt>
<dd><a name="prior_005f3rd_005fparameter"></a><p>A third parameter of the prior used for generalized beta distribution,
generalized gamma, generalized Weibull and for the uniform distribution. Default: <code>0</code>
</p>
</dd>
<dt><code><var>PRIOR_4TH_PARAMETER</var></code></dt>
<dd><a name="prior_005f4th_005fparameter"></a><p>A fourth parameter of the prior used for generalized beta distribution
and for the uniform distribution. Default: <code>1</code>
</p>
</dd>
<dt><code><var>SCALE_PARAMETER</var></code></dt>
<dd><p>A parameter specific scale parameter for the jumping distribution’s covariance matrix of the
Metropolis-Hasting algorithm
</p></dd>
</dl>
<p>Note that <var>INITIAL_VALUE</var>, <var>LOWER_BOUND</var>, <var>UPPER_BOUND</var>,
<var>PRIOR_MEAN</var>, <var>PRIOR_STANDARD_ERROR</var>,
<var>PRIOR_3RD_PARAMETER</var>, <var>PRIOR_4TH_PARAMETER</var> and
<var>SCALE_PARAMETER</var> can be any valid <var>EXPRESSION</var>. Some of them
can be empty, in which Dynare will select a default value depending on
the context and the prior shape.
</p>
<p>As one uses options more towards the end of the list, all previous
options must be filled: for example, if you want to specify
<var>SCALE_PARAMETER</var>, you must specify <var>PRIOR_3RD_PARAMETER</var> and
<var>PRIOR_4TH_PARAMETER</var>. Use empty values, if these parameters don’t
apply.
</p>
<p><em>Example</em>
</p>
<p>The following line:
</p><div class="example">
<pre class="example">corr eps_1, eps_2, 0.5, , , beta_pdf, 0, 0.3, -1, 1;
</pre></div>
<p>sets a generalized beta prior for the correlation between <code>eps_1</code> and
<code>eps_2</code> with mean 0 and variance 0.3. By setting
<var>PRIOR_3RD_PARAMETER</var> to -1 and <var>PRIOR_4TH_PARAMETER</var> to 1 the
standard beta distribution with support [0,1] is changed to a
generalized beta with support [-1,1]. Note that <var>LOWER_BOUND</var> and
<var>UPPER_BOUND</var> are left empty and thus default to -1 and 1,
respectively. The initial value is set to 0.5.
</p>
<p>Similarly, the following line:
</p><div class="example">
<pre class="example">corr eps_1, eps_2, 0.5, -0.5, 1, beta_pdf, 0, 0.3, -1, 1;
</pre></div>
<p>sets the same generalized beta distribution as before, but now truncates
this distribution to [-0.5,1] through the use of <var>LOWER_BOUND</var> and
<var>UPPER_BOUND</var>. Hence, the prior does not integrate to 1 anymore.
</p>
<p><em>Parameter transformation</em>
</p>
<p>Sometimes, it is desirable to estimate a transformation of a parameter
appearing in the model, rather than the parameter itself. It is of
course possible to replace the original parameter by a function of the
estimated parameter everywhere is the model, but it is often
unpractical.
</p>
<p>In such a case, it is possible to declare the parameter to be estimated
in the <code>parameters</code> statement and to define the transformation,
using a pound sign (#) expression (see <a href="Model-declaration.html#Model-declaration">Model declaration</a>).
</p>
<p><em>Example</em>
</p>
<div class="example">
<pre class="example">parameters bet;
model;
# sig = 1/bet;
c = sig*c(+1)*mpk;
end;
estimated_params;
bet, normal_pdf, 1, 0.05;
end;
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-estimated_005fparams_005finit"></a>Block: <strong>estimated_params_init</strong> <em>;</em></dt>
<dt><a name="index-estimated_005fparams_005finit-1"></a>Block: <strong>estimated_params_init</strong> <em>(<var>OPTIONS</var>…);</em></dt>
<dd>
<p>This block declares numerical initial values for the optimizer when
these ones are different from the prior mean. It should be specified after the <code>estimated_params</code>-block as otherwise the specified starting values are overwritten by the latter.
</p>
<p>Each line has the following syntax:
</p>
<div class="example">
<pre class="example">stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
, INITIAL_VALUE;
</pre></div>
<p><em>Options</em>
</p>
<dl compact="compact">
<dt><code>use_calibration</code></dt>
<dd><p>For not specifically initialized parameters, use the deep parameters and the elements of the covariance matrix specified in the <code>shocks</code> block from calibration as starting values for estimation. For components of the <code>shocks</code> block that were not explicitly specified during calibration or which violate the prior, the prior mean is used.
</p></dd>
</dl>
<p>See <a href="#estimated_005fparams">estimated_params</a>, for the meaning and syntax of the various components.
</p>
</dd></dl>
<dl>
<dt><a name="index-estimated_005fparams_005fbounds"></a>Block: <strong>estimated_params_bounds</strong> <em>;</em></dt>
<dd>
<p>This block declares lower and upper bounds for parameters in maximum
likelihood estimation.
</p>
<p>Each line has the following syntax:
</p>
<div class="example">
<pre class="example">stderr VARIABLE_NAME | corr VARIABLE_NAME_1, VARIABLE_NAME_2 | PARAMETER_NAME
, LOWER_BOUND, UPPER_BOUND;
</pre></div>
<p>See <a href="#estimated_005fparams">estimated_params</a>, for the meaning and syntax of the various components.
</p>
</dd></dl>
<a name="estimation_005fcmd"></a><dl>
<dt><a name="index-estimation"></a>Command: <strong>estimation</strong> <em>[<var>VARIABLE_NAME</var>…];</em></dt>
<dt><a name="index-estimation-1"></a>Command: <strong>estimation</strong> <em>(<var>OPTIONS</var>…) [<var>VARIABLE_NAME</var>…];</em></dt>
<dd>
<p><em>Description</em>
</p>
<p>This command runs Bayesian or maximum likelihood estimation.
</p>
<p>The following information will be displayed by the command:
</p><ul>
<li> results from posterior optimization (also for maximum likelihood)
</li><li> marginal log data density
</li><li> posterior mean and highest posterior density interval (shortest credible set) from posterior simulation
</li><li> convergence diagnostic table when only one MCM chain is used or Metropolis-Hastings convergence graphs documented in <cite>Pfeifer (2014)</cite>
in case of multiple MCM chains
</li><li> table with numerical inefficiency factors of the MCMC
</li><li> graphs with prior, posterior, and mode
</li><li> graphs of smoothed shocks, smoothed observation errors, smoothed and historical variables
</li></ul>
<p>Note that the posterior moments, smoothed variables, k-step ahead
filtered variables and forecasts (when requested) will only be
computed on the variables listed after the <code>estimation</code> command.
Alternatively, one can choose to compute these quantities on all
endogenous or on all observed variables (see
<code>consider_all_endogenous</code> and <code>consider_only_observed</code>
options below). If no variable is listed after the <code>estimation</code>
command, then Dynare will interactively ask which variable set to use.
</p>
<p>Also, during the MCMC (Bayesian estimation with <code>mh_replic</code>>0) a
(graphical or text) waiting bar is displayed showing the progress of the
Monte-Carlo and the <i>current</i> value of the acceptance ratio. Note that
if the <code>load_mh_file</code> option is used (see below) the reported
acceptance ratio does not take into account the draws from the previous
MCMC. In the literature there is a general agreement for saying that the
acceptance ratio should be close to one third or one quarter. If this
not the case, you can stop the MCMC (<code>Ctrl-C</code>) and change the value
of option <code>mh_jscale</code> (see below).
</p>
<p>Note that by default Dynare generates random numbers using the algorithm
<code>mt199937ar</code> (<i>ie</i> Mersenne Twister method) with a seed set equal
to <code>0</code>. Consequently the MCMCs in Dynare are deterministic: one
will get exactly the same results across different Dynare runs
(<i>ceteris paribus</i>). For instance, the posterior moments or posterior
densities will be exactly the same. This behaviour allows to easily
identify the consequences of a change on the model, the priors or the
estimation options. But one may also want to check that across multiple
runs, with different sequences of proposals, the returned results are
almost identical. This should be true if the number of iterations
(<i>ie</i> the value of <code>mh_replic</code>) is important enough to ensure the
convergence of the MCMC to its ergodic distribution. In this case the
default behaviour of the random number generators in not wanted, and the
user should set the seed according to the system clock before the
estimation command using the following command:
</p>
<div class="example">
<pre class="example">set_dynare_seed('clock');
</pre></div>
<p>so that the sequence of proposals will be different across different runs.
</p>
<p><em>Algorithms</em>
</p>
<p>The Monte Carlo Markov Chain (MCMC) diagnostics are generated by the
estimation command if <a href="#mh_005freplic">mh_replic</a> is larger than 2000 and if option
<a href="#nodiagnostic">nodiagnostic</a> is not used. If <a href="#mh_005fnblocks">mh_nblocks</a> is equal to one, the
convergence diagnostics of <cite>Geweke (1992,1999)</cite> is computed. It
uses a chi square test to compare the means of the first and last draws
specified by <a href="#geweke_005finterval">geweke_interval</a> after discarding the burnin of
<a href="#mh_005fdrop">mh_drop</a>. The test is computed using variance estimates under the
assumption of no serial correlation as well as using tapering windows
specified in <a href="#taper_005fsteps">taper_steps</a>. If <a href="#mh_005fnblocks">mh_nblocks</a> is larger than 1,
the convergence diagnostics of <cite>Brooks and Gelman (1998)</cite> are used
instead. As described in section 3 of <cite>Brooks and Gelman (1998)</cite>
the univariate convergence diagnostics are based on comparing pooled and
within MCMC moments (Dynare displays the second and third order moments,
and the length of the Highest Probability Density interval covering 80%
of the posterior distribution). Due to computational reasons, the
multivariate convergence diagnostic does not follow <cite>Brooks and
Gelman (1998)</cite> strictly, but rather applies their idea for univariate
convergence diagnostics to the range of the posterior likelihood
function instead of the individual parameters. The posterior kernel is
used to aggregate the parameters into a scalar statistic whose
convergence is then checked using the <cite>Brooks and Gelman (1998)</cite>
univariate convergence diagnostic.
</p>
<p>The inefficiency factors are computed as in <cite>Giordano et al. (2011)</cite> based on
Parzen windows as in <i>e.g.</i> <cite>Andrews (1991)</cite>.
</p>
<p><em>Options</em>
</p>
<dl compact="compact">
<dt><code>datafile = <var>FILENAME</var></code></dt>
<dd><a name="datafile"></a><p>The datafile: a <samp>.m</samp> file, a <samp>.mat</samp> file, a
<samp>.csv</samp> file, or a <samp>.xls</samp>/<samp>.xlsx</samp> file (under Octave, the
<a href="http://octave.sourceforge.net/io/">io</a> package from Octave-Forge is
required for the <samp>.csv</samp> and <samp>.xlsx</samp> formats and the <samp>.xls</samp> file
extension is not supported). Note that the base name (<i>i.e.</i> without
extension) of the datafile has to be different from the base name of the model
file.
If there are several files named <code>FILENAME</code>, but with different file endings,
the file name must be included in quoted strings and provide the file ending like
</p><div class="example">
<pre class="example"><code>estimation(datafile='../fsdat_simul.mat',...)</code>
</pre></div>
</dd>
<dt><code>dirname = <var>FILENAME</var></code></dt>
<dd><p>Directory in which to store <code>estimation</code> output. To pass a
subdirectory of a directory, you must quote the argument. Default:
<code><mod_file></code>
</p>
</dd>
<dt><code>xls_sheet = <var>NAME</var></code></dt>
<dd><a name="xls_005fsheet"></a><p>The name of the sheet with the data in an Excel file
</p>
</dd>
<dt><code>xls_range = <var>RANGE</var></code></dt>
<dd><a name="xls_005frange"></a><p>The range with the data in an Excel file. For example, <code>xls_range=B2:D200</code>
</p>
</dd>
<dt><code>nobs = <var>INTEGER</var></code></dt>
<dd><a name="nobs"></a><p>The number of observations following <a href="#first_005fobs">first_obs</a> to be used. Default: all observations in
the file after <code>first_obs</code>
</p>
</dd>
<dt><code>nobs = [<var>INTEGER1</var>:<var>INTEGER2</var>]</code></dt>
<dd><a name="nobs1"></a><p>Runs a recursive estimation and forecast for samples of size ranging
of <var>INTEGER1</var> to <var>INTEGER2</var>. Option <code>forecast</code> must
also be specified. The forecasts are stored in the
<code>RecursiveForecast</code> field of the results structure (see <a href="#RecursiveForecast">RecursiveForecast</a>).
The respective results structures <code>oo_</code> are saved in <code>oo_recursive_</code> (see <a href="Dynare-invocation.html#oo_005frecursive_005f">oo_recursive_</a>)
and are indexed with the respective sample length.
</p>
</dd>
<dt><code>first_obs = <var>INTEGER</var></code></dt>
<dd><a name="first_005fobs"></a><p>The number of the first observation to be used. In case of estimating a DSGE-VAR,
<code>first_obs</code> needs to be larger than the number of lags. Default: <code>1</code>
</p>
</dd>
<dt><code>first_obs = [<var>INTEGER1</var>:<var>INTEGER2</var>]</code></dt>
<dd><a name="first_005fobs1"></a><p>Runs a rolling window estimation and forecast for samples of fixed size <code>nobs</code> starting with the
first observation ranging from <var>INTEGER1</var> to <var>INTEGER2</var>. Option <code>forecast</code>
must also be specified. This option is incompatible with requesting recursive forecasts using an
expanding window (see <a href="#nobs1">nobs</a>). The respective results structures <code>oo_</code>
are saved in <code>oo_recursive_</code> (see <a href="Dynare-invocation.html#oo_005frecursive_005f">oo_recursive_</a>) and are indexed with the respective
first observation of the rolling window.
