/usr/src/castle-game-engine-6.4/3d/castletriangles.pas is in castle-game-engine-src 6.4+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 | {
Copyright 2003-2017 Michalis Kamburelis.
This file is part of "Castle Game Engine".
"Castle Game Engine" is free software; see the file COPYING.txt,
included in this distribution, for details about the copyright.
"Castle Game Engine" is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
----------------------------------------------------------------------------
}
{ Triangles. In 2D, 3D and 4D space. }
unit CastleTriangles;
{$I castleconf.inc}
{$I octreeconf.inc}
interface
uses Generics.Collections,
CastleUtils, CastleVectors;
type
{ Triangle in 2D space. }
TTriangle2 = record
Data: packed array [0..2] of TVector2;
{ Multiline triangle description. }
function ToString: string;
end;
PTriangle2 = ^TTriangle2;
{ Triangle in 3D space.
Triangle's three points must not be collinear,
i.e. routines in this unit generally don't accept "degenerated" triangles
that are not really triangles. So 3D triangle must unambiguously
define some plane in the 3D space. The only function in this unit
that is able to handle "degenerated" triangles is @link(TTriangle3.IsValid),
which is exactly used to check whether the triangle is degenerated. }
TTriangle3 = record
public
type
TIndex = 0..2;
strict private
function GetItems(const Index: TIndex): TVector3;
procedure SetItems(const Index: TIndex; const Value: TVector3);
public
Data: packed array [TIndex] of TVector3;
{ Access the points of the triangle.
This is the same as accessing @link(Data) field,
it is also the default record property so you can just write @code(MyTriangle[0])
instead of @code(MyTriangle.Items[0]) or @code(MyTriangle.Data[0]). }
property Items [const Index: TIndex]: TVector3 read GetItems write SetItems; default;
{ Multiline triangle description. }
function ToString: string;
{ Check does the triangle define a correct plane in 3D space.
That is, check does the triangle not degenerate to a point or line segment
(which can happen when some points are at the same position, or are colinear). }
function IsValid: boolean;
{ Like a normal vector of a triangle (see @link(Normal)), but not necessarily normalized. }
function Direction: TVector3;
{ Normal vector of a triangle. Returns vector pointing our from CCW triangle
side (for right-handed coordinate system), and orthogonal to triangle plane.
For degenerated triangles (when @link(IsValid) would return @false),
we return zero vector. }
function Normal: TVector3;
{ Plane of the triangle. Note that this has many possible solutions
(plane representation as equation @code(Ax + By + Cz + D = 0)
is not unambiguous), this just returns some solution deterministically.
It's guaranteed that the direction of this plane (i.e. first 3 items
of returned vector) will be in the same direction as calcualted by
@link(Direction), which means that it points outward from CCW side of
the triangle (assuming right-handed coord system).
For NormalizedPlane, this direction is also normalized
(makes a vector with length 1). This way NormalizedPlane calculates
also @link(Normal).
For three points that do not define a plane, a plane with first three
components = 0 is returned. In fact, the 4th component will be zero too
in this case (for now), but don't depend on it.
@groupBegin }
function Plane: TVector4;
function NormalizedPlane: TVector4;
{ Transform triangle by 4x4 matrix. This simply transforms each triangle point.
@raises(ETransformedResultInvalid Raised when matrix
will transform some point to a direction (vector with 4th component
equal zero). In this case we just cannot interpret the result as a 3D point.) }
function Transform(const M: TMatrix4): TTriangle3;
{ Surface area of 3D triangle.
This works for degenerated (equal to line segment or even single point)
triangles too: returns 0 for them.
@groupBegin }
function Area: Single;
function AreaSqr: Single;
{ @groupEnd }
{ Random triangle point, chosen with a constant density for triangle area. }
function RandomPoint: TVector3;
{ For a given Point lying on a given Triangle, calculate it's barycentric
coordinates.
The resulting Barycentric coordinates can be used for linearly
interpolating values along the triangle, as they satisfy the equation:
@preformatted(
Result.Data[0] * Triangle.Data[0] +
Result.Data[1] * Triangle.Data[1] +
Result.Data[2] * Triangle.Data[2] = Point
)
See also [http://en.wikipedia.org/wiki/Barycentric_coordinate_system_%28mathematics%29] }
function Barycentric(const Point: TVector3): TVector3;
end;
TTriangle3List = {$ifdef CASTLE_OBJFPC}specialize{$endif} TStructList<TTriangle3>;
PTriangle3 = ^TTriangle3;
{ Triangle in 4D (or 3D homogeneous) space. }
TTriangle4 = record
Data: packed array [0..2] of TVector4;
{ Multiline triangle description. }
function ToString: string;
end;
PTriangle4 = ^TTriangle4;
TTriangle2Single = TTriangle2 deprecated 'use TTriangle2';
TTriangle3Single = TTriangle3 deprecated 'use TTriangle3';
TTriangle4Single = TTriangle4 deprecated 'use TTriangle4';
PTriangle2Single = PTriangle2 deprecated 'use PTriangle2';
PTriangle3Single = PTriangle3 deprecated 'use PTriangle3';
PTriangle4Single = PTriangle4 deprecated 'use PTriangle4';
function Triangle3(const p0, p1, p2: TVector3): TTriangle3;
{ Normal vector of a triangle defined as three indexes intro vertex array.
VerticesStride is the shift between vertex values in the array,
VerticesStride = 0 behaves like VerticesStride = SizeOf(TVector3). }
function IndexedTriangleNormal(const Indexes: TVector3Cardinal;
VerticesArray: PVector3; VerticesStride: integer): TVector3;
type
{ Triangle expressed in particular coordinate system, for TTriangle. }
TTriangleGeometry = record
Triangle: TTriangle3;
{ Area of the triangle. }
{$ifdef CONSERVE_TRIANGLE_MEMORY_MORE}
function Area: Single;
{$else}
Area: Single;
{$endif}
{$ifdef CONSERVE_TRIANGLE_MEMORY_MORE}
function Plane: TVector4;
function Normal: TVector3;
{$else}
case Integer of
0: ({ Triangle normal, a 3D plane containing our Triangle, with normalized
direction vector. }
Plane: TVector4;);
1: (Normal: TVector3;);
{$endif}
end;
{ TFaceIndex ----------------------------------------------------------------- }
type
{ Describe a range of indexes where the face (polygon and such) is located.
When a triangle is part of a face defined by the coordIndex field
(like in IndexedFaceSet) then this describes where
in this coordIndex this face is located. This is useful for
editing / removing a face corresponding to a given triangle.
Otherwise, both IndexBegin and IndexEnd are -1. }
TFaceIndex = object
IndexBegin, IndexEnd: Integer;
end;
TFaceIndexesList = {$ifdef CASTLE_OBJFPC}specialize{$endif} TStructList<TFaceIndex>;
const
UnknownFaceIndex: TFaceIndex = (IndexBegin: -1; IndexEnd: -1);
{ TTriangle ------------------------------------------------------------------ }
type
TMailboxTag = Int64;
{ Triangle in 3D.
This object should always be initialized by @link(Init),
and updated only by it's methods (never modify fields of
this object directly). }
TTriangle = record
public
{ Geometry of this item.
We need two geometry descriptions:
@unorderedList(
@item(Local is based on initial Triangle, given when constructing
this TTriangle. It's constant for this TTriangle. It's used
by octree collision routines, that is things like
TBaseTrianglesOctree.SphereCollision, TBaseTrianglesOctree.RayCollision
and such expect parameters in the same coord space.
This may be local coord space of this shape (this is used
by TShape.OctreeTriangles) or world coord space
(this is used by TCastleSceneCore.OctreeTriangles).)
@item(World is the geometry of Local transformed to be in world
coordinates. Initially, World is just a copy of Local.
If Local already contains world-space geometry, then World
can just remain constant, and so is always Local copy.
If Local contains local shape-space geometry, then World
will have to be updated by TTriangle.UpdateWorld whenever some octree item's
geometry will be needed in world coords. This will have to be
done e.g. by TBaseTrianglesOctree.XxxCollision for each returned item.)
) }
Local, World: TTriangleGeometry;
{ Shape containing this triangle.
This is always an instance of TShape class, but due
to unit dependencies it cannot be declared as such here.
Use X3DTriangles unit to have a "record helper" method that returns
a Shape as TShape instance. }
InternalShape: TObject;
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
{ Tag of an object (like a ray or a line segment)
for which we have saved an
intersection result. Intersection result is in
MailboxIsIntersection, MailboxIntersection, MailboxIntersectionDistance.
To make things correct, we obviously assume that every segment
and ray have different tags. Also, tag -1 is reserved.
In practice, we simply initialize MailboxSavedTag to -1,
and each new segment/ray get consecutive tags starting from 0.
@italic(History): a naive implementation at the beginning
was not using tags, instead I had MailboxState (empty, ray or segment)
and I was storing ray/line vectors (2 TVector3 values).
This had much larger size (6 * SizeOf(Single) + SizeOf(enum) = 28 bytes)
than tag, which is important (3D models have easily thousands of
TTriangle). And it took longer to compare and assign,
so it was working much slower.
@groupBegin }
MailboxSavedTag: TMailboxTag;
MailboxIsIntersection: boolean;
MailboxIntersection: TVector3;
MailboxIntersectionDistance: Single;
{ @groupEnd }
{$endif}
{$ifndef CONSERVE_TRIANGLE_MEMORY}
{ Normal vectors, at each triangle vertex. }
Normal: TTriangle3;
{ Texture coordinates, for each triangle point.
Each texture coordinate is a 4D vector, since we may have 3D textures
referenced by 4D (homogeneous) coordinates. For normal 2D textures,
you can simply take the first 2 components of the vector,
and ignore the remaining 2 components. The 3th component is always
0 if was not specified (if model had only 2D texture coords).
The 4th component is always 1 if was not specified
(if model had only 2D or 3D texture coords).
In case of multi-texturing, this describes coordinates
of the first texture unit.
In case no texture is defined, this is undefined. }
TexCoord: TTriangle4;
{ The indexes of this face, for editing / removing it.
See TFaceIndex. }
Face: TFaceIndex;
{$else}
{ The indexes of this face, for editing / removing it.
See TFaceIndex. }
function Face: TFaceIndex;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{ Initialize new triangle.
Given ATriangle must satisfy ATriangle.IsValid. }
procedure Init(AShape: TObject;
const ATriangle: TTriangle3;
const ANormal: TTriangle3; const ATexCoord: TTriangle4;
const AFace: TFaceIndex);
{ Check collisions between TTriangle and ray/segment.
Always use these routines to check for collisions,
to use mailboxes if possible. Mailboxes are used only if this was
compiled with TRIANGLE_OCTREE_USE_MAILBOX defined.
Increments TriangleCollisionTestsCounter if actual test was done
(that is, if we couldn't use mailbox to get the result quickier).
@groupBegin }
function SegmentDirCollision(
out Intersection: TVector3;
out IntersectionDistance: Single;
const Segment0, SegmentVector: TVector3;
const SegmentTag: TMailboxTag): boolean;
function RayCollision(
out Intersection: TVector3;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3;
const RayTag: TMailboxTag): boolean;
{ @groupEnd }
{$ifndef CONSERVE_TRIANGLE_MEMORY}
{ For a given position (in world coordinates), return the texture
coordinate at this point. It is an interpolated texture coordinate
from our per-vertex texture coordinates in @link(TexCoord) field.
This assumes that Position actually lies within the triangle.
The ITexCoord2D returns the same, but cut to the first 2 texture
coordinate components. Usable for normal 2D textures.
@groupBegin }
function ITexCoord(const Point: TVector3): TVector4;
function ITexCoord2D(const Point: TVector3): TVector2;
{ @groupEnd }
{ For a given position (in world coordinates), return the smooth
normal vector at this point. It is an interpolated normal
from our per-vertex normals in the @link(Normal) field,
thus is supports also the case when you have smooth shading
(normals change throughout the triangle).
Like the @link(Normal) field, the returned vector is
a normal vector in the local coordinates.
Use @link(TTriangleHelper.INormalWorldSpace) to get a normal vector in scene
coordinates.
This assumes that Position actally lies within the triangle. }
function INormal(const Point: TVector3): TVector3;
{ Like INormal, but not necessarily normalized. }
function INormalCore(const Point: TVector3): TVector3;
{$endif}
end;
PTriangle = ^TTriangle;
TTriangleList = specialize TStructList<TTriangle>;
{ Return for given Triangle do we want to ignore collisions with it.