</p>
</dd>
<dt><code>prefilter = <var>INTEGER</var></code></dt>
<dd><a name="prefilter"></a><p>A value of <code>1</code> means that the estimation procedure will
demean each data series by its empirical mean. If the <a href="#loglinear">loglinear</a> option
without the <a href="#logdata">logdata</a> option is requested, the data will first be logged
and then demeaned. Default: <code>0</code>, <i>i.e.</i> no prefiltering
</p>
</dd>
<dt><code>presample = <var>INTEGER</var></code></dt>
<dd><a name="presample"></a><p>The number of observations after <a href="#first_005fobs">first_obs</a> to be skipped before evaluating the
likelihood. These presample observations do not enter the likelihood, but are used as a
training sample for starting the Kalman filter iterations. This option is incompatible with
estimating a DSGE-VAR. Default: <code>0</code>
</p>
</dd>
<dt><code>loglinear</code></dt>
<dd><a name="loglinear"></a><p>Computes a log-linear approximation of the model instead of a linear
approximation. As always in the context of estimation, the data must correspond to the definition of the
variables used in the model (see <cite>Pfeifer (2013)</cite> for more details on how to correctly specify observation equations linking model variables and the data). If you specify the loglinear option, Dynare will take the logarithm of both your model variables and of your data as it assumes the data to correspond to the original non-logged model variables. The displayed posterior results like impulse responses, smoothed variables, and moments will be for the logged variables, not the original un-logged ones. Default: computes a linear approximation
</p>
</dd>
<dt><code>logdata</code></dt>
<dd><a name="logdata"></a><p>Dynare applies the <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_72.png"
ALT="$log$"></SPAN> transformation to the provided data if a log-linearization of the model is requested (<a href="#loglinear">loglinear</a>) unless <code>logdata</code> option is used. This option is necessary if the user provides data already in logs, otherwise the <SPAN CLASS="MATH"><IMG
WIDTH="25" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_72.png"
ALT="$log$"></SPAN> transformation will be applied twice (this may result in complex data).
</p>
</dd>
<dt><code>plot_priors = <var>INTEGER</var></code></dt>
<dd><p>Control the plotting of priors:
1
</p><dl compact="compact">
<dt><code>0</code></dt>
<dd><p>No prior plot
</p>
</dd>
<dt><code>1</code></dt>
<dd><p>Prior density for each estimated parameter is plotted. It is important
to check that the actual shape of prior densities matches what you
have in mind. Ill-chosen values for the prior standard density can
result in absurd prior densities.
</p></dd>
</dl>
<p>Default value is <code>1</code>.
</p>
</dd>
<dt><code>nograph</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#nograph">nograph</a>.
</p>
</dd>
<dt><code>posterior_nograph</code></dt>
<dd><a name="posterior_005fnograph"></a><p>Suppresses the generation of graphs associated with Bayesian IRFs (<a href="#bayesian_005firf">bayesian_irf</a>),
posterior smoothed objects (<a href="#smoother">smoother</a>), and posterior forecasts (<a href="#forecast">forecast</a>).
</p>
</dd>
<dt><code>posterior_graph</code></dt>
<dd><a name="posterior_005fgraph"></a><p>Re-enables the generation of graphs previously shut off with <a href="#posterior_005fnograph">posterior_nograph</a>.
</p>
</dd>
<dt><code>nodisplay</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#nodisplay">nodisplay</a>.
</p>
</dd>
<dt><code>graph_format = <var>FORMAT</var></code></dt>
<dt><code>graph_format = ( <var>FORMAT</var>, <var>FORMAT</var>… )</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#graph_005fformat">graph_format</a>.
</p>
</dd>
<dt><code>lik_init = <var>INTEGER</var></code></dt>
<dd><a name="lik_005finit"></a><p>Type of initialization of Kalman filter:
</p>
<dl compact="compact">
<dt><code>1</code></dt>
<dd><p>For stationary models, the initial matrix of variance of the error of
forecast is set equal to the unconditional variance of the state
variables
</p>
</dd>
<dt><code>2</code></dt>
<dd><p>For nonstationary models: a wide prior is used with an initial matrix
of variance of the error of forecast diagonal with 10 on the diagonal
(follows the suggestion of <cite>Harvey and Phillips(1979)</cite>)
</p>
</dd>
<dt><code>3</code></dt>
<dd><p>For nonstationary models: use a diffuse filter (use rather the <code>diffuse_filter</code> option)
</p>
</dd>
<dt><code>4</code></dt>
<dd><p>The filter is initialized with the fixed point of the Riccati equation
</p>
</dd>
<dt><code>5</code></dt>
<dd><p>Use i) option 2 for the non-stationary elements by setting their initial variance in the
forecast error matrix to 10 on the diagonal and all covariances to 0 and ii) option 1 for the stationary elements.
</p>
</dd>
</dl>
<p>Default value is <code>1</code>. For advanced use only.
</p>
</dd>
<dt><code>lik_algo = <var>INTEGER</var></code></dt>
<dd><p>For internal use and testing only.
</p>
</dd>
<dt><code>conf_sig = <var>DOUBLE</var></code></dt>
<dd><p>Confidence interval used for classical forecasting after estimation. See <a href="Forecasting.html#conf_005fsig">conf_sig</a>.
</p>
</dd>
<dt><code>mh_conf_sig = <var>DOUBLE</var></code></dt>
<dd><a name="mh_005fconf_005fsig"></a><p>Confidence/HPD interval used for the computation of prior and posterior statistics like: parameter distributions, prior/posterior moments, conditional variance decomposition, impulse response functions, Bayesian forecasting. Default: <code>0.9</code>
</p>
</dd>
<dt><code>mh_replic = <var>INTEGER</var></code></dt>
<dd><a name="mh_005freplic"></a><p>Number of replications for Metropolis-Hastings
algorithm. For the time being, <code>mh_replic</code> should be larger than
<code>1200</code>. Default: <code>20000</code>
</p>
</dd>
<dt><code>sub_draws = <var>INTEGER</var></code></dt>
<dd><a name="sub_005fdraws"></a><p>number of draws from the MCMC that are used to
compute posterior distribution of various objects (smoothed variable,
smoothed shocks, forecast, moments, IRF). The draws used to compute
these posterior moments are sampled uniformly in the estimated empirical
posterior distribution (<i>ie</i> draws of the MCMC). <code>sub_draws</code>
should be smaller than the total number of MCMC draws available.
Default: <code>min(posterior_max_subsample_draws,(Total number of
draws)*(number of chains))</code>
</p>
</dd>
<dt><code>posterior_max_subsample_draws = <var>INTEGER</var></code></dt>
<dd><a name="posterior_005fmax_005fsubsample_005fdraws"></a><p>maximum number of draws from the
MCMC used to compute posterior distribution of various objects (smoothed
variable, smoothed shocks, forecast, moments, IRF), if not overriden by
option <a href="#sub_005fdraws">sub_draws</a>. Default: <code>1200</code>
</p>
</dd>
<dt><code>mh_nblocks = <var>INTEGER</var></code></dt>
<dd><a name="mh_005fnblocks"></a><p>Number of parallel chains for Metropolis-Hastings algorithm. Default:
<code>2</code>
</p>
</dd>
<dt><code>mh_drop = <var>DOUBLE</var></code></dt>
<dd><a name="mh_005fdrop"></a><p>The fraction of initially generated parameter vectors to be dropped as a burnin before using posterior simulations. Default: <code>0.5</code>
</p>
</dd>
<dt><code>mh_jscale = <var>DOUBLE</var></code></dt>
<dd><a name="mh_005fjscale"></a><p>The scale parameter of the jumping distribution’s
covariance matrix (Metropolis-Hastings or TaRB-algorithm). The default value is
rarely satisfactory. This option must be tuned to obtain, ideally, an
acceptance ratio of 25%-33%.
Basically, the idea is to increase the variance of the jumping
distribution if the acceptance ratio is too high, and decrease the same
variance if the acceptance ratio is too low. In some situations it may
help to consider parameter-specific values for this scale parameter.
This can be done in the <a href="#estimated_005fparams">estimated_params</a>- block.
</p>
<p>Note that <code>mode_compute=6</code> will tune the scale parameter to achieve an acceptance rate of
<a href="#AcceptanceRateTarget">AcceptanceRateTarget</a>. The resulting scale parameter will be saved into a file
named <samp><var>MODEL_FILENAME</var>_mh_scale.mat</samp>. This file can be loaded in subsequent runs
via the <code>posterior_sampler_options</code>-option <a href="#scale_005ffile">scale_file</a>. Both <code>mode_compute=6</code>
and <code>scale_file</code> will overwrite any value specified in <code>estimated_params</code> with the tuned value.
Default: <code>0.2</code>
</p>
</dd>
<dt><code>mh_init_scale = <var>DOUBLE</var></code></dt>
<dd><p>The scale to be used for drawing the initial value of the
Metropolis-Hastings chain. Generally, the starting points should be overdispersed
for the <cite>Brooks and Gelman (1998)</cite>-convergence diagnostics to be meaningful. Default: 2*<code>mh_jscale</code>.
It is important to keep in mind that <code>mh_init_scale</code> is set at the beginning of
Dynare execution, <i>i.e.</i> the default will not take into account potential changes in
<a href="#mh_005fjscale">mh_jscale</a> introduced by either <code>mode_compute=6</code> or the
<code>posterior_sampler_options</code>-option <a href="#scale_005ffile">scale_file</a>.
If <code>mh_init_scale</code> is too wide during initalization of the posterior sampler so that 100 tested draws
are inadmissible (<i>e.g.</i> Blanchard-Kahn conditions are always violated), Dynare will request user input
of a new <code>mh_init_scale</code> value with which the next 100 draws will be drawn and tested.
If the <a href="Dynare-invocation.html#nointeractive">nointeractive</a>-option has been invoked, the program will instead automatically decrease
<code>mh_init_scale</code> by 10 percent after 100 futile draws and try another 100 draws. This iterative
procedure will take place at most 10 times, at which point Dynare will abort with an error message.
</p>
</dd>
<dt><code>mh_recover</code></dt>
<dd><a name="mh_005frecover"></a><p>Attempts to recover a Metropolis-Hastings
simulation that crashed prematurely, starting with the last available saved
<code>mh</code>-file. Shouldn’t be used together with
<code>load_mh_file</code> or a different <code>mh_replic</code> than in the crashed run. Since Dynare 4.5
the proposal density from the previous run will automatically be loaded. In older versions,
to assure a neat continuation of the chain with the same proposal density, you should
provide the <code>mode_file</code> used in the previous
run or the same user-defined <code>mcmc_jumping_covariance</code> when using this option. Note that
under Octave, a neat continuation of the crashed chain with the respective last random number
generator state is currently not supported.
</p>
</dd>
<dt><code>mh_mode = <var>INTEGER</var></code></dt>
<dd><p>…
</p>
</dd>
<dt><code>mode_file = <var>FILENAME</var></code></dt>
<dd><a name="mode_005ffile"></a><p>Name of the file containing previous value for the mode. When
computing the mode, Dynare stores the mode (<code>xparam1</code>) and the
hessian (<code>hh</code>, only if <code>cova_compute=1</code>) in a file called
<samp><var>MODEL_FILENAME</var>_mode.mat</samp>. After a successful run of the estimation
command, the <code>mode_file</code> will be disabled to prevent other function calls
from implicitly using an updated mode-file. Thus, if the mod-file contains subsequent
<code>estimation</code> commands, the <code>mode_file</code> option, if desired, needs to be
specified again.
</p>
</dd>
<dt><code>mode_compute = <var>INTEGER</var> | <var>FUNCTION_NAME</var></code></dt>
<dd><a name="mode_005fcompute"></a><p>Specifies the optimizer for the mode computation:
</p>
<dl compact="compact">
<dt><code>0</code></dt>
<dd><p>The mode isn’t computed. When <code>mode_file</code> option is specified, the
mode is simply read from that file.
</p>
<p>When <code>mode_file</code> option is not
specified, Dynare reports the value of the log posterior (log likelihood)
evaluated at the initial value of the parameters.
</p>
<p>When <code>mode_file</code>
option is not specified and there is no <code>estimated_params</code> block,
but the <code>smoother</code> option is used, it is a roundabout way to
compute the smoothed value of the variables of a model with calibrated parameters.
</p>
</dd>
<dt><code>1</code></dt>
<dd><p>Uses <code>fmincon</code> optimization routine (available under MATLAB if
the Optimization Toolbox is installed; not available under Octave)
</p>
</dd>
<dt><code>2</code></dt>
<dd><p>Uses the continuous simulated annealing global optimization algorithm
described in <cite>Corana et al. (1987)</cite> and <cite>Goffe et al. (1994)</cite>.
</p>
</dd>
<dt><code>3</code></dt>
<dd><p>Uses <code>fminunc</code> optimization routine (available under MATLAB if
the optimization toolbox is installed; available under Octave if the
<a href="http://octave.sourceforge.net/optim/">optim</a> package from
Octave-Forge is installed)
</p>
</dd>
<dt><code>4</code></dt>
<dd><p>Uses Chris Sims’s <code>csminwel</code>
</p>
</dd>
<dt><code>5</code></dt>
<dd><p>Uses Marco Ratto’s <code>newrat</code>. This value is not compatible with non
linear filters or DSGE-VAR models.
This is a slice optimizer: most iterations are a sequence of univariate optimization step, one for each estimated parameter or shock.
Uses <code>csminwel</code> for line search in each step.