For now, Sender is always TTriangleOctree. }
TTriangleIgnoreFunc = function (const Sender: TObject;
const Triangle: PTriangle): boolean of object;
T3DTriangleGeometry = TTriangleGeometry deprecated 'use TTriangleGeometry';
T3DTriangle = TTriangle deprecated 'use TTriangle';
P3DTriangle = PTriangle deprecated 'use PTriangle';
T3DTriangleIgnoreFunc = TTriangleIgnoreFunc deprecated 'use TTriangleIgnoreFunc';
var
{ Counter of collision tests done by TTriangle when the actual collision
calculation had to be done.
This counts all calls to TTriangle.SegmentDirCollision and
TTriangle.RayCollision when the result had to be actually geometrically
calculated (result was not in the cache aka "mailbox").
It is especially useful to look at this after using some spatial
data structure, like an octree. The goal of tree structures is to
minimize this number.
It is a global variable, because that's the most comfortable way to use
it. Triangles are usually wrapped in an octree (like TTriangleOctree),
or even in an octree of octrees (like TShapeOctree).
Tracking collisions using the global variable is most comfortable,
instead of spending time on propagating this (purely debugging) information
through the octree structures. }
TriangleCollisionTestsCounter: Cardinal;
{ polygons ------------------------------------------------------------------- }
{ Calculates normalized normal vector for polygon composed from
indexed vertices. Polygon is defines as vertices
Verts^[Indices[0]], Verts^[Indices[1]] ... Verts^[Indices[IndicesCount-1]].
Returns normal pointing from CCW.
It's secured against invalid indexes on Indices list (that's the only
reason why it takes VertsCount parameter, after all): they are ignored.
If the polygon is degenerated, that is it doesn't determine a plane in
3D space (this includes, but is not limited, to cases when there are
less than 3 valid points, like when IndicesCount < 3)
then it returns ResultForIncorrectPoly.
@groupBegin }
function IndexedConvexPolygonNormal(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer;
const ResultForIncorrectPoly: TVector3): TVector3; overload;
function IndexedConvexPolygonNormal(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer; const VertsStride: PtrUInt;
const ResultForIncorrectPoly: TVector3): TVector3; overload;
{ @groupEnd }
{ Surface area of indexed convex polygon.
Polygon is defines as vertices
Verts^[Indices[0]], Verts^[Indices[1]] ... Verts^[Indices[IndicesCount-1]].
It's secured against invalid indexes on Indices list (that's the only
reason why it takes VertsCount parameter, after all): they are ignored.
@groupBegin }
function IndexedConvexPolygonArea(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer): Single; overload;
function IndexedConvexPolygonArea(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer; const VertsStride: PtrUInt): Single; overload;
{ @groupEnd }
{ Are the polygon points ordered CCW (counter-clockwise). When viewed
with typical camera settings, that is +Y goes up and +X goes right.
Polygon doesn't have to be convex. Polygon doesn't have to have all triangles
valid, that is it's OK if some polygon triangles degenerate into points
or line segments.
Returns something > 0 if polygon is CCW, or < 0 when it's not.
Returns zero when polygon has area 0.
@groupBegin }
function IsPolygon2dCCW(Verts: PVector2Array; const VertsCount: Integer): Single; overload;
function IsPolygon2dCCW(const Verts: array of TVector2): Single; overload;
{ @groupEnd }
{ Calculate polygon area.
Polygon doesn't have to be convex. Polygon doesn't have to have all triangles
valid, that is it's OK if some polygon triangles degenerate into points
or line segments.
@groupBegin }
function Polygon2dArea(Verts: PVector2Array; const VertsCount: Integer): Single; overload;
function Polygon2dArea(const Verts: array of TVector2): Single; overload;
{ @groupEnd }
{ Assuming a point lies on a triangle plane,
check does it lie inside a triangle.
Give first 3 components of triangle plane as TriDir.
@groupBegin }
function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3;
const Tri: TTriangle3; const TriDir: TVector3): boolean; overload;
{ @groupEnd }
{ Check does point lie inside a triangle, in 2D.
@groupBegin }
function IsPointWithinTriangle2D(const P: TVector2;
const Tri: TTriangle2): boolean; overload;
function IsPointWithinTriangle2D(const P: TVector2;
const Tri: TTriangle3): boolean; overload;
{ @groupEnd }
{ Check triangle with line segment collision.
You can pass the triangle plane along with a triangle,
this will speed calculation.
@groupBegin }
function IsTriangleSegmentCollision(const Tri: TTriangle3;
const TriPlane: TVector4;
const Pos1, Pos2: TVector3): boolean; overload;
function IsTriangleSegmentCollision(const Tri: TTriangle3;
const Pos1, Pos2: TVector3): boolean; overload;
{ @groupEnd }
function IsTriangleSphereCollision(const Tri: TTriangle3;
const TriPlane: TVector4;
const SphereCenter: TVector3; SphereRadius: Single): boolean; overload;
function IsTriangleSphereCollision(const Tri: TTriangle3;
const SphereCenter: TVector3; SphereRadius: Single): boolean; overload;
{ Test collision between triangle and sphere in 2D.
If you use overloaded version with TTriangle3, the Z coordinate
of the triangle corners is simply ignored, so everything is projected
on the Z=0 plane.
@groupBegin }
function IsTriangleSphereCollision2D(const Tri: TTriangle2;
const SphereCenter: TVector2; SphereRadius: Single): boolean; overload;
function IsTriangleSphereCollision2D(const Tri: TTriangle3;
const SphereCenter: TVector2; SphereRadius: Single): boolean; overload;
{ @groupEnd }
{ Calculate triangle with line segment collision.
You can pass the triangle plane along with a triangle,
this will speed calculation.
When there's no intersection, returns @false and doesn't modify Intersection
or T.
@groupBegin }
function TryTriangleSegmentCollision(var Intersection: TVector3;
const Tri: TTriangle3; const TriPlane: TVector4;
const Pos1, Pos2: TVector3): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3;
const Tri: TTriangle3; const TriPlane: TVector4;
const Segment0, SegmentVector: TVector3): boolean; overload;
function TryTriangleSegmentDirCollision(var Intersection: TVector3; var T: Single;
const Tri: TTriangle3; const TriPlane: TVector4;
const Segment0, SegmentVector: TVector3): boolean; overload;
{ @groupEnd }
{ Calculate triangle with ray collision.