</p>
</dd>
<dt><code>6</code></dt>
<dd><p>Uses a Monte-Carlo based optimization routine (see
<a href="http://www.dynare.org/DynareWiki/MonteCarloOptimization">Dynare
wiki</a> for more details)
</p>
</dd>
<dt><code>7</code></dt>
<dd><p>Uses <code>fminsearch</code>, a simplex based optimization routine (available
under MATLAB if the optimization toolbox is installed; available under
Octave if the <a href="http://octave.sourceforge.net/optim/">optim</a>
package from Octave-Forge is installed)
</p>
</dd>
<dt><code>8</code></dt>
<dd><p>Uses Dynare implementation of the Nelder-Mead simplex based optimization
routine (generally more efficient than the MATLAB or Octave implementation
available with <code>mode_compute=7</code>)
</p>
</dd>
<dt><code>9</code></dt>
<dd><p>Uses the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) algorithm of
<cite>Hansen and Kern (2004)</cite>, an evolutionary algorithm for difficult non-linear non-convex optimization
</p>
</dd>
<dt><code>10</code></dt>
<dd><p>Uses the simpsa algorithm, based on the combination of the non-linear simplex and simulated annealing algorithms and proposed by
<cite>Cardoso, Salcedo and Feyo de Azevedo (1996)</cite>.
</p>
</dd>
<dt><code>11</code></dt>
<dd><p>This is not strictly speaking an optimization algorithm. The (estimated) parameters are treated as state variables and estimated jointly with the original state variables of the model using a nonlinear filter. The algorithm implemented in Dynare is described in <cite>Liu and West (2001)</cite>.
</p>
</dd>
<dt><code>12</code></dt>
<dd><p>Uses <code>particleswarm</code> optimization routine (available under MATLAB if
the Global Optimization Toolbox is installed; not available under Octave).
</p>
</dd>
<dt><code>101</code></dt>
<dd><p>Uses the SolveOpt algorithm for local nonlinear optimization problems proposed by
<cite>Kuntsevich and Kappel (1997)</cite>.
</p>
</dd>
<dt><code>102</code></dt>
<dd><p>Uses <code>simulannealbnd</code> optimization routine (available under MATLAB if
the Global Optimization Toolbox is installed; not available under Octave)
</p>
</dd>
<dt><code><var>FUNCTION_NAME</var></code></dt>
<dd><p>It is also possible to give a <var>FUNCTION_NAME</var> to this option,
instead of an <var>INTEGER</var>. In that case, Dynare takes the return
value of that function as the posterior mode.
</p></dd>
</dl>
<p>Default value is <code>4</code>.
</p>
</dd>
<dt><code>silent_optimizer</code></dt>
<dd><a name="silent_005foptimizer"></a><p>Instructs Dynare to run mode computing/optimization silently without displaying results or
saving files in between. Useful when running loops.
</p>
</dd>
<dt><code>mcmc_jumping_covariance = hessian|prior_variance|identity_matrix|<var>FILENAME</var></code></dt>
<dd><a name="MCMC_005fjumping_005fcovariance"></a><p>Tells Dynare which covariance to use for the proposal density of the MCMC sampler. <code>mcmc_jumping_covariance</code> can be one of the following:
</p>
<dl compact="compact">
<dt><code>hessian</code></dt>
<dd><p>Uses the Hessian matrix computed at the mode.
</p>
</dd>
<dt><code>prior_variance</code></dt>
<dd><p>Uses the prior variances. No infinite prior variances are allowed in this case.
</p>
</dd>
<dt><code>identity_matrix</code></dt>
<dd><p>Uses an identity matrix.
</p>
</dd>
<dt><code><var>FILENAME</var></code></dt>
<dd><p>Loads an arbitrary user-specified covariance matrix from <code><var>FILENAME</var>.mat</code>. The covariance matrix must be saved in a variable named <code>jumping_covariance</code>, must be square, positive definite, and have the same dimension as the number of estimated parameters.
</p>
</dd>
</dl>
<p>Note that the covariance matrices are still scaled with <a href="#mh_005fjscale">mh_jscale</a>. Default value is <code>hessian</code>.
</p>
</dd>
<dt><code>mode_check</code></dt>
<dd><p>Tells Dynare to plot the posterior density for values around the
computed mode for each estimated parameter in turn. This is helpful to
diagnose problems with the optimizer. Note that for <code>order</code>>1, the
likelihood function resulting from the particle filter is not differentiable
anymore due to random chatter introduced by selecting different particles for
different parameter values. For this reason, the <code>mode_check</code>-plot may look wiggly.
</p>
</dd>
<dt><code>mode_check_neighbourhood_size = <var>DOUBLE</var></code></dt>
<dd><p>Used in conjunction with option <code>mode_check</code>, gives the width of
the window around the posterior mode to be displayed on the diagnostic
plots. This width is expressed in percentage deviation. The <code>Inf</code>
value is allowed, and will trigger a plot over the entire domain
(see also <code>mode_check_symmetric_plots</code>).
Default: <code>0.5</code>.
</p>
</dd>
<dt><code>mode_check_symmetric_plots = <var>INTEGER</var></code></dt>
<dd><p>Used in conjunction with option <code>mode_check</code>, if set to <code>1</code>,
tells Dynare to ensure that the check plots are symmetric around the
posterior mode. A value of <code>0</code> allows to have asymmetric plots,
which can be useful if the posterior mode is close to a domain
boundary, or in conjunction with <code>mode_check_neighbourhood_size =
Inf</code> when the domain in not the entire real line. Default: <code>1</code>.
</p>
</dd>
<dt><code>mode_check_number_of_points = <var>INTEGER</var></code></dt>
<dd><p>Number of points around the posterior mode where the posterior kernel is evaluated (for each parameter). Default is <code>20</code>
</p>
</dd>
<dt><code>prior_trunc = <var>DOUBLE</var></code></dt>
<dd><a name="prior_005ftrunc"></a><p>Probability of extreme values of the prior
density that is ignored when computing bounds for the
parameters. Default: <code>1e-32</code>
</p>
</dd>
<dt><code>huge_number = <var>DOUBLE</var></code></dt>
<dd><a name="huge_005fnumber"></a><p>Value for replacing infinite values in the definition of (prior) bounds
when finite values are required for computational reasons. Default: <code>1e7</code>
</p>
</dd>
<dt><code>load_mh_file</code></dt>
<dd><a name="load_005fmh_005ffile"></a><p>Tells Dynare to add to previous
Metropolis-Hastings simulations instead of starting from
scratch. Since Dynare 4.5
the proposal density from the previous run will automatically be loaded. In older versions,
to assure a neat continuation of the chain with the same proposal density, you should
provide the <code>mode_file</code> used in the previous
run or the same user-defined <code>mcmc_jumping_covariance</code> when using this option.
Shouldn’t be used together with <code>mh_recover</code>. Note that under Octave, a neat
continuation of the chain with the last random number
generator state of the already present draws is currently not supported.
</p>
</dd>
<dt><code>load_results_after_load_mh</code></dt>
<dd><a name="load_005fresults_005fafter_005fload_005fmh"></a><p>This option is available when loading a previous MCMC run without
adding additional draws, <i>i.e.</i> when <code>load_mh_file</code> is specified with <code>mh_replic=0</code>. It tells Dynare
to load the previously computed convergence diagnostics, marginal data density, and posterior statistics from an
existing <code>_results</code>-file instead of recomputing them.
</p>
</dd>
<dt><code>optim = (<var>NAME</var>, <var>VALUE</var>, ...)</code></dt>
<dd><a name="optim"></a><p>A list of <var>NAME</var> and <var>VALUE</var> pairs. Can be used to set options for the optimization routines. The set of available options depends on the selected optimization routine (ie on the value of option <a href="#mode_005fcompute">mode_compute</a>):
</p>
<dl compact="compact">
<dt><code>1, 3, 7, 12</code></dt>
<dd><p>Available options are given in the documentation of the MATLAB Optimization Toolbox or in Octave’s documentation.
</p>
</dd>
<dt><code>2</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'initial_step_length'</code></dt>
<dd><p>Initial step length. Default: <code>1</code>
</p>
</dd>
<dt><code>'initial_temperature'</code></dt>
<dd><p>Initial temperature. Default: <code>15</code>
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of function evaluations. Default: <code>100000</code>
</p>
</dd>
<dt><code>'neps'</code></dt>
<dd><p>Number of final function values used to decide upon termination. Default: <code>10</code>
</p>
</dd>
<dt><code>'ns'</code></dt>
<dd><p>Number of cycles. Default: <code>10</code>
</p>
</dd>
<dt><code>'nt'</code></dt>
<dd><p>Number of iterations before temperature reduction. Default: <code>10</code>
</p>
</dd>
<dt><code>'step_length_c'</code></dt>
<dd><p>Step length adjustment. Default: <code>0.1</code>
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Stopping criteria. Default: <code>1e-8</code>
</p>
</dd>
<dt><code>'rt'</code></dt>
<dd><p>Temperature reduction factor. Default: <code>0.1</code>
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization, ranging from 0 (silent) to 3
(each function evaluation). Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>4</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'InitialInverseHessian'</code></dt>
<dd><p>Initial approximation for the inverse of the Hessian matrix of the posterior kernel (or likelihood). Obviously this approximation has to be a square, positive definite and symmetric matrix. Default: <code>'1e-4*eye(nx)'</code>, where <code>nx</code> is the number of parameters to be estimated.
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of iterations. Default: <code>1000</code>
</p>
</dd>
<dt><code>'NumgradAlgorithm'</code></dt>
<dd><p>Possible values are <code>2</code>, <code>3</code> and <code>5</code> respectively corresponding to the two, three and five points formula used to compute the gradient of the objective function (see <cite>Abramowitz and Stegun (1964)</cite>). Values <code>13</code> and <code>15</code> are more experimental. If perturbations on the right and the left increase the value of the objective function (we minimize this function) then we force the corresponding element of the gradient to be zero. The idea is to temporarily reduce the size of the optimization problem. Default: <code>2</code>.
</p>
</dd>
<dt><code>'NumgradEpsilon'</code></dt>
<dd><p>Size of the perturbation used to compute numerically the gradient of the objective function. Default: <code>1e-6</code>
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Stopping criteria. Default: <code>1e-7</code>
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization. Set to 0 to set to silent. Default: <code>1</code>
</p>
</dd>
<dt><code>'SaveFiles'</code></dt>
<dd><p>Controls saving of intermediate results during optimization. Set to 0 to shut off saving. Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>5</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'Hessian'</code></dt>
<dd><p>Triggers three types of Hessian computations. <code>0</code>: outer product gradient; <code>1</code> default DYNARE Hessian routine; <code>2</code> ’mixed’ outer product gradient, where diagonal elements are obtained using second order derivation formula and outer product is used for correlation structure.
Both {0} and {2} options require univariate filters, to ensure using maximum number of individual densities and a positive definite Hessian.
Both {0} and {2} are quicker than default DYNARE numeric Hessian, but provide decent starting values for Metropolis for large models (option {2} being more accurate than {0}).
Default: <code>1</code>.
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of iterations. Default: <code>1000</code>
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Stopping criteria. Default: <code>1e-5</code> for numerical derivatives <code>1e-7</code> for analytic derivatives.
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization. Set to 0 to set to silent. Default: <code>1</code>
</p>
</dd>
<dt><code>'SaveFiles'</code></dt>
<dd><p>Controls saving of intermediate results during optimization. Set to 0 to shut off saving. Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>6</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'AcceptanceRateTarget'</code></dt>
<dd><a name="AcceptanceRateTarget"></a><p>A real number between zero and one. The scale parameter of the jumping distribution is adjusted so that the effective acceptance rate matches the value of option <code>'AcceptanceRateTarget'</code>. Default: <code>1.0/3.0</code>
</p>
</dd>
<dt><code>'InitialCovarianceMatrix'</code></dt>
<dd><p>Initial covariance matrix of the jumping distribution. Default is <code>'previous'</code> if option <code>mode_file</code> is used, <code>'prior'</code> otherwise.
</p>
</dd>
<dt><code>'nclimb-mh'</code></dt>
<dd><p>Number of iterations in the last MCMC (climbing mode). Default: <code>200000</code>
</p>
</dd>
<dt><code>'ncov-mh'</code></dt>
<dd><p>Number of iterations used for updating the covariance matrix of the jumping distribution. Default: <code>20000</code>
</p>
</dd>
<dt><code>'nscale-mh'</code></dt>
<dd><p>Maximum number of iterations used for adjusting the scale parameter of the jumping distribution. Default: <code>200000</code>
</p>
</dd>
<dt><code>'NumberOfMh'</code></dt>
<dd><p>Number of MCMC run sequentially. Default: <code>3</code>
</p>
</dd>
</dl>
</dd>
<dt><code>8</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'InitialSimplexSize'</code></dt>
<dd><p>Initial size of the simplex, expressed as percentage deviation from the provided initial guess in each direction. Default: <code>.05</code>
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of iterations. Default: <code>5000</code>
</p>
</dd>
<dt><code>'MaxFunEvals'</code></dt>
<dd><p>Maximum number of objective function evaluations. No default.
</p>
</dd>
<dt><code>'MaxFunvEvalFactor'</code></dt>
<dd><p>Set <code>MaxFunvEvals</code> equal to <code>MaxFunvEvalFactor</code> times the number of estimated parameters. Default: <code>500</code>.
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Tolerance parameter (w.r.t the objective function). Default: <code>1e-4</code>
</p>
</dd>
<dt><code>'TolX'</code></dt>
<dd><p>Tolerance parameter (w.r.t the instruments). Default: <code>1e-4</code>
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization. Set to 0 to set to silent. Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>9</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'CMAESResume'</code></dt>
<dd><p>Resume previous run. Requires the <code>variablescmaes.mat</code> from the last run.
Set to 1 to enable. Default: <code>0</code>
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of iterations.
</p>
</dd>
<dt><code>'MaxFunEvals'</code></dt>
<dd><p>Maximum number of objective function evaluations. Default: <code>Inf</code>.
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Tolerance parameter (w.r.t the objective function). Default: <code>1e-7</code>
</p>
</dd>
<dt><code>'TolX'</code></dt>
<dd><p>Tolerance parameter (w.r.t the instruments). Default: <code>1e-7</code>
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization. Set to 0 to set to silent. Default: <code>1</code>
</p>
</dd>
<dt><code>'SaveFiles'</code></dt>
<dd><p>Controls saving of intermediate results during optimization. Set to 0 to shut off saving. Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>10</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'EndTemperature'</code></dt>
<dd><p>Terminal condition w.r.t the temperature. When the temperature reaches <code>EndTemperature</code>, the temperature is set to zero and the algorithm falls back into a standard simplex algorithm. Default: <code>.1</code>
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of iterations. Default: <code>5000</code>
</p>
</dd>
<dt><code>'MaxFunvEvals'</code></dt>
<dd><p>Maximum number of objective function evaluations. No default.
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Tolerance parameter (w.r.t the objective function). Default: <code>1e-4</code>
</p>
</dd>
<dt><code>'TolX'</code></dt>
<dd><p>Tolerance parameter (w.r.t the instruments). Default: <code>1e-4</code>
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization. Set to 0 to set to silent. Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>101</code></dt>
<dd><p>Available options are:
</p>
<dl compact="compact">
<dt><code>'LBGradientStep'</code></dt>
<dd><p>Lower bound for the stepsize used for the difference approximation of gradients. Default: <code>1e-11</code>
</p>
</dd>
<dt><code>'MaxIter'</code></dt>
<dd><p>Maximum number of iterations. Default: <code>15000</code>
</p>
</dd>
<dt><code>'SpaceDilation'</code></dt>
<dd><p>Coefficient of space dilation. Default: <code>2.5</code>
</p>
</dd>
<dt><code>'TolFun'</code></dt>
<dd><p>Tolerance parameter (w.r.t the objective function). Default: <code>1e-6</code>
</p>
</dd>
<dt><code>'TolX'</code></dt>
<dd><p>Tolerance parameter (w.r.t the instruments). Default: <code>1e-6</code>
</p>
</dd>
<dt><code>'verbosity'</code></dt>
<dd><p>Controls verbosity of display during optimization. Set to 0 to set to silent. Default: <code>1</code>
</p>
</dd>
</dl>
</dd>
<dt><code>102</code></dt>
<dd><p>Available options are given in the documentation of the MATLAB Global Optimization Toolbox.
</p>
</dd>
</dl>
<p><em>Example 1</em>
To change the defaults of csminwel (<code>mode_compute=4</code>):
</p>
<p><code>estimation(..., mode_compute=4, optim=('NumgradAlgorithm',3,'TolFun',1e-5), ...);</code>
</p>
</dd>
<dt><code>nodiagnostic</code></dt>
<dd><a name="nodiagnostic"></a><p>Does not compute the convergence diagnostics for
Metropolis-Hastings. Default: diagnostics are computed and displayed
</p>
</dd>
<dt><code>bayesian_irf</code></dt>
<dd><a name="bayesian_005firf"></a><p>Triggers the computation of the posterior
distribution of IRFs. The length of the IRFs are controlled by the
<code>irf</code> option. Results are stored in <code>oo_.PosteriorIRF.dsge</code>
(see below for a description of this variable)
</p>
</dd>
<dt><code>relative_irf</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#relative_005firf">relative_irf</a>.
</p>
</dd>
<dt><code>dsge_var = <var>DOUBLE</var></code></dt>
<dd><a name="dsge_005fvar"></a><p>Triggers the estimation of a DSGE-VAR model, where the
weight of the DSGE prior of the VAR model is calibrated to the value
passed (see <cite>Del Negro and Schorfheide (2004)</cite>). It represents ratio of dummy over actual observations.
To assure that the prior is proper, the value must be bigger than <SPAN CLASS="MATH"><IMG
WIDTH="74" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_73.png"
ALT="$(k+n)/T$"></SPAN>,
where <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="15" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_35.png"
ALT="$k$"></SPAN> is the number of estimated parameters, <SPAN CLASS="MATH"><IMG
WIDTH="14" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_74.png"
ALT="$n$"></SPAN> is the number of observables,
and <SPAN CLASS="MATH"><IMG
WIDTH="16" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_75.png"
ALT="$T$"></SPAN> is the number of observations. NB: The previous method
of declaring <code>dsge_prior_weight</code> as a parameter and then
calibrating it is now deprecated and will be removed in a future release
of Dynare.
Some of objects arising during estimation are stored with their values at the mode in
<a href="#oo_005f_002edsge_005fvar_002eposterior_005fmode">oo_.dsge_var.posterior_mode</a>.
</p>
</dd>
<dt><code>dsge_var</code></dt>
<dd><p>Triggers the estimation of a DSGE-VAR model, where the weight of the
DSGE prior of the VAR model will be estimated (as in <cite>Adjemian et alii
(2008)</cite>). The prior on the weight of the DSGE prior,
<code>dsge_prior_weight</code>, must be defined in the <code>estimated_params</code>
section. NB: The previous method of declaring <code>dsge_prior_weight</code>
as a parameter and then placing it in <code>estimated_params</code> is now
deprecated and will be removed in a future release of Dynare.
</p>
</dd>
<dt><code>dsge_varlag = <var>INTEGER</var></code></dt>
<dd><a name="dsge_005fvarlag"></a><p>The number of lags used to estimate a DSGE-VAR
model. Default: <code>4</code>.
</p>
</dd>
<dt><code>posterior_sampling_method=<var>NAME</var></code></dt>
<dd><a name="posterior_005fsampling_005fmethod"></a><p>Selects the sampler used to sample from the posterior distribution during Bayesian
estimation. Default: ’random_walk_metropolis_hastings’
</p>
<dl compact="compact">
<dt><code>'random_walk_metropolis_hastings'</code></dt>
<dd><p>Instructs Dynare to use the Random-Walk Metropolis-Hastings. In this algorithm, the proposal density is
recentered to the previous draw in every step.
</p>
</dd>
<dt><code>'tailored_random_block_metropolis_hastings'</code></dt>
<dd><p>Instructs Dynare to use the Tailored randomized block (TaRB) Metropolis-Hastings algorithm
proposed by <cite>Chib and Ramamurthy (2010)</cite> instead of the standard Random-Walk Metropolis-Hastings.
In this algorithm, at each iteration the estimated parameters are randomly assigned to different
blocks. For each of these blocks a mode-finding step is conducted. The inverse Hessian at this mode
is then used as the covariance of the proposal density for a Random-Walk Metropolis-Hastings step.
If the numerical Hessian is not positive definite, the generalized Cholesky decomposition of
<cite>Schnabel and Eskow (1990)</cite> is used, but without pivoting. The TaRB-MH algorithm massively reduces
the autocorrelation in the MH draws and thus reduces the number of draws required to
representatively sample from the posterior. However, this comes at a computational costs as the
algorithm takes more time to run.
</p>
</dd>
<dt><code>'independent_metropolis_hastings'</code></dt>
<dd><p>Use the Independent Metropolis-Hastings algorithm where the proposal distribution - in contrast to the
Random Walk Metropolis-Hastings algorithm - does not depend on the state of the chain.
</p>
</dd>
<dt><code>'slice'</code></dt>
<dd><p>Instructs Dynare to use the Slice sampler of <cite>Planas, Ratto, and Rossi (2015)</cite>.
Note that <code>'slice'</code> is incompatible with
<code>prior_trunc=0</code>.
</p>
</dd>
</dl>
</dd>
<dt><code>posterior_sampler_options = (<var>NAME</var>, <var>VALUE</var>, ...)</code></dt>
<dd><a name="posterior_005fsampler_005foptions"></a><p>A list of <var>NAME</var> and <var>VALUE</var> pairs. Can be used to set options for the posterior sampling methods.
The set of available options depends on the selected posterior sampling routine
(<i>i.e.</i> on the value of option <a href="#posterior_005fsampling_005fmethod">posterior_sampling_method</a>):
</p>
<dl compact="compact">
<dt><code>'random_walk_metropolis_hastings'</code></dt>
<dd>
<p>Available options are:
</p>
<dl compact="compact">
<dt><code>'proposal_distribution'</code></dt>
<dd><a name="proposal_005fdistribution"></a><p>Specifies the statistical distribution used for the proposal density.
</p>
<dl compact="compact">
<dt><code>'rand_multivariate_normal'</code></dt>
<dd><p>Use a multivariate normal distribution. This is the default.
</p>
</dd>
<dt><code>'rand_multivariate_student'</code></dt>
<dd><p>Use a multivariate student distribution
</p>
</dd>
</dl>
</dd>
<dt><code>'student_degrees_of_freedom'</code></dt>
<dd><a name="student_005fdegrees_005fof_005ffreedom"></a><p>Specifies the degrees of freedom to be used with the multivariate student distribution. Default: 3
</p>
</dd>
<dt><code>'use_mh_covariance_matrix'</code></dt>
<dd><a name="use_005fmh_005fcovariance_005fmatrix"></a><p>Indicates to use the covariance matrix of the draws from a previous MCMC run to define the
covariance of the proposal distribution. Requires the <a href="#load_005fmh_005ffile">load_mh_file</a>-option to be specified. Default: 0
</p>
</dd>
<dt><code>'scale_file'</code></dt>
<dd><a name="scale_005ffile"></a><p>Provides the name of a <samp>_mh_scale.mat</samp>-file storing the tuned scale factor from a
previous run of <code>mode_compute=6</code>
</p>
</dd>
<dt><code>'save_tmp_file'</code></dt>
<dd><a name="save_005ftmp_005ffile"></a><p>Save the MCMC draws into a <code>_mh_tmp_blck</code>-file at the refresh rate of the status bar instead of just saving the draws
when the current <code>_mh*_blck</code>-file is full. Default: 0
</p>
</dd>
</dl>
</dd>
<dt><code>'independent_metropolis_hastings'</code></dt>
<dd>
<p>Takes the same options as in the case of <code>random_walk_metropolis_hastings</code>
</p>
</dd>
<dt><code>'slice'</code></dt>
<dd>
<dl compact="compact">
<dt><code>'rotated'</code></dt>
<dd><p>Triggers rotated slice iterations using a covariance matrix from initial burn-in iterations.
Requires either <code>use_mh_covariance_matrix</code> or <code>slice_initialize_with_mode</code>. Default: 0
</p>
</dd>
<dt><code>'mode_files'</code></dt>
<dd><p>For multimodal posteriors, provide the name of a file containing a <code>nparam by nmodes</code> variable called
<code>xparams</code> storing the different modes. This array must have one column vector per mode and the estimated
parameters along the row dimension. With this info,
the code will automatically trigger the <code>rotated</code> and <code>mode</code> options. Default: <code>[]</code>.
</p>
</dd>
<dt><code>'slice_initialize_with_mode'</code></dt>
<dd><p>The default for slice is to set <code>mode_compute = 0</code> and start the chain(s) from a random
location in the prior space. This option first runs the mode-finder and then starts the
chain from the mode. Together with <code>rotated</code>, it will use the inverse Hessian from the
mode to perform rotated slice iterations. Default: 0
</p>
</dd>
<dt><code>'initial_step_size'</code></dt>
<dd><p>Sets the initial size of the interval in the stepping-out procedure as fraction of the prior support
<i>i.e.</i> the size will be initial_step_size*(UB-LB). <code>initial_step_size</code> must be a real number in the interval [0, 1].
Default: 0.8
</p>
</dd>
<dt><code>'use_mh_covariance_matrix'</code></dt>
<dd><p>See <a href="#use_005fmh_005fcovariance_005fmatrix">use_mh_covariance_matrix</a>. Must be used with <code>'rotated'</code>. Default: 0
</p>
</dd>
<dt><code>'save_tmp_file'</code></dt>
<dd><p>See <a href="#save_005ftmp_005ffile">save_tmp_file</a>. Default: 1.
</p>
</dd>
</dl>
</dd>
<dt><code>'tailored_random_block_metropolis_hastings'</code></dt>
<dd>
<dl compact="compact">
<dt><code>new_block_probability = <var>DOUBLE</var></code></dt>
<dd><p>Specifies the probability of the next parameter belonging to a new block when the random blocking in the TaRB
Metropolis-Hastings algorithm is conducted. The higher this number, the smaller is the average block size and the
more random blocks are formed during each parameter sweep. Default: <code>0.25</code>.
</p>
</dd>
<dt><code>mode_compute = <var>INTEGER</var></code></dt>
<dd><p>Specifies the mode-finder run in every iteration for every block of the
TaRB Metropolis-Hastings algorithm. See <a href="#mode_005fcompute">mode_compute</a>. Default: <code>4</code>.
</p>
</dd>
<dt><code>optim = (<var>NAME</var>, <var>VALUE</var>, ...)</code></dt>
<dd><p>Specifies the options for the mode-finder used in the TaRB
Metropolis-Hastings algorithm. See <a href="#optim">optim</a>.
</p>
</dd>
<dt><code>'scale_file'</code></dt>
<dd><p>See <a href="#scale_005ffile">scale_file</a>.
</p>
</dd>
<dt><code>'save_tmp_file'</code></dt>
<dd><p>See <a href="#save_005ftmp_005ffile">save_tmp_file</a>. Default: 1.
</p>
</dd>
</dl>
</dd>
</dl>
</dd>
<dt><code>moments_varendo</code></dt>
<dd><a name="moments_005fvarendo"></a><p>Triggers the computation of the posterior
distribution of the theoretical moments of the endogenous
variables. Results are stored in
<code>oo_.PosteriorTheoreticalMoments</code> (see <a href="#oo_005f_002ePosteriorTheoreticalMoments">oo_.PosteriorTheoreticalMoments</a>). The number of lags in the autocorrelation function is
controlled by the <code>ar</code> option.
</p>
</dd>
<dt><code>contemporaneous_correlation</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#contemporaneous_005fcorrelation">contemporaneous_correlation</a>. Results are stored in <code>oo_.PosteriorTheoreticalMoments</code>.
Note that the <code>nocorr</code>-option has no effect.
</p>
</dd>
<dt><code>no_posterior_kernel_density</code></dt>
<dd><p>Shuts off the computation of the kernel density estimator for the posterior objects (see <a href="#density_002dfield">density-field</a>).
</p>
</dd>
<dt><code>conditional_variance_decomposition = <var>INTEGER</var></code></dt>
<dd><p>See below.