You can pass the triangle plane along with a triangle,
this will speed calculation.
When there's no intersection, returns @false and doesn't modify Intersection
or T.
@groupBegin }
function TryTriangleRayCollision(var Intersection: TVector3;
const Tri: TTriangle3; const TriPlane: TVector4;
const RayOrigin, RayDirection: TVector3): boolean; overload;
function TryTriangleRayCollision(var Intersection: TVector3; var T: Single;
const Tri: TTriangle3; const TriPlane: TVector4;
const RayOrigin, RayDirection: TVector3): boolean; overload;
{ @groupEnd }
function TriangleDirection(const p0, p1, p2: TVector3): TVector3; overload;
function TriangleDir(const p0, p1, p2: TVector3): TVector3; overload; deprecated 'use TriangleDirection';
function TriangleNormal(const p0, p1, p2: TVector3): TVector3; overload;
function TrianglePlane(const p0, p1, p2: TVector3): TVector4; overload;
function TriangleDir(const T: TTriangle3): TVector3; overload; deprecated 'use Triangle.Direction';
function TriangleNormal(const T: TTriangle3): TVector3; overload; deprecated 'use Triangle.Normal';
function TrianglePlane(const T: TTriangle3): TVector4; overload; deprecated 'use Triangle.Plane';
function TriangleTransform(const T: TTriangle3; const M: TMatrix4): TTriangle3; deprecated 'use Triangle.Transform';
function TriangleNormPlane(const T: TTriangle3): TVector4; deprecated 'use Triangle.NormalizedPlane';
function TriangleArea(const T: TTriangle3): Single; deprecated 'use Triangle.Area';
function Barycentric(const T: TTriangle3; const Point: TVector3): TVector3; deprecated 'use Triangle.Barycentric';
function TriangleToNiceStr(const T: TTriangle3): string; deprecated 'use T.ToString';
implementation
uses Math;
function Triangle3(const p0, p1, p2: TVector3): TTriangle3;
begin
Result.Data[0] := p0;
Result.Data[1] := p1;
Result.Data[2] := p2;
end;
function IndexedTriangleNormal(const Indexes: TVector3Cardinal;
VerticesArray: PVector3; VerticesStride: integer): TVector3;
var
Tri: TTriangle3;
i: integer;
begin
if VerticesStride = 0 then VerticesStride := SizeOf(TVector3);
for i := 0 to 2 do
Tri.Data[i] := PVector3(PointerAdd(VerticesArray, VerticesStride*Integer(Indexes.Data[i])))^;
Result := Tri.Normal;
end;
function IndexedConvexPolygonNormal(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer;
const ResultForIncorrectPoly: TVector3): TVector3;
begin
Result := IndexedConvexPolygonNormal(
Indices, IndicesCount,
Verts, VertsCount, SizeOf(TVector3),
ResultForIncorrectPoly);
end;
function IndexedConvexPolygonNormal(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer; const VertsStride: PtrUInt;
const ResultForIncorrectPoly: TVector3): TVector3;
{ Like Verts^[Indices[I]] but takes into account VertsStride. }
function VertsIndices(const I: Integer): PVector3; inline;
begin
Result := PVector3(PtrUInt(Verts) + PtrUInt(Indices^[I]) * VertsStride);
end;
var
Tri: TTriangle3;
I: Integer;
begin
{ We calculate normal vector as an average of normal vectors of
polygon's triangles. Not taking into account invalid Indices
(pointing beyond the VertsCount range) and degenerated triangles.
This isn't the fastest method possible, but it's safest.
It works Ok even if the polygon isn't precisely planar, or has
some degenerate triangles. }
Result := TVector3.Zero;
I := 0;
while (I < IndicesCount) and (Indices^[I] >= VertsCount) do Inc(I);
{ This secures us against polygons with no valid Indices[].
(including case when IndicesCount = 0). }
if I >= IndicesCount then
Exit(ResultForIncorrectPoly);
Tri.Data[0] := VertsIndices(I)^;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit(ResultForIncorrectPoly);
Tri.Data[1] := VertsIndices(I)^;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit(ResultForIncorrectPoly);
Tri.Data[2] := VertsIndices(I)^;
if Tri.IsValid then
Result := Result + Tri.Normal;
repeat
{ find next valid point, which makes another triangle of polygon }
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Break;
Tri.Data[1] := Tri.Data[2];
Tri.Data[2] := VertsIndices(I)^;
if Tri.IsValid then
Result := Result + Tri.Normal;
until false;
{ All triangle normals are summed up now. (Each triangle normal was also
normalized, to have equal contribution to the Result.)
Normalize Result now, if we had any valid triangle. }
if Result.IsZero then
Result := ResultForIncorrectPoly
else
Result.NormalizeMe;
end;
function IndexedConvexPolygonArea(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer): Single;
begin
Result := IndexedConvexPolygonArea(
Indices, IndicesCount,
Verts, VertsCount, SizeOf(TVector3));
end;
function IndexedConvexPolygonArea(
Indices: PLongintArray; IndicesCount: integer;
Verts: PVector3Array; const VertsCount: Integer; const VertsStride: PtrUInt): Single;
{ Like Verts^[Indices[I]] but takes into account VertsStride. }
function VertsIndices(const I: Integer): PVector3; inline;
begin
Result := PVector3(PtrUInt(Verts) + PtrUInt(Indices^[I]) * VertsStride);
end;
var
Tri: TTriangle3;
i: integer;
begin
{ We calculate area as a sum of areas of
polygon's triangles. Not taking into account invalid Indices
(pointing beyond the VertsCount range). }
Result := 0;
I := 0;
while (I < IndicesCount) and (Indices^[I] >= VertsCount) do Inc(I);
{ This secures us against polygons with no valid Indices[].
(including case when IndicesCount = 0). }
if I >= IndicesCount then
Exit;
Tri.Data[0] := VertsIndices(I)^;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit;
Tri.Data[1] := VertsIndices(I)^;
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Exit;
Tri.Data[2] := VertsIndices(I)^;
Result := Result + Tri.Area;
repeat
{ find next valid point, which makes another triangle of polygon }
repeat Inc(I) until (I >= IndicesCount) or (Indices^[I] < VertsCount);
if I >= IndicesCount then
Break;
Tri.Data[1] := Tri.Data[2];
Tri.Data[2] := VertsIndices(I)^;
Result := Result + Tri.Area;
until false;
end;
function IsPolygon2dCCW(Verts: PVector2Array; const VertsCount: Integer): Single;
{ licz pole polygonu CCW.
Implementacja na podstawie "Graphic Gems II", gem I.1
W Graphic Gems pisza ze to jest formula na polygon CCW (na plaszczyznie
kartezjanskiej, z +X w prawo i +Y w gore) i nie podaja tego Abs() na koncu.
Widac jednak ze jesli podamy zamiast wielokata CCW ten sam wielokat ale
z wierzcholkami w odwrotnej kolejnosci to procedura policzy dokladnie to samo
ale skosy dodatnie zostana teraz policzone jako ujemne a ujemne jako dodatnie.
Czyli dostaniemy ujemne pole.
Mozna wiec wykorzystac powyzszy fakt aby testowac czy polygon jest CCW :
brac liczona tu wartosc i jesli >0 to CCW, <0 to CW
(jesli =0 to nie wiadomo no i polygony o polu = 0 rzeczywiscie nie maja
jednoznacznej orientacji). Moznaby pomyslec ze mozna znalezc prostsze
testy na to czy polygon jest CCW - mozna przeciez testowac tylko wyciety
z polygonu trojkat. Ale uwaga - wtedy trzebaby uwazac i koniecznie
wybrac z polygonu niezdegenerowany trojkat (o niezerowym polu),
no chyba ze caly polygon mialby zerowe pole. Tak jak jest nie trzeba
sie tym przejmowac i jest prosto.
W ten sposob ponizsza procedura jednoczesnie liczy pole polygonu
(Polygon2dArea jest zaimplementowane jako proste Abs() z wyniku tej
funkcji. }
var
i: Integer;
begin
Result := 0.0;
if VertsCount = 0 then Exit;
{ licze i = 0..VertsCount-2, potem osobno przypadek gdy i = VertsCount-1.
Moglbym ujac je razem, dajac zamiast "Verts^[i+1, 1]"
"Verts^[(i+1)mod VertsCount, 1]" ale szkoda byloby dawac tu "mod" na potrzebe
tylko jednego przypadku. Tak jest optymalniej czasowo. }
for i := 0 to VertsCount-2 do
Result := Result +
Verts^[i].Data[0] * Verts^[i+1].Data[1] -
Verts^[i].Data[1] * Verts^[i+1].Data[0];
Result := Result +
Verts^[VertsCount-1].Data[0] * Verts^[0].Data[1] -
Verts^[VertsCount-1].Data[1] * Verts^[0].Data[0];
Result := Result / 2;
end;
function IsPolygon2dCCW(const Verts: array of TVector2): Single;
begin
Result := IsPolygon2dCCW(@Verts, High(Verts)+1);
end;
function Polygon2dArea(Verts: PVector2Array; const VertsCount: Integer): Single;
begin
Result := Abs(IsPolygon2dCCW(Verts, VertsCount));
end;
function Polygon2dArea(const Verts: array of TVector2): Single;
{ We depend on the (internal) fact that IsPolygonCCW
returns an area in case of CCW, or -area in case of CW polygon. }
begin
Result := Polygon2dArea(@Verts, High(Verts) + 1);
end;
{ TTriangleGeometry -------------------------------------------------------- }
{$ifdef CONSERVE_TRIANGLE_MEMORY_MORE}
function TTriangleGeometry.Area: Single;
begin
Result := Triangle.Area;
end;
function TTriangleGeometry.Plane: TVector4;
begin
Result := Triangle.NormalizedPlane;
end;
function TTriangleGeometry.Normal: TVector3;
begin
Result := Triangle.Normal;
end;
{$endif}
{ TTriangle --------------------------------------------------------------- }
procedure TTriangle.Init(AShape: TObject;
const ATriangle: TTriangle3;
const ANormal: TTriangle3; const ATexCoord: TTriangle4;
const AFace: TFaceIndex);
begin
Local.Triangle := ATriangle;
{$ifndef CONSERVE_TRIANGLE_MEMORY_MORE}
Local.Plane := ATriangle.NormalizedPlane;
Local.Area := ATriangle.Area;
{$endif}
World := Local;
InternalShape := AShape;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
Normal := ANormal;
TexCoord := ATexCoord;
Face := AFace;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
MailboxSavedTag := -1;
{$endif}
end;
function TTriangle.SegmentDirCollision(
out Intersection: TVector3;
out IntersectionDistance: Single;
const Segment0, SegmentVector: TVector3;
const SegmentTag: TMailboxTag): boolean;
begin
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
if MailboxSavedTag = SegmentTag then
begin
result := MailboxIsIntersection;
if result then
begin
Intersection := MailboxIntersection;
IntersectionDistance := MailboxIntersectionDistance;
end;
end else
begin
{$endif}
Result := TryTriangleSegmentDirCollision(
Intersection, IntersectionDistance,
Local.Triangle, Local.Plane,
Segment0, SegmentVector);
Inc(TriangleCollisionTestsCounter);
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
{ save result to mailbox }
MailboxSavedTag := SegmentTag;
MailboxIsIntersection := result;
if result then
begin
MailboxIntersection := Intersection;
MailboxIntersectionDistance := IntersectionDistance;
end;
end;
{$endif}
end;
function TTriangle.RayCollision(
out Intersection: TVector3;
out IntersectionDistance: Single;
const RayOrigin, RayDirection: TVector3;
const RayTag: TMailboxTag): boolean;
begin
{ uwzgledniam tu fakt ze czesto bedzie wypuszczanych wiele promieni
z jednego RayOrigin ale z roznym RayDirection (np. w raytracerze). Wiec lepiej
najpierw porownywac przechowywane w skrzynce RayDirection (niz RayOrigin)
zeby moc szybciej stwierdzic niezgodnosc. }
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
if MailboxSavedTag = RayTag then
begin
result := MailboxIsIntersection;
if result then
begin
Intersection := MailboxIntersection;
IntersectionDistance := MailboxIntersectionDistance;
end;
end else
begin
{$endif}
result := TryTriangleRayCollision(
Intersection, IntersectionDistance,
Local.Triangle, Local.Plane,
RayOrigin, RayDirection);
Inc(TriangleCollisionTestsCounter);
{$ifdef TRIANGLE_OCTREE_USE_MAILBOX}
{ zapisz wyniki do mailboxa }
MailboxSavedTag := RayTag;
MailboxIsIntersection := result;
if result then
begin