</p>
</dd>
<dt><code>conditional_variance_decomposition = [<var>INTEGER1</var>:<var>INTEGER2</var>]</code></dt>
<dd><p>See below.
</p>
</dd>
<dt><code>conditional_variance_decomposition = [<var>INTEGER1</var> <var>INTEGER2</var> …]</code></dt>
<dd><p>Computes the posterior distribution of the conditional variance
decomposition for the specified period(s). The periods must be strictly
positive. Conditional variances are given by <!-- MATH
$var(y_{t+k}|t)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="82" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_30.png"
ALT="$var(y_{t+k}\vert t)$"></SPAN>. For
period 1, the conditional variance decomposition provides the
decomposition of the effects of shocks upon impact. The results are
stored in
<code>oo_.PosteriorTheoreticalMoments.dsge.ConditionalVarianceDecomposition</code>,
but currently there is no displayed output. Note that this option requires the
option <code>moments_varendo</code> to be specified.
</p>
</dd>
<dt><code>filtered_vars</code></dt>
<dd><a name="filtered_005fvars"></a><p>Triggers the computation of the posterior
distribution of filtered endogenous variables/one-step ahead forecasts, <i>i.e.</i> <!-- MATH
$E_{t}{y_{t+1}}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="51" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_76.png"
ALT="$E_{t}{y_{t+1}}$"></SPAN>. Results are
stored in <code>oo_.FilteredVariables</code> (see below for a description of
this variable)
</p>
</dd>
<dt><code>smoother</code></dt>
<dd><a name="smoother"></a><p>Triggers the computation of the posterior distribution
of smoothed endogenous variables and shocks, <i>i.e.</i> the expected value of variables and shocks given the information available in all observations up to the <em>final</em> date (<SPAN CLASS="MATH"><IMG
WIDTH="40" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_77.png"
ALT="$E_{T}{y_t}$"></SPAN>). Results are stored in
<code>oo_.SmoothedVariables</code>, <code>oo_.SmoothedShocks</code> and
<code>oo_.SmoothedMeasurementErrors</code>. Also triggers the computation of
<code>oo_.UpdatedVariables</code>, which contains the estimation of the expected value of variables given the information available at the <em>current</em> date (<SPAN CLASS="MATH"><IMG
WIDTH="35" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_78.png"
ALT="$E_{t}{y_t}$"></SPAN>). See below for a description of all these
variables.
</p>
</dd>
<dt><code>forecast = <var>INTEGER</var></code></dt>
<dd><a name="forecast"></a><p>Computes the posterior distribution of a forecast on
<var>INTEGER</var> periods after the end of the sample used in
estimation. If no Metropolis-Hastings is computed, the result is
stored in variable <code>oo_.forecast</code> and corresponds to the forecast
at the posterior mode. If a Metropolis-Hastings is computed, the
distribution of forecasts is stored in variables
<code>oo_.PointForecast</code> and
<code>oo_.MeanForecast</code>. See <a href="Forecasting.html#Forecasting">Forecasting</a>, for a description of
these variables.
</p>
</dd>
<dt><code>tex</code></dt>
<dd><p>see <a href="Stochastic-solution-and-simulation.html#tex">tex</a>.
</p>
</dd>
<dt><code>kalman_algo = <var>INTEGER</var></code></dt>
<dd><a name="kalman_005falgo"></a>
<dl compact="compact">
<dt><code>0</code></dt>
<dd><p>Automatically use the Multivariate Kalman Filter for stationary models and the Multivariate Diffuse Kalman Filter for non-stationary models
</p>
</dd>
<dt><code>1</code></dt>
<dd><p>Use the Multivariate Kalman Filter
</p>
</dd>
<dt><code>2</code></dt>
<dd><p>Use the Univariate Kalman Filter
</p>
</dd>
<dt><code>3</code></dt>
<dd><p>Use the Multivariate Diffuse Kalman Filter
</p>
</dd>
<dt><code>4</code></dt>
<dd><p>Use the Univariate Diffuse Kalman Filter
</p>
</dd>
</dl>
<p>Default value is <code>0</code>. In case of missing observations of single or all series, Dynare treats those missing values as unobserved states and uses the Kalman filter to infer their value (see <i>e.g.</i> <cite>Durbin and Koopman (2012), Ch. 4.10</cite>)
This procedure has the advantage of being capable of dealing with observations where the forecast error variance matrix becomes singular for some variable(s).
If this happens, the respective observation enters with a weight of zero in the log-likelihood, <i>i.e.</i> this observation for the respective variable(s) is dropped
from the likelihood computations (for details see <cite>Durbin and Koopman (2012), Ch. 6.4 and 7.2.5</cite> and <cite>Koopman and Durbin (2000)</cite>). If the use of a multivariate Kalman filter is specified and a
singularity is encountered, Dynare by default automatically switches to the univariate Kalman filter for this parameter draw. This behavior can be changed via the
<a href="#use_005funivariate_005ffilters_005fif_005fsingularity_005fis_005fdetected">use_univariate_filters_if_singularity_is_detected</a> option.
</p>
</dd>
<dt><code>fast_kalman_filter</code></dt>
<dd><a name="fast_005fkalman_005ffilter"></a><p>Select the fast Kalman filter using Chandrasekhar
recursions as described by <cite>Herbst, 2015</cite>. This setting is only used with
<code>kalman_algo=1</code> or <code>kalman_algo=3</code>. In case of using the diffuse Kalman
filter (<code>kalman_algo=3/lik_init=3</code>), the observables must be stationary. This option
is not yet compatible with <a href="#analytic_005fderivation">analytic_derivation</a>.
</p>
</dd>
<dt><code>kalman_tol = <var>DOUBLE</var></code></dt>
<dd><a name="kalman_005ftol"></a><p>Numerical tolerance for determining the singularity of the covariance matrix of the prediction errors during the Kalman filter (minimum allowed reciprocal of the matrix condition number). Default value is <code>1e-10</code>
</p>
</dd>
<dt><code>diffuse_kalman_tol = <var>DOUBLE</var></code></dt>
<dd><a name="diffuse_005fkalman_005ftol"></a><p>Numerical tolerance for determining the singularity of the covariance matrix of the prediction errors (<SPAN CLASS="MATH"><IMG
WIDTH="28" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_79.png"
ALT="$F_{\infty}$"></SPAN>) and the rank of the covariance matrix of the non-stationary state variables (<SPAN CLASS="MATH"><IMG
WIDTH="28" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_80.png"
ALT="$P_{\infty}$"></SPAN>) during the Diffuse Kalman filter. Default value is <code>1e-6</code>
</p>
</dd>
<dt><code>filter_covariance</code></dt>
<dd><a name="filter_005fcovariance"></a><p>Saves the series of one step ahead error of
forecast covariance matrices. With Metropolis, they are saved in <a href="#oo_005f_002eFilterCovariance">oo_.FilterCovariance</a>,
otherwise in <a href="#oo_005f_002eSmoother_002eVariance">oo_.Smoother.Variance</a>. Saves also k-step ahead error of
forecast covariance matrices if <code>filter_step_ahead</code> is set.
</p>
</dd>
<dt><code>filter_step_ahead = [<var>INTEGER1</var>:<var>INTEGER2</var>]</code></dt>
<dd><p>See below.
</p>
</dd>
<dt><code>filter_step_ahead = [<var>INTEGER1</var> <var>INTEGER2</var> …]</code></dt>
<dd><a name="filter_005fstep_005fahead"></a><p>Triggers the computation k-step ahead filtered values, <i>i.e.</i> <!-- MATH
$E_{t}{y_{t+k}}$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="52" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_81.png"
ALT="$E_{t}{y_{t+k}}$"></SPAN>. Stores results in
<code>oo_.FilteredVariablesKStepAhead</code>. Also stores 1-step ahead values in <code>oo_.FilteredVariables</code>.
<code>oo_.FilteredVariablesKStepAheadVariances</code> is stored if <code>filter_covariance</code>.
</p>
</dd>
<dt><code>filter_decomposition</code></dt>
<dd><a name="filter_005fdecomposition"></a><p>Triggers the computation of the shock
decomposition of the above k-step ahead filtered values. Stores results in <code>oo_.FilteredVariablesShockDecomposition</code>.
</p>
</dd>
<dt><code>smoothed_state_uncertainty</code></dt>
<dd><a name="smoothed_005fstate_005funcertainty"></a><p>Triggers the computation of the variance of smoothed estimates, <i>i.e.</i>
<code>Var_T(y_t)</code>. Stores results in <code>oo_.Smoother.State_uncertainty</code>.
</p>
</dd>
<dt><code>diffuse_filter</code></dt>
<dd><a name="diffuse_005ffilter"></a><p>Uses the diffuse Kalman filter (as described in
<cite>Durbin and Koopman (2012)</cite> and <cite>Koopman and Durbin
(2003)</cite> for the multivariate and <cite>Koopman and Durbin
(2000)</cite> for the univariate filter) to estimate models with non-stationary observed variables.
</p>
<p>When <code>diffuse_filter</code> is used the <code>lik_init</code> option of
<code>estimation</code> has no effect.
</p>
<p>When there are nonstationary exogenous variables in a model, there is no unique deterministic steady state. For instance, if productivity is a pure random walk:
</p>
<p><!-- MATH
$a_t = a_{t-1} + e_t$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="103" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_82.png"
ALT="$a_t = a_{t-1} + e_t$"></SPAN>
</p>
<p>any value of <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_83.png"
ALT="$\bar a$"></SPAN> of <SPAN CLASS="MATH"><IMG
WIDTH="13" HEIGHT="14" ALIGN="BOTTOM" BORDER="0"
SRC="dynare.html_84.png"
ALT="$a$"></SPAN> is a deterministic steady state for productivity. Consequently, the model admits an infinity of steady states. In this situation, the user must help Dynare in selecting one steady state, except if zero is a trivial model’s steady state, which happens when the <code>linear</code> option is used in the model declaration. The user can either provide the steady state to Dynare using a <code>steady_state_model</code> block (or writing a steady state file) if a closed form solution is available, see <a href="Steady-state.html#steady_005fstate_005fmodel">steady_state_model</a>, or specify some constraints on the steady state, see <a href="Steady-state.html#equation_005ftag_005ffor_005fconditional_005fsteady_005fstate">equation_tag_for_conditional_steady_state</a>, so that Dynare computes the steady state conditionally on some predefined levels for the non stationary variables. In both cases, the idea is to use dummy values for the steady state level of the exogenous non stationary variables.
</p>
<p>Note that the nonstationary variables in the model must be integrated processes (their first difference or k-difference must be stationary).
</p>
</dd>
<dt><code>selected_variables_only</code></dt>
<dd><a name="selected_005fvariables_005fonly"></a><p>Only run the classical smoother on the variables listed just after the
<code>estimation</code> command. This option is incompatible with requesting classical
frequentist forecasts and will be overridden in this case. When using Bayesian estimation,
the smoother is by default only run on the declared endogenous variables.
Default: run the smoother on all the
declared endogenous variables.
</p>
</dd>
<dt><code>cova_compute = <var>INTEGER</var></code></dt>
<dd><p>When <code>0</code>, the covariance matrix of estimated parameters is not
computed after the computation of posterior mode (or maximum
likelihood). This increases speed of computation in large models
during development, when this information is not always necessary. Of
course, it will break all successive computations that would require
this covariance matrix. Otherwise, if this option is equal to
<code>1</code>, the covariance matrix is computed and stored in variable
<code>hh</code> of <samp><var>MODEL_FILENAME</var>_mode.mat</samp>. Default is <code>1</code>.
</p>
</dd>
<dt><code>solve_algo = <var>INTEGER</var></code></dt>
<dd><p>See <a href="Steady-state.html#solve_005falgo">solve_algo</a>.
</p>
</dd>
<dt><code>order = <var>INTEGER</var></code></dt>
<dd><p>Order of approximation, either <code>1</code> or <code>2</code>. When equal to
<code>2</code>, the likelihood is evaluated with a particle filter based on
a second order approximation of the model (see
<cite>Fernandez-Villaverde and Rubio-Ramirez (2005)</cite>). Default is
<code>1</code>, ie the likelihood of the linearized model is evaluated
using a standard Kalman filter.
</p>
</dd>
<dt><code>irf = <var>INTEGER</var></code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#irf">irf</a>. Only used if <a href="#bayesian_005firf">bayesian_irf</a> is passed.
</p>
</dd>
<dt><code>irf_shocks = ( <var>VARIABLE_NAME</var> [[,] <var>VARIABLE_NAME</var> …] )</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#irf_005fshocks">irf_shocks</a>. Only used if <a href="#bayesian_005firf">bayesian_irf</a> is passed.
</p>
</dd>
<dt><code>irf_plot_threshold = <var>DOUBLE</var></code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#irf_005fplot_005fthreshold">irf_plot_threshold</a>. Only used if <a href="#bayesian_005firf">bayesian_irf</a> is passed.
</p>
</dd>
<dt><code>aim_solver</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#aim_005fsolver">aim_solver</a>.
</p>
</dd>
<dt><code>sylvester = OPTION</code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#sylvester">sylvester</a>.
</p>
</dd>
<dt><code>sylvester_fixed_point_tol = <var>DOUBLE</var></code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#sylvester_005ffixed_005fpoint_005ftol">sylvester_fixed_point_tol</a>.
</p>
</dd>
<dt><code>lyapunov = <var>OPTION</var></code></dt>
<dd><a name="lyapunov"></a><p>Determines the algorithm used to solve the Lyapunov equation to initialized the variance-covariance matrix of the Kalman filter using the steady-state value of state variables. Possible values for <code><var>OPTION</var></code> are:
</p>
<dl compact="compact">
<dt><code>default</code></dt>
<dd><p>Uses the default solver for Lyapunov equations based on Bartels-Stewart algorithm.
</p>
</dd>
<dt><code>fixed_point</code></dt>
<dd><p>Uses a fixed point algorithm to solve the Lyapunov equation. This method is faster than the <code>default</code> one for large scale models, but it could require a large amount of iterations.