MailboxIntersection := Intersection;
MailboxIntersectionDistance := IntersectionDistance;
end;
end;
{$endif}
end;
{$ifndef CONSERVE_TRIANGLE_MEMORY}
function TTriangle.ITexCoord(const Point: TVector3): TVector4;
var
B: TVector3;
begin
B := World.Triangle.Barycentric(Point);
Result := TexCoord.Data[0] * B[0] +
TexCoord.Data[1] * B[1] +
TexCoord.Data[2] * B[2];
end;
function TTriangle.ITexCoord2D(const Point: TVector3): TVector2;
var
V: TVector4;
begin
V := ITexCoord(Point);
Move(V, Result, SizeOf(TVector2));
end;
function TTriangle.INormalCore(const Point: TVector3): TVector3;
var
B: TVector3;
begin
B := World.Triangle.Barycentric(Point);
Result := Normal.Data[0] * B[0] +
Normal.Data[1] * B[1] +
Normal.Data[2] * B[2];
end;
function TTriangle.INormal(const Point: TVector3): TVector3;
begin
Result := INormalCore(Point).Normalize;
end;
{$else}
function TTriangle.Face: TFaceIndex;
begin
Result := UnknownFaceIndex;
end;
{$endif not CONSERVE_TRIANGLE_MEMORY}
{ TTriangle2 ----------------------------------------------------------------- }
function TTriangle2.ToString: string;
begin
Result :=
Data[0].ToString + NL +
Data[1].ToString + NL +
Data[2].ToString + NL;
end;
{ TTriangle3 ----------------------------------------------------------------- }
function TTriangle3.IsValid: boolean;
begin
(* We want to check is Tri a "non-degenerated" triangle,
i.e. does not determine a plane in 3D.
So all points must be different, and also must not be colinear.
We can check this by checking
TVector3.CrossProduct(
(Data[2] - Data[1]),
(Data[0] - Data[1])).Length > 0.
This actually exactly corresponds to saying "this triangle has non-zero area".
It also measn that TrianglePlane is non-zero, since it uses the same
TVector3.CrossProduct.
You can calculate this using TTriangle3.Direction, since TTriangle3.Direction calculates
exactly this TVector3.CrossProduct.
*)
{ This is incorrect:
It would detect as invalid too much (the tests/data/model_manifold.wrl
would fail then, not all edges detected manifold). }
// Result := not IsZero(Direction.LengthSqr);
{ This is incorrect:
It would detect as invalid still too much (the
examples/research_special_rendering_methods/radiance_transfer/data/chinchilla.wrl.gz
would be black then, and not pickable) }
// Result := Direction.LengthSqr > Sqr(SingleEpsilon);
{ This used to be used in Castle Game Engine 6.2, and seems to work OK.
But it feels wrong: we can make a valid, arbitrarily small triangle,
and thus any epsilon is wrong. }
// Result := Direction.LengthSqr > Sqr(1e-7);
{ This is safer, but slower.
Makes 2 normalizations and this way it can use a larger epsilon.
But it is still not perfect, as TTestCastleTriangles.TestIsValid shows.
This detects as invalid
T[0] := Vector3(5, 0.01, 0);
T[1] := Vector3(0, 0, 0);
T[2] := Vector3(10, 0, 0);
AssertTrue('23', T.IsValid);
... and only changing 0.01 to 0.1 helps to make it valid.
}
// Result := not IsZero(TVector3.CrossProduct(
// (Data[2] - Data[1]).Normalize,
// (Data[0] - Data[1]).Normalize
// ).LengthSqr);
{ This is simple, fast and correct according to tests. }
Result := Direction.LengthSqr > 0;
end;
function TTriangle3.Direction: TVector3;
begin
Result := TVector3.CrossProduct(
Data[2] - Data[1],
Data[0] - Data[1]);
end;
function TTriangle3.Normal: TVector3;
begin
Result := Direction.Normalize;
end;
function TTriangle3.Plane: TVector4;
var
ResultDir: TVector3 absolute Result;
begin
ResultDir := Direction;
(* Punkt Data[0] musi lezec na plane Result. Wiec musi zachodzic
ResulrDir[0] * Data[0, 0] +
ResulrDir[1] * Data[0, 1] +
ResulrDir[2] * Data[0, 2]
+ Result[3] = 0
Stad widac jak wyznaczyc Result[3]. *)
Result.Data[3] :=
-ResultDir.Data[0] * Data[0].Data[0]
-ResultDir.Data[1] * Data[0].Data[1]
-ResultDir.Data[2] * Data[0].Data[2];
end;
function TTriangle3.NormalizedPlane: TVector4;
var
ResultNormal: TVector3 absolute Result;
begin
(* dzialamy tak samo jak TrianglePlane tyle ze teraz uzywamy TriangleNormal
zamiast TriangleNormalNotNorm *)
ResultNormal := Normal;
Result.Data[3] :=
-ResultNormal.Data[0] * Data[0].Data[0]
-ResultNormal.Data[1] * Data[0].Data[1]
-ResultNormal.Data[2] * Data[0].Data[2];
end;
function TTriangle3.Transform(const M: TMatrix4): TTriangle3;
begin
Result.Data[0] := M.MultPoint(Data[0]);
Result.Data[1] := M.MultPoint(Data[1]);
Result.Data[2] := M.MultPoint(Data[2]);
end;
function TTriangle3.Area: Single;
begin
Result := TVector3.CrossProduct(
Data[1] - Data[0],
Data[2] - Data[0]).Length / 2;
end;
function TTriangle3.AreaSqr: Single;
begin
Result := TVector3.CrossProduct(
Data[1] - Data[0],
Data[2] - Data[0]).LengthSqr / 4;
end;
function TTriangle3.ToString: string;
begin
Result :=
Data[0].ToString + NL +
Data[1].ToString + NL +
Data[2].ToString + NL;
end;
function TTriangle3.RandomPoint: TVector3;
var
r1Sqrt, r2: Single;
begin
{ Based on "Global Illumination Compendium" }
r1Sqrt := Sqrt(Random);
r2 := Random;
Result :=
(Data[0] * (1 - r1Sqrt) ) +
(Data[1] * ((1 - r2) * r1Sqrt) ) +
(Data[2] * (r2 * r1Sqrt) );
end;
function TTriangle3.Barycentric(const Point: TVector3): TVector3;
{ TODO: a tiny bit of CastleBoxes unit used here, to prevent any dependency
from CastleVectors to CastleBoxes. }
type
TBox3D = record
Data: array [0..1] of TVector3;
end;
function Box3DSizes(const Box: TBox3D): TVector3;
begin
Result.Data[0] := Box.Data[1].Data[0] - Box.Data[0].Data[0];
Result.Data[1] := Box.Data[1].Data[1] - Box.Data[0].Data[1];
Result.Data[2] := Box.Data[1].Data[2] - Box.Data[0].Data[2];
end;
function TriangleBoundingBox: TBox3D;
begin
MinMax(Data[0].Data[0], Data[1].Data[0], Data[2].Data[0], Result.Data[0].Data[0], Result.Data[1].Data[0]);
MinMax(Data[0].Data[1], Data[1].Data[1], Data[2].Data[1], Result.Data[0].Data[1], Result.Data[1].Data[1]);
MinMax(Data[0].Data[2], Data[1].Data[2], Data[2].Data[2], Result.Data[0].Data[2], Result.Data[1].Data[2]);
end;
var
C1, C2: Integer;
Det: Single;
begin
{ Map triangle and point into 2D, where the solution is simpler.
Calculate C1 and C2 --- two largest coordinates of
triangle axis-aligned bounding box. }
RestOf3DCoords(MinVectorCoord(Box3DSizes(TriangleBoundingBox)), C1, C2);
{ Now calculate coordinates on 2D, following equations at wikipedia }
Det :=
(Data[1].Data[C2] - Data[2].Data[C2]) * (Data[0].Data[C1] - Data[2].Data[C1]) +
(Data[0].Data[C2] - Data[2].Data[C2]) * (Data[2].Data[C1] - Data[1].Data[C1]);
Result.Data[0] := (
(Data[1].Data[C2] - Data[2].Data[C2]) * ( Point.Data[C1] - Data[2].Data[C1]) +
( Point.Data[C2] - Data[2].Data[C2]) * (Data[2].Data[C1] - Data[1].Data[C1])
) / Det;
Result.Data[1] := (
( Point.Data[C2] - Data[2].Data[C2]) * (Data[0].Data[C1] - Data[2].Data[C1]) +
(Data[2].Data[C2] - Data[0].Data[C2]) * ( Point.Data[C1] - Data[2].Data[C1])
) / Det;
Result.Data[2] := 1 - Result.Data[0] - Result.Data[1];
end;
function TTriangle3.GetItems(const Index: TIndex): TVector3;
begin
Result := Data[Index];
end;
procedure TTriangle3.SetItems(const Index: TIndex; const Value: TVector3);
begin
Data[Index] := Value;
end;
{ TTriangle4 ----------------------------------------------------------------- }
function TTriangle4.ToString: string;
begin
Result :=
Data[0].ToString + NL +
Data[1].ToString + NL +
Data[2].ToString + NL;
end;
{ others --------------------------------------------------------------------- }
function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3;
const Tri: TTriangle3; const TriDir: TVector3): boolean;
{ We tried many approaches for this:
- Check do three angles:
between vectors (t[0]-p) and (t[1]-p),
between vectors (t[1]-p) and (t[2]-p),
between vectors (t[2]-p) and (t[0]-p)
sum to full 360 stopni.
- Cast triangle on the most suitable 2D plane, and check there.
The current algorithm is very slightly faster than the above. It's based on
http://geometryalgorithms.com/Archive/algorithm_0105/algorithm_0105.htm
(still accessible through
http://web.archive.org/web/20081018162011/http://www.geometryalgorithms.com/Archive/algorithm_0105/algorithm_0105.htm
).
Idea:
- Every point on the plane of our triangle may be expressed as s,t, such that
point = tri[0] + s*u + t*v, where u = tri[1]-tri[0], v = tri[2]-tri[0].
This way 2 triangle edges determine the 2D coordinates axes,
analogous to normal OX and OY axes on a 2D plane.
(We only handle non-degenerate triangles is, so we can assume that
all triangle points are different and u is not parallel to v.)
- Point is within the triangle iff s >= 0 and t >= 0 and s+t <= 1.
(Some reason: note that point = tri[0]*(1-s-t) + tri[1]*s + tri[2]*t,
so s,t are just 2 barycentric coordinates of our point.)
- It remains to find s,t.
Let w = point - tri[0], so w = s*u + t*v.
Let x^ (for x = direction on a plane) mean TVector3.CrossProduct(x, PlaneDir),
so a direction orthogonal to x and still on the plane.
Note some dot product properties:
(a + b).c = a.c + b.c
(x * a).c = x * (a.c)
where a, b, c are some vectors, x is scalar, * is scalar multiplication.
Now make a dot product of both sides of "w = ..." equation with v^,
and use the dot product properties mentioned above:
w.v^ = s*u.v^ + t*v.v^
v.v^ = 0, because v and v^ are orthogonal.
So we can calculate s as
s := w.v^ / (u.v^)
Analogously, we can calculate v.
- With some optimizations, this can be further simplified,
but we found out that the simplified version is actually slightly slower.
}
{ $define IsPointOnTrianglePlaneWithinTriangle_Simplified}
{$ifdef IsPointOnTrianglePlaneWithinTriangle_Simplified}
var
S, T, One, UU, UV, VV, WV, WU, Denominator: Single;
W, U, V: TVector3;
begin
U := Tri.Data[1] - Tri.Data[0];
V := Tri.Data[2] - Tri.Data[0];
UV := TVector3.DotProduct(U, V);
UU := U.LengthSqr; { = TVector3.DotProduct(U, U) }
VV := V.LengthSqr; { = TVector3.DotProduct(V, V) }
Denominator := Sqr(UV) - UU * VV;
W := P - Tri.Data[0];
WV := TVector3.DotProduct(W, V);
WU := TVector3.DotProduct(W, U);
One := 1 + SingleEpsilon;
S := (UV * WV - VV * WU) / Denominator;
if (S < -SingleEpsilon) or
{ As far as only correctness is concerned, check for S > One isn't needed
here since we will check S+T <= One later anyway.