</p>
</dd>
<dt><code>doubling</code></dt>
<dd><p>Uses a doubling algorithm to solve the Lyapunov equation (<code>disclyap_fast</code>). This method is faster than the two previous one for large scale models.
</p>
</dd>
<dt><code>square_root_solver</code></dt>
<dd><p>Uses a square-root solver for Lyapunov equations
(<code>dlyapchol</code>). This method is fast for large scale models
(available under MATLAB if the control system toolbox is installed;
available under Octave if the
<a href="http://octave.sourceforge.net/control/">control</a> package from
Octave-Forge is installed)
</p>
</dd>
</dl>
<p>Default value is <code>default</code>
</p>
</dd>
<dt><code>lyapunov_fixed_point_tol = <var>DOUBLE</var></code></dt>
<dd><a name="lyapunov_005ffixed_005fpoint_005ftol"></a><p>This is the convergence criterion used in the fixed point Lyapunov solver. Its default value is 1e-10.
</p>
</dd>
<dt><code>lyapunov_doubling_tol = <var>DOUBLE</var></code></dt>
<dd><a name="lyapunov_005fdoubling_005ftol"></a><p>This is the convergence criterion used in the doubling algorithm to solve the Lyapunov equation. Its default value is 1e-16.
</p>
</dd>
<dt><code>use_penalized_objective_for_hessian</code></dt>
<dd><p>Use the penalized objective instead of the objective function to compute
numerically the hessian matrix at the mode. The penalties decrease the value of
the posterior density (or likelihood) when, for some perturbations, Dynare is
not able to solve the model (issues with steady state existence, Blanchard and
Kahn conditions, ...). In pratice, the penalized and original
objectives will only differ if the posterior mode is found to be near a region
where the model is ill-behaved. By default the original objective function is
used.
</p>
</dd>
<dt><code>analytic_derivation</code></dt>
<dd><a name="analytic_005fderivation"></a><p>Triggers estimation with analytic gradient. The final hessian is also
computed analytically. Only works for stationary models without
missing observations, i.e. for <code>kalman_algo<3</code>.
</p>
</dd>
<dt><code>ar = <var>INTEGER</var></code></dt>
<dd><p>See <a href="Stochastic-solution-and-simulation.html#ar">ar</a>. Only useful in conjunction with option <code>moments_varendo</code>.
</p>
</dd>
<dt><code>endogenous_prior</code></dt>
<dd><p>Use endogenous priors as in <cite>Christiano, Trabandt and Walentin
(2011)</cite>.
The procedure is motivated by sequential Bayesian learning. Starting from independent initial priors on the parameters,
specified in the <code>estimated_params</code>-block, the standard deviations observed in a "pre-sample",
taken to be the actual sample, are used to update the initial priors. Thus, the product of the initial
priors and the pre-sample likelihood of the standard deviations of the observables is used as the new prior
(for more information, see the technical appendix of <cite>Christiano, Trabandt and Walentin (2011)</cite>).
This procedure helps in cases where the regular posterior estimates, which minimize in-sample forecast
errors, result in a large overprediction
of model variable variances (a statistic that is not explicitly targeted, but often of particular interest to researchers).
</p>
</dd>
<dt><code>use_univariate_filters_if_singularity_is_detected = <var>INTEGER</var></code></dt>
<dd><a name="use_005funivariate_005ffilters_005fif_005fsingularity_005fis_005fdetected"></a><p>Decide whether Dynare should automatically switch to univariate filter
if a singularity is encountered in the likelihood computation (this is
the behaviour if the option is equal to <code>1</code>). Alternatively, if
the option is equal to <code>0</code>, Dynare will not automatically change
the filter, but rather use a penalty value for the likelihood when
such a singularity is encountered. Default: <code>1</code>.
</p>
</dd>
<dt><code>keep_kalman_algo_if_singularity_is_detected</code></dt>
<dd><a name="keep_005fkalman_005falgo_005fif_005fsingularity_005fis_005fdetected"></a><p>With the default <a href="#use_005funivariate_005ffilters_005fif_005fsingularity_005fis_005fdetected">use_univariate_filters_if_singularity_is_detected</a>=1, Dynare will switch
to the univariate Kalman filter when it encounters a singular forecast error variance
matrix during Kalman filtering. Upon encountering such a singularity for the first time, all subsequent
parameter draws and computations will automatically rely on univariate filter, <i>i.e.</i> Dynare will never try
the multivariate filter again. Use the <code>keep_kalman_algo_if_singularity_is_detected</code> option to have the
<code>use_univariate_filters_if_singularity_is_detected</code> only affect the behavior for the current draw/computation.
</p>
</dd>
<dt><code>rescale_prediction_error_covariance</code></dt>
<dd><a name="rescale_005fprediction_005ferror_005fcovariance"></a><p>Rescales the prediction error covariance in the Kalman filter to avoid badly scaled matrix and reduce the probability of a switch to univariate Kalman filters (which are slower). By default no rescaling is done.
</p>
</dd>
<dt><code>qz_zero_threshold = <var>DOUBLE</var></code></dt>
<dd><p>See <a href="Getting-information-about-the-model.html#qz_005fzero_005fthreshold">qz_zero_threshold</a>.
</p>
</dd>
<dt><code>taper_steps = [<var>INTEGER1</var> <var>INTEGER2</var> …]</code></dt>
<dd><a name="taper_005fsteps"></a><p>Percent tapering used for the spectral window in the <cite>Geweke (1992,1999)</cite>
convergence diagnostics (requires <a href="#mh_005fnblocks">mh_nblocks</a>=1). The tapering is used to
take the serial correlation of the posterior draws into account. Default: <code>[4 8 15]</code>.
</p>
</dd>
<dt><code>geweke_interval = [<var>DOUBLE</var> <var>DOUBLE</var>]</code></dt>
<dd><a name="geweke_005finterval"></a><p>Percentage of MCMC draws at the beginning and end of the MCMC chain taken
to compute the <cite>Geweke (1992,1999)</cite> convergence diagnostics (requires <a href="#mh_005fnblocks">mh_nblocks</a>=1)
after discarding the first <a href="#mh_005fdrop">mh_drop</a> percent of draws as a burnin. Default: <code>[0.2 0.5]</code>.
</p>
</dd>
<dt><code>raftery_lewis_diagnostics</code></dt>
<dd><a name="raftery_005flewis_005fdiagnostics"></a><p>Triggers the computation of the <cite>Raftery and Lewis (1992)</cite> convergence diagnostics. The goal is deliver the number of draws
required to estimate a particular quantile of the CDF <code>q</code> with precision <code>r</code> with a probability <code>s</code>. Typically, one wants to estimate
the <code>q=0.025</code> percentile (corresponding to a 95 percent HPDI) with a precision of 0.5 percent (<code>r=0.005</code>) with 95 percent
certainty (<code>s=0.95</code>). The defaults can be changed via <a href="#raftery_005flewis_005fqrs">raftery_lewis_qrs</a>. Based on the
theory of first order Markov Chains, the diagnostics will provide a required burn-in (<code>M</code>), the number of draws after the burnin (<code>N</code>)
as well as a thinning factor that would deliver a first order chain (<code>k</code>). The last line of the table will also deliver the maximum over
all parameters for the respective values.
</p>
</dd>
<dt><code>raftery_lewis_qrs = [<var>DOUBLE</var> <var>DOUBLE</var> <var>DOUBLE</var>]</code></dt>
<dd><a name="raftery_005flewis_005fqrs"></a><p>Sets the quantile of the CDF <code>q</code> that is estimated with precision <code>r</code> with a probability <code>s</code> in the
<cite>Raftery and Lewis (1992)</cite> convergence diagnostics. Default: <code>[0.025 0.005 0.95]</code>.
</p>
</dd>
<dt><code>consider_all_endogenous</code></dt>
<dd><p>Compute the posterior moments, smoothed variables, k-step ahead
filtered variables and forecasts (when requested) on all the
endogenous variables. This is equivalent to manually listing all the
endogenous variables after the <code>estimation</code> command.
</p>
</dd>
<dt><code>consider_only_observed</code></dt>
<dd><p>Compute the posterior moments, smoothed variables, k-step ahead
filtered variables and forecasts (when requested) on all the observed
variables. This is equivalent to manually listing all the observed
variables after the <code>estimation</code> command.
</p>
</dd>
<dt><code>number_of_particles = <var>INTEGER</var></code></dt>
<dd><a name="number_005fof_005fparticles"></a><p>Number of particles used when evaluating the likelihood of a non linear state space model. Default: <code>1000</code>.
</p>
</dd>
<dt><code>resampling = <var>OPTION</var></code></dt>
<dd><a name="resampling"></a><p>Determines if resampling of the particles is done. Possible values for <var>OPTION</var> are:
</p>
<dl compact="compact">
<dt><code>none</code></dt>
<dd><p>No resampling.
</p>
</dd>
<dt><code>systematic</code></dt>
<dd><p>Resampling at each iteration, this is the default value.
</p>
</dd>
<dt><code>generic</code></dt>
<dd><p>Resampling if and only if the effective sample size is below a certain level defined by <a href="#resampling_005fthreshold">resampling_threshold</a>*<a href="#number_005fof_005fparticles">number_of_particles</a>.
</p>
</dd>
</dl>
</dd>
<dt><code>resampling_threshold = <var>DOUBLE</var></code></dt>
<dd><a name="resampling_005fthreshold"></a><p>A real number between zero and one. The resampling step is triggered as soon as the effective number of particles is less than this number times the total number of particles (as set by <a href="#number_005fof_005fparticles">number_of_particles</a>). This option is effective if and only if option <a href="#resampling">resampling</a> has value <code>generic</code>.
</p>
</dd>
<dt><code>resampling_method = <var>OPTION</var></code></dt>
<dd><a name="resampling_005fmethod"></a><p>Sets the resampling method. Possible values for <var>OPTION</var> are: <code>kitagawa</code>, <code>stratified</code> and <code>smooth</code>.
</p>
</dd>
<dt><code>filter_algorithm = <var>OPTION</var></code></dt>
<dd><a name="filter_005falgorithm"></a><p>Sets the particle filter algorithm. Possible values for <var>OPTION</var> are:
</p>
<dl compact="compact">
<dt><code>sis</code></dt>
<dd><p>Sequential importance sampling algorithm, this is the default value.
</p>
</dd>
<dt><code>apf</code></dt>
<dd><p>Auxiliary particle filter.
</p>
</dd>
<dt><code>gf</code></dt>
<dd><p>Gaussian filter.
</p>
</dd>
<dt><code>gmf</code></dt>
<dd><p>Gaussian mixture filter.
</p>
</dd>
<dt><code>cpf</code></dt>
<dd><p>Conditional particle filter.
</p>
</dd>
<dt><code>nlkf</code></dt>
<dd><p>Use a standard (linear) Kalman filter algorithm with the nonlinear measurement and state equations.
</p>
</dd>
</dl>
</dd>
<dt><code>proposal_approximation = <var>OPTION</var></code></dt>
<dd><a name="proposal_005fapproximation"></a><p>Sets the method for approximating the proposal distribution. Possible values for <var>OPTION</var> are: <code>cubature</code>, <code>montecarlo</code> and <code>unscented</code>. Default value is <code>unscented</code>.
</p>
</dd>
<dt><code>distribution_approximation = <var>OPTION</var></code></dt>
<dd><a name="distribution_005fapproximation"></a><p>Sets the method for approximating the particle distribution. Possible values for <var>OPTION</var> are: <code>cubature</code>, <code>montecarlo</code> and <code>unscented</code>. Default value is <code>unscented</code>.
</p>
</dd>
<dt><code>cpf_weights = <var>OPTION</var></code></dt>
<dd><a name="cpf_005fweights"></a><p>Controls the method used to update the weights in conditional particle filter, possible values are <code>amisanotristani</code> (<cite>Amisano et al (2010)</cite>) or <code>murrayjonesparslow</code> (<cite>Murray et al. (2013)</cite>). Default value is <code>amisanotristani</code>.
</p>
</dd>
<dt><code>nonlinear_filter_initialization = <var>INTEGER</var></code></dt>
<dd><a name="nonlinear_005ffilter_005finitialization"></a><p>Sets the initial condition of the
nonlinear filters. By default the nonlinear filters are initialized with the
unconditional covariance matrix of the state variables, computed with the
reduced form solution of the first order approximation of the model. If
<code>nonlinear_filter_initialization=2</code>, the nonlinear filter is instead
initialized with a covariance matrix estimated with a stochastic simulation of
the reduced form solution of the second order approximation of the model. Both
these initializations assume that the model is stationary, and cannot be used
if the model has unit roots (which can be seen with the <a href="Getting-information-about-the-model.html#check">check</a> command
prior to estimation). If the model has stochastic trends, user must use
<code>nonlinear_filter_initialization=3</code>, the filters are then initialized with
an identity matrix for the covariance matrix of the state variables. Default
value is <code>nonlinear_filter_initialization=1</code> (initialization based on the
first order approximation of the model).
</p>
</dd>
</dl>
<p><em>Note</em>
</p>
<p>If no <code>mh_jscale</code> parameter is used for a parameter in <code>estimated_params</code>,
the procedure uses <code>mh_jscale</code> for all parameters. If
<code>mh_jscale</code> option isn’t set, the procedure uses <code>0.2</code> for
all parameters. Note that if <code>mode_compute=6</code> is used or the <code>posterior_sampler_option</code>
called <code>scale_file</code> is specified, the values set in <code>estimated_params</code>
will be overwritten.
</p>
<p><em>“Endogenous” prior restrictions</em>
</p>
<p>It is also possible to impose implicit “endogenous” priors about IRFs and moments on the model during
estimation. For example, one can specify that all valid parameter draws for the model must generate fiscal multipliers that are
bigger than 1 by specifying how the IRF to a government spending shock must look like. The prior restrictions can be imposed
via <code>irf_calibration</code> and <code>moment_calibration</code> blocks (see <a href="Sensitivity-and-identification-analysis.html#IRF_002fMoment-calibration">IRF/Moment calibration</a>). The way it works internally is that
any parameter draw that is inconsistent with the “calibration” provided in these blocks is discarded, <i>i.e.</i> assigned a prior density of 0.
When specifying these blocks, it is important to keep in mind that one won’t be able to easily do <code>model_comparison</code> in this case,
because the prior density will not integrate to 1.
</p>
<p><em>Output</em>
</p>
<a name="index-M_005f_002eparams-1"></a>
<a name="index-M_005f_002eSigma_005fe"></a>
<p>After running <code>estimation</code>, the parameters <code>M_.params</code> and
the variance matrix <code>M_.Sigma_e</code> of the shocks are set to the
mode for maximum likelihood estimation or posterior mode computation
without Metropolis iterations.
</p>
<p>After <code>estimation</code> with Metropolis iterations (option
<code>mh_replic</code> > 0 or option <code>load_mh_file</code> set) the parameters
<code>M_.params</code> and the variance matrix <code>M_.Sigma_e</code> of the
shocks are set to the posterior mean.
</p>
<p>Depending on the options, <code>estimation</code> stores results in various
fields of the <code>oo_</code> structure, described below.
</p>
</dd></dl>
<p>In the following variables, we will adopt the following shortcuts for
specific field names:
</p>
<dl compact="compact">
<dt><var>MOMENT_NAME</var></dt>
<dd>
<p>This field can take the following values:
</p>
<dl compact="compact">
<dt><code>HPDinf</code></dt>
<dd><p>Lower bound of a 90% HPD interval<a name="DOCF3" href="#FOOT3"><sup>3</sup></a>
</p>
</dd>
<dt><code>HPDsup</code></dt>
<dd><p>Upper bound of a 90% HPD interval
</p>
</dd>
<dt><code>HPDinf_ME</code></dt>
<dd><p>Lower bound of a 90% HPD interval<a name="DOCF4" href="#FOOT4"><sup>4</sup></a> for observables when taking
measurement error into account (see <i>e.g.</i> <cite>Christoffel et al. (2010), p.17</cite>).
</p>
</dd>
<dt><code>HPDsup_ME</code></dt>
<dd><p>Upper bound of a 90% HPD interval for observables when taking
measurement error into account
</p>
</dd>
<dt><code>Mean</code></dt>
<dd><p>Mean of the posterior distribution
</p>
</dd>
<dt><code>Median</code></dt>
<dd><p>Median of the posterior distribution
</p>
</dd>
<dt><code>Std</code></dt>
<dd><p>Standard deviation of the posterior distribution
</p>
</dd>
<dt><code>Variance</code></dt>
<dd><p>Variance of the posterior distribution
</p>
</dd>
<dt><code>deciles</code></dt>
<dd><p>Deciles of the distribution.
</p>
</dd>
<dt><code>density</code></dt>
<dd><a name="density_002dfield"></a><p>Non parametric estimate of the posterior density following the approach outlined in <cite>Skoeld and Roberts (2003)</cite>. First and second
columns are respectively abscissa and ordinate coordinates.
</p>
</dd>
</dl>
</dd>
<dt><var>ESTIMATED_OBJECT</var></dt>
<dd>
<p>This field can take the following values:
</p>
<dl compact="compact">
<dt><code>measurement_errors_corr</code></dt>
<dd><p>Correlation between two measurement errors
</p>
</dd>
<dt><code>measurement_errors_std</code></dt>
<dd><p>Standard deviation of measurement errors
</p>
</dd>
<dt><code>parameters</code></dt>
<dd><p>Parameters
</p>
</dd>
<dt><code>shocks_corr</code></dt>
<dd><p>Correlation between two structural shocks
</p>
</dd>
<dt><code>shocks_std</code></dt>
<dd><p>Standard deviation of structural shocks
</p>
</dd>
</dl>
</dd>
</dl>
<dl>
<dt><a name="index-oo_005f_002eMarginalDensity_002eLaplaceApproximation"></a>MATLAB/Octave variable: <strong>oo_.MarginalDensity.LaplaceApproximation</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command. Stores the marginal data density
based on the Laplace Approximation.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eMarginalDensity_002eModifiedHarmonicMean"></a>MATLAB/Octave variable: <strong>oo_.MarginalDensity.ModifiedHarmonicMean</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Stores the marginal data density
based on <cite>Geweke (1999)</cite> Modified Harmonic Mean estimator.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_002eoptimization"></a>MATLAB/Octave variable: <strong>oo_.posterior.optimization</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command if mode-finding is used. Stores the results at the mode.
Fields are of the form
</p><div class="example">
<pre class="example"><code>oo_.posterior.optimization.<var>OBJECT</var></code>
</pre></div>
<p>where <var>OBJECT</var> is one of the following:
</p>
<dl compact="compact">
<dt><code>mode</code></dt>
<dd><p>Parameter vector at the mode
</p>
</dd>
<dt><code>Variance</code></dt>
<dd><p>Inverse Hessian matrix at the mode or MCMC jumping covariance matrix when used with the
<a href="#MCMC_005fjumping_005fcovariance">MCMC_jumping_covariance</a> option
</p>
</dd>
<dt><code>log_density</code></dt>
<dd><p>Log likelihood (ML)/log posterior density (Bayesian) at the mode when used with <code>mode_compute>0</code>
</p>
</dd>
</dl>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_002emetropolis"></a>MATLAB/Octave variable: <strong>oo_.posterior.metropolis</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command if <code>mh_replic>0</code> is used.
Fields are of the form
</p><div class="example">
<pre class="example"><code>oo_.posterior.metropolis.<var>OBJECT</var></code>
</pre></div>
<p>where <var>OBJECT</var> is one of the following:
</p>
<dl compact="compact">
<dt><code>mean</code></dt>
<dd><p>Mean parameter vector from the MCMC
</p>
</dd>
<dt><code>Variance</code></dt>
<dd><p>Covariance matrix of the parameter draws in the MCMC
</p>
</dd>
</dl>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eFilteredVariables"></a>MATLAB/Octave variable: <strong>oo_.FilteredVariables</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>filtered_vars</code> option.
</p>
<p>After an estimation without Metropolis, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.FilteredVariables.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>After an estimation with Metropolis, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.FilteredVariables.<var>MOMENT_NAME</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eFilteredVariablesKStepAhead"></a>MATLAB/Octave variable: <strong>oo_.FilteredVariablesKStepAhead</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>filter_step_ahead</code> option. The k-steps are stored along the rows while the columns
indicate the respective variables. The third dimension of the array provides the
observation for which the forecast has been made. For example, if <code>filter_step_ahead=[1 2 4]</code>
and <code>nobs=200</code>, the element (3,5,204) stores the four period ahead filtered
value of variable 5 computed at time t=200 for time t=204. The periods at the beginning
and end of the sample for which no forecasts can be made, <i>e.g.</i> entries (1,5,1) and
(1,5,204) in the example, are set to zero. Note that in case of Bayesian estimation
the variables will be ordered in the order of declaration after the estimation
command (or in general declaration order if no variables are specified here). In case
of running the classical smoother, the variables will always be ordered in general
declaration order. If the <a href="#selected_005fvariables_005fonly">selected_variables_only</a> option is specified with the classical smoother,
non-requested variables will be simply left out in this order.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eFilteredVariablesKStepAheadVariances"></a>MATLAB/Octave variable: <strong>oo_.FilteredVariablesKStepAheadVariances</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>filter_step_ahead</code> option. It is a 4 dimensional array where the k-steps
are stored along the first dimension, while the fourth dimension of the array
provides the observation for which the forecast has been made. The second and third
dimension provide the respective variables.
For example, if <code>filter_step_ahead=[1 2 4]</code> and <code>nobs=200</code>, the element (3,4,5,204)
stores the four period ahead forecast error covariance between variable 4 and variable 5,
computed at time t=200 for time t=204. Padding with zeros and variable ordering is analogous to <code>oo_.FilteredVariablesKStepAhead</code>.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eFiltered_005fVariables_005fX_005fstep_005fahead"></a>MATLAB/Octave variable: <strong>oo_.Filtered_Variables_X_step_ahead</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the <code>filter_step_ahead</code> option in the context of Bayesian estimation. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.Filtered_Variables_X_step_ahead.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>The nth entry stores the k-step ahead filtered variable computed at time n for time n+k.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eFilteredVariablesShockDecomposition"></a>MATLAB/Octave variable: <strong>oo_.FilteredVariablesShockDecomposition</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>filter_step_ahead</code> option. The k-steps are stored along the rows while the columns
indicate the respective variables. The third dimension corresponds to the shocks in declaration order.
The fourth dimension of the array provides the
observation for which the forecast has been made. For example, if <code>filter_step_ahead=[1 2 4]</code>
and <code>nobs=200</code>, the element (3,5,2,204) stores the contribution of the second shock to the
four period ahead filtered value of variable 5 (in deviations from the mean) computed at time t=200 for time t=204. The periods at the beginning
and end of the sample for which no forecasts can be made, <i>e.g.</i> entries (1,5,1) and
(1,5,204) in the example, are set to zero. Padding with zeros and variable ordering is analogous to
<code>oo_.FilteredVariablesKStepAhead</code>.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002ePosteriorIRF_002edsge"></a>MATLAB/Octave variable: <strong>oo_.PosteriorIRF.dsge</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>bayesian_irf</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.PosteriorIRF.dsge.<var>MOMENT_NAME</var>.<var>VARIABLE_NAME</var>_<var>SHOCK_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoothedMeasurementErrors"></a>MATLAB/Octave variable: <strong>oo_.SmoothedMeasurementErrors</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>smoother</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.SmoothedMeasurementErrors.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoothedShocks"></a>MATLAB/Octave variable: <strong>oo_.SmoothedShocks</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code> option), or by the <code>calib_smoother</code> command.
</p>
<p>After an estimation without Metropolis, or if computed by
<code>calib_smoother</code>, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.SmoothedShocks.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>After an estimation with Metropolis, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.SmoothedShocks.<var>MOMENT_NAME</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoothedVariables"></a>MATLAB/Octave variable: <strong>oo_.SmoothedVariables</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code> option), or by the <code>calib_smoother</code> command.
</p>
<p>After an estimation without Metropolis, or if computed by
<code>calib_smoother</code>, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.SmoothedVariables.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>After an estimation with Metropolis, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.SmoothedVariables.<var>MOMENT_NAME</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eUpdatedVariables"></a>MATLAB/Octave variable: <strong>oo_.UpdatedVariables</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code> option), or by the <code>calib_smoother</code> command.
Contains the estimation of the expected value of variables given the
information available at the <em>current</em> date.
</p>
<p>After an estimation without Metropolis, or if computed by
<code>calib_smoother</code>, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.UpdatedVariables.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>After an estimation with Metropolis, fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.UpdatedVariables.<var>MOMENT_NAME</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eFilterCovariance"></a>MATLAB/Octave variable: <strong>oo_.FilterCovariance</strong></dt>
<dd><a name="oo_005f_002eFilterCovariance"></a><p>Three-dimensional array set by the <code>estimation</code> command if used with the
<code>smoother</code> and Metropolis, if the <code>filter_covariance</code> option
has been requested.
Contains the series of one-step ahead forecast error covariance matrices
from the Kalman smoother. The <code>M_.endo_nbr</code> times <code>M_.endo_nbr</code> times
<code>T+1</code> array contains the variables in declaration order along the first
two dimensions. The third dimension of the array provides the
observation for which the forecast has been made.
Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.FilterCovariance.<var>MOMENT_NAME</var></code>
</pre></div>
<p>Note that density estimation is not supported.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eVariance"></a>MATLAB/Octave variable: <strong>oo_.Smoother.Variance</strong></dt>
<dd><a name="oo_005f_002eSmoother_002eVariance"></a><p>Three-dimensional array set by the <code>estimation</code> command (if used with the
<code>smoother</code>) without Metropolis,
or by the <code>calib_smoother</code> command, if the <code>filter_covariance</code> option
has been requested.
Contains the series of one-step ahead forecast error covariance matrices
from the Kalman smoother. The <code>M_.endo_nbr</code> times <code>M_.endo_nbr</code> times
<code>T+1</code> array contains the variables in declaration order along the first
two dimensions. The third dimension of the array provides the
observation for which the forecast has been made.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eState_005funcertainty"></a>MATLAB/Octave variable: <strong>oo_.Smoother.State_uncertainty</strong></dt>
<dd><a name="oo_005f_002eSmoother_002eState_005funcertainty"></a><p>Three-dimensional array set by the <code>estimation</code> command (if used with the
<code>smoother</code> option) without Metropolis,
or by the <code>calib_smoother</code> command, if the <code>smoothed_state_uncertainty</code> option
has been requested.
Contains the series of covariance matrices for the state estimate given the full data
from the Kalman smoother. The <code>M_.endo_nbr</code> times <code>M_.endo_nbr</code> times
<code>T</code> array contains the variables in declaration order along the first
two dimensions. The third dimension of the array provides the
observation for which the smoothed estimate has been made.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eSteadyState"></a>MATLAB/Octave variable: <strong>oo_.Smoother.SteadyState</strong></dt>
<dd><a name="oo_005f_002eSmoother_002eSteadyState"></a><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code>) without Metropolis,
or by the <code>calib_smoother</code> command.
Contains the steady state component of the endogenous variables used in the
smoother in order of variable declaration.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eTrendCoeffs"></a>MATLAB/Octave variable: <strong>oo_.Smoother.TrendCoeffs</strong></dt>
<dd><a name="oo_005f_002eSmoother_002eTrendCoeffs"></a><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code>) without Metropolis,
or by the <code>calib_smoother</code> command.
Contains the trend coefficients of the observed variables used in the
smoother in order of declaration of the observed variables.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eTrend"></a>MATLAB/Octave variable: <strong>oo_.Smoother.Trend</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code> option), or by the <code>calib_smoother</code> command.
Contains the trend component of the variables used in the
smoother.
</p>
<p>Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.Smoother.Trend.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eConstant"></a>MATLAB/Octave variable: <strong>oo_.Smoother.Constant</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command (if used with the
<code>smoother</code> option), or by the <code>calib_smoother</code> command.
Contains the constant part of the endogenous variables used in the
smoother, accounting <i>e.g.</i> for the data mean when using the <code>prefilter</code>
option.
</p>
<p>Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.Smoother.Constant.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eSmoother_002eloglinear"></a>MATLAB/Octave variable: <strong>oo_.Smoother.loglinear</strong></dt>
<dd><p>Indicator keeping track of whether the smoother was run with the <a href="#loglinear">loglinear</a> option
and thus whether stored smoothed objects are in logs.
</p></dd></dl>
<dl>
<dt><a name="index-oo_005f_002ePosteriorTheoreticalMoments"></a>MATLAB/Octave variable: <strong>oo_.PosteriorTheoreticalMoments</strong></dt>
<dd><a name="oo_005f_002ePosteriorTheoreticalMoments"></a><p>Variable set by the <code>estimation</code> command, if it is used with the
<code>moments_varendo</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.PosteriorTheoreticalMoments.dsge.<var>THEORETICAL_MOMENT</var>.<var>ESTIMATED_OBJECT</var>.<var>MOMENT_NAME</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>where <var>THEORETICAL_MOMENT</var> is one of the following:
</p>
<dl compact="compact">
<dt><code>covariance</code></dt>
<dd><p>Variance-covariance of endogenous variables
</p>
</dd>
<dt><code>contemporaneous_correlation</code></dt>
<dd><p>Contemporaneous correlation of endogenous variables when the <a href="Stochastic-solution-and-simulation.html#contemporaneous_005fcorrelation">contemporaneous_correlation</a> option is specified.
</p>
</dd>
<dt><code>correlation</code></dt>
<dd><p>Auto- and cross-correlation of endogenous variables. Fields are vectors with correlations from 1 up to order <code>options_.ar</code>
</p>
</dd>
<dt><code>VarianceDecomposition</code></dt>
<dd><p>Decomposition of variance (unconditional variance, <i>i.e.</i> at horizon infinity)<a name="DOCF5" href="#FOOT5"><sup>5</sup></a>
</p>
</dd>
<dt><code>ConditionalVarianceDecomposition</code></dt>
<dd><p>Only if the <code>conditional_variance_decomposition</code> option has been
specified
</p>
</dd>
</dl>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fdensity"></a>MATLAB/Octave variable: <strong>oo_.posterior_density</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_density.<var>PARAMETER_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fhpdinf"></a>MATLAB/Octave variable: <strong>oo_.posterior_hpdinf</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_hpdinf.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fhpdsup"></a>MATLAB/Octave variable: <strong>oo_.posterior_hpdsup</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_hpdsup.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fmean"></a>MATLAB/Octave variable: <strong>oo_.posterior_mean</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_mean.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fmode"></a>MATLAB/Octave variable: <strong>oo_.posterior_mode</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command during mode-finding. Fields are
of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_mode.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fstd_005fat_005fmode"></a>MATLAB/Octave variable: <strong>oo_.posterior_std_at_mode</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command during mode-finding. It is based on the
inverse Hessian at <code>oo_.posterior_mode</code>. Fields are
of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_std_at_mode.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fstd"></a>MATLAB/Octave variable: <strong>oo_.posterior_std</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_std.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fvar"></a>MATLAB/Octave variable: <strong>oo_.posterior_var</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_var.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eposterior_005fmedian"></a>MATLAB/Octave variable: <strong>oo_.posterior_median</strong></dt>
<dd><p>Variable set by the <code>estimation</code> command, if it is used with
<code>mh_replic > 0</code> or <code>load_mh_file</code> option. Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.posterior_median.<var>ESTIMATED_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
</dd></dl>
<p>Here are some examples of generated variables:
</p>
<div class="example">
<pre class="example">oo_.posterior_mode.parameters.alp
oo_.posterior_mean.shocks_std.ex
oo_.posterior_hpdsup.measurement_errors_corr.gdp_conso
</pre></div>
<dl>
<dt><a name="index-oo_005f_002edsge_005fvar_002eposterior_005fmode"></a>MATLAB/Octave variable: <strong>oo_.dsge_var.posterior_mode</strong></dt>
<dd><a name="oo_005f_002edsge_005fvar_002eposterior_005fmode"></a><p>Structure set by the <code>dsge_var</code> option of the <code>estimation</code> command after <code>mode_compute</code>.
</p>
<p>The following fields are saved:
</p>
<dl compact="compact">
<dt><code>PHI_tilde</code></dt>
<dd><p>Stacked posterior DSGE-BVAR autoregressive matrices at the mode (equation (28) of
<cite>Del Negro and Schorfheide (2004)</cite>).
</p>
</dd>
<dt><code>SIGMA_u_tilde</code></dt>
<dd><p>Posterior covariance matrix of the DSGE-BVAR at the mode (equation (29) of
<cite>Del Negro and Schorfheide (2004)</cite>).
</p>
</dd>
<dt><code>iXX</code></dt>
<dd><p>Posterior population moments in the DSGE-BVAR at the mode (<!-- MATH
$inv(\lambda T \Gamma_{XX}^*+ X'X)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="147" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_85.png"
ALT="$inv(\lambda T \Gamma_{XX}^*+ X'X)$"></SPAN>).
</p>
</dd>
<dt><code>prior</code></dt>
<dd><p>Structure storing the DSGE-BVAR prior.
</p>
<dl compact="compact">
<dt><code>PHI_star</code></dt>
<dd><p>Stacked prior DSGE-BVAR autoregressive matrices at the mode (equation (22) of
<cite>Del Negro and Schorfheide (2004)</cite>).
</p>
</dd>
<dt><code>SIGMA_star</code></dt>
<dd><p>Prior covariance matrix of the DSGE-BVAR at the mode (equation (23) of
<cite>Del Negro and Schorfheide (2004)</cite>).
</p>
</dd>
<dt><code>ArtificialSampleSize</code></dt>
<dd><p>Size of the artifical prior sample (<!-- MATH
$inv(\lambda T)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="61" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_86.png"
ALT="$inv(\lambda T)$"></SPAN>).
</p>
</dd>
<dt><code>DF</code></dt>
<dd><p>Prior degrees of freedom (<!-- MATH
$inv(\lambda T-k-n)$
-->
<SPAN CLASS="MATH"><IMG
WIDTH="118" HEIGHT="32" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_87.png"
ALT="$inv(\lambda T-k-n)$"></SPAN>).
</p>
</dd>
<dt><code>iGXX_star</code></dt>
<dd><p>Inverse of the theoretical prior “covariance” between X and X (<SPAN CLASS="MATH"><IMG
WIDTH="30" HEIGHT="30" ALIGN="MIDDLE" BORDER="0"
SRC="dynare.html_88.png"
ALT="$\Gamma_{xx}^*$"></SPAN> in <cite>Del Negro and Schorfheide (2004)</cite>).
</p>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002eRecursiveForecast"></a>MATLAB/Octave variable: <strong>oo_.RecursiveForecast</strong></dt>
<dd><a name="RecursiveForecast"></a><p>Variable set by the <code>forecast</code> option of the <code>estimation</code> command when used with the nobs = [<var>INTEGER1</var>:<var>INTEGER2</var>] option (see <a href="#nobs1">nobs</a>).
</p>
<p>Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.RecursiveForecast.<var>FORECAST_OBJECT</var>.<var>VARIABLE_NAME</var></code>
</pre></div>
<p>where <var>FORECAST_OBJECT</var> is one of the following<a name="DOCF6" href="#FOOT6"><sup>6</sup></a>:
</p>
<dl compact="compact">
<dt><code>Mean</code></dt>
<dd><p>Mean of the posterior forecast distribution
</p>
</dd>
<dt><code>HPDinf/HPDsup</code></dt>
<dd><p>Upper/lower bound of the 90% HPD interval taking into account only parameter uncertainty (corresponding to <a href="Forecasting.html#oo_005f_002eMeanForecast">oo_.MeanForecast</a>)
</p>
</dd>
<dt><code>HPDTotalinf/HPDTotalsup</code></dt>
<dd><p>Upper/lower bound of the 90% HPD interval taking into account both parameter and future shock uncertainty (corresponding to <a href="Forecasting.html#oo_005f_002ePointForecast">oo_.PointForecast</a>)
</p>
</dd>
</dl>
<p><var>VARIABLE_NAME</var> contains a matrix of the following size: number of time periods for which forecasts are requested using the nobs = [<var>INTEGER1</var>:<var>INTEGER2</var>] option times the number of forecast horizons requested by the <code>forecast</code> option. <i>i.e.</i>, the row indicates the period at which the forecast is performed and the column the respective k-step ahead forecast. The starting periods are sorted in ascending order, not in declaration order.
</p>
</dd></dl>
<dl>
<dt><a name="index-oo_005f_002econvergence_002egeweke"></a>MATLAB/Octave variable: <strong>oo_.convergence.geweke</strong></dt>
<dd><a name="convergence_002egeweke"></a><p>Variable set by the convergence diagnostics of the <code>estimation</code> command when used with <a href="#mh_005fnblocks">mh_nblocks</a>=1 option (see <a href="#mh_005fnblocks">mh_nblocks</a>).
</p>
<p>Fields are of the form:
</p><div class="example">
<pre class="example"><code>oo_.convergence.geweke.<var>VARIABLE_NAME</var>.<var>DIAGNOSTIC_OBJECT</var></code>
</pre></div>
<p>where <var>DIAGNOSTIC_OBJECT</var> is one of the following:
</p>
<dl compact="compact">
<dt><code>posteriormean</code></dt>
<dd><p>Mean of the posterior parameter distribution
</p>
</dd>
<dt><code>posteriorstd</code></dt>
<dd><p>Standard deviation of the posterior parameter distribution
</p>
</dd>
<dt><code>nse_iid</code></dt>
<dd><p>Numerical standard error (NSE) under the assumption of iid draws
</p>
</dd>
<dt><code>rne_iid</code></dt>
<dd><p>Relative numerical efficiency (RNE) under the assumption of iid draws
</p>
</dd>
<dt><code>nse_x</code></dt>
<dd><p>Numerical standard error (NSE) when using an x% taper
</p>
</dd>
<dt><code>rne_x</code></dt>
<dd><p>Relative numerical efficiency (RNE) when using an x% taper
</p>
</dd>
<dt><code>pooled_mean</code></dt>
<dd><p>Mean of the parameter when pooling the beginning and end parts of the chain
specified in <a href="#geweke_005finterval">geweke_interval</a> and weighting them with their relative precision.
It is a vector containing the results under the iid assumption followed by the ones
using the <a href="#taper_005fsteps">taper_steps</a> (see <a href="#taper_005fsteps">taper_steps</a>).
</p>
</dd>
<dt><code>pooled_nse</code></dt>
<dd><p>NSE of the parameter when pooling the beginning and end parts of the chain and weighting them with their relative precision. See <code>pooled_mean</code>
</p>
</dd>
<dt><code>prob_chi2_test</code></dt>
<dd><p>p-value of a chi squared test for equality of means in the beginning and the end
of the MCMC chain. See <code>pooled_mean</code>. A value above 0.05 indicates that
the null hypothesis of equal means and thus convergence cannot be rejected
at the 5 percent level. Differing values along the <a href="#taper_005fsteps">taper_steps</a> signal
the presence of significant autocorrelation in draws. In this case, the
estimates using a higher tapering are usually more reliable.
</p>
</dd>
</dl>
</dd></dl>
<dl>
<dt><a name="index-unit_005froot_005fvars"></a>Command: <strong>unit_root_vars</strong> <em><var>VARIABLE_NAME</var>…;</em></dt>
<dd>
<p>This command is deprecated. Use <code>estimation</code> option <code>diffuse_filter</code> instead for estimating a model with non-stationary observed variables or <code>steady</code> option <code>nocheck</code> to prevent <code>steady</code> to check the steady state returned by your steady state file.
</p></dd></dl>
<p>Dynare also has the ability to estimate Bayesian VARs:
</p>
<dl>
<dt><a name="index-bvar_005fdensity"></a>Command: <strong>bvar_density</strong> <em>;</em></dt>
<dd><p>Computes the marginal density of an estimated BVAR model, using
Minnesota priors.
</p>
<p>See <samp>bvar-a-la-sims.pdf</samp>, which comes with Dynare distribution,
for more information on this command.
</p></dd></dl>
<div class="footnote">
<hr>
<h4 class="footnotes-heading">Footnotes</h4>
<h3><a name="FOOT3" href="#DOCF3">(3)</a></h3>
<p>See option <a href="Forecasting.html#conf_005fsig">conf_sig</a>
to change the size of the HPD interval</p>
<h3><a name="FOOT4" href="#DOCF4">(4)</a></h3>
<p>See option <a href="Forecasting.html#conf_005fsig">conf_sig</a>
to change the size of the HPD interval</p>
<h3><a name="FOOT5" href="#DOCF5">(5)</a></h3>
<p>When the shocks are correlated, it
is the decomposition of orthogonalized shocks via Cholesky
decomposition according to the order of declaration of shocks
(see <a href="Variable-declarations.html#Variable-declarations">Variable declarations</a>)</p>
<h3><a name="FOOT6" href="#DOCF6">(6)</a></h3>
<p>See <a href="#forecast">forecast</a> for more information</p>
</div>
<hr>
<div class="header">
<p>
Next: <a href="Model-Comparison.html#Model-Comparison" accesskey="n" rel="next">Model Comparison</a>, Previous: <a href="Stochastic-solution-and-simulation.html#Stochastic-solution-and-simulation" accesskey="p" rel="prev">Stochastic solution and simulation</a>, Up: <a href="The-Model-file.html#The-Model-file" accesskey="u" rel="up">The Model file</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Command-and-Function-Index.html#Command-and-Function-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|