But for the speed, it's better to make here a quick check
"S > One" and in many cases avoid the long calculation of T.
See ~/3dmodels/rayhunter-demos/raporty/2006-11-12/README:
speed of this procedure has a significant impact
on the ray-tracer speed, so it's really a justified optimization. }
(S > One) then
Exit(false);
T := (UV * WU - UU * WV) / Denominator;
if T < -SingleEpsilon then
Exit(false);
Result := S + T <= One;
end;
{$else}
var
S, T: Single;
W, U, V, Ortho: TVector3;
One: Single;
begin
U := Tri.Data[1] - Tri.Data[0];
V := Tri.Data[2] - Tri.Data[0];
W := P - Tri.Data[0];
One := 1 + SingleEpsilon;
Ortho := TVector3.CrossProduct(V, TriDir);
S := TVector3.DotProduct(W, Ortho) / TVector3.DotProduct(U, Ortho);
if (S < -SingleEpsilon) or
{ As far as only correctness is concerned, check for S > One isn't needed
here since we will check S+T <= One later anyway.
But for the speed, it's better to make here a quick check
"S > One" and in many cases avoid the long calculation of T.
See ~/3dmodels/rayhunter-demos/raporty/2006-11-12/README:
speed of this procedure has a significant impact
on the ray-tracer speed, so it's really a justified optimization. }
(S > One) then
Exit(false);
Ortho := TVector3.CrossProduct(U, TriDir);
T := TVector3.DotProduct(W, Ortho) / TVector3.DotProduct(V, Ortho);
if T < -SingleEpsilon then
Exit(false);
Result := S + T <= One;
end;
{$endif IsPointOnTrianglePlaneWithinTriangle_Simplified}
//function IsPointOnTrianglePlaneWithinTriangle(const P: TVector3;
// const Tri: TTriangle3): boolean;
//begin
// Result := IsPointOnTrianglePlaneWithinTriangle(P, Tri, TriangleDirection(Tri));
//end;
function IsPointWithinTriangle2D(const P: TVector2;
const Tri: TTriangle2): boolean;
var
Area, S, T, One: Single;
begin
{ see http://stackoverflow.com/questions/2049582/how-to-determine-a-point-in-a-2d-triangle }
Area := 1 / 2 * (
- Tri.Data[1].Data[1]*Tri.Data[2].Data[0]
+ Tri.Data[0].Data[1]*(-Tri.Data[1].Data[0] + Tri.Data[2].Data[0])
+ Tri.Data[0].Data[0]*(Tri.Data[1].Data[1] - Tri.Data[2].Data[1])
+ Tri.Data[1].Data[0]*Tri.Data[2].Data[1]);
S := 1/(2*Area)*(
Tri.Data[0].Data[1]*Tri.Data[2].Data[0]
- Tri.Data[0].Data[0]*Tri.Data[2].Data[1]
+ (Tri.Data[2].Data[1] - Tri.Data[0].Data[1]) * P.Data[0]
+ (Tri.Data[0].Data[0] - Tri.Data[2].Data[0]) * P.Data[1]);
One := 1 + SingleEpsilon;
if (S < -SingleEpsilon) or
{ Like in 3D: checking this here is an optimization. }
(S > One) then
Exit(false);
T := 1/(2*Area)*(
Tri.Data[0].Data[0]*Tri.Data[1].Data[1]
- Tri.Data[0].Data[1]*Tri.Data[1].Data[0]
+ (Tri.Data[0].Data[1] - Tri.Data[1].Data[1]) * P.Data[0]
+ (Tri.Data[1].Data[0] - Tri.Data[0].Data[0]) * P.Data[1]);
{ We could check at the end just this:
Result := (S > 0) and (T > 0) and (1 - S - T > 0);
Our more optimized version tries to exit early, and also applies
SingleEpsilon. }
if T < -SingleEpsilon then
Exit(false);
Result := S + T <= One;
end;
function IsPointWithinTriangle2D(const P: TVector2;
const Tri: TTriangle3): boolean;
var
Tri2D: TTriangle2;
begin
{ project Tri on 2D }
Tri2D.Data[0].Data[0] := Tri.Data[0].Data[0];
Tri2D.Data[0].Data[1] := Tri.Data[0].Data[1];
Tri2D.Data[1].Data[0] := Tri.Data[1].Data[0];
Tri2D.Data[1].Data[1] := Tri.Data[1].Data[1];
Tri2D.Data[2].Data[0] := Tri.Data[2].Data[0];
Tri2D.Data[2].Data[1] := Tri.Data[2].Data[1];
Result := IsPointWithinTriangle2D(P, Tri2D);
end;
function IsTriangleSegmentCollision(const Tri: TTriangle3;
const TriPlane: TVector4; const Pos1, Pos2: TVector3): boolean;
var
LineVector, MaybeIntersection: TVector3;
TriDir: TVector3 absolute TriPlane;
begin
LineVector := Pos2 - Pos1;
Result := TryPlaneLineIntersection(MaybeIntersection, TriPlane, Pos1, LineVector) and
IsPointOnSegmentLineWithinSegment(MaybeIntersection, Pos1, Pos2) and
IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
end;
function IsTriangleSegmentCollision(const Tri: TTriangle3; const Pos1, Pos2: TVector3): boolean;
begin
Result := IsTriangleSegmentCollision(Tri, Tri.Plane, Pos1, Pos2);
end;
function TryTriangleSegmentCollision(var Intersection: TVector3;
const Tri: TTriangle3; const TriPlane: TVector4;
const Pos1, Pos2: TVector3): boolean;
begin
Result := TryTriangleSegmentDirCollision(Intersection, Tri, TriPlane,
Pos1, Pos2 - Pos1);
end;
function TryTriangleSegmentDirCollision(var Intersection: TVector3; var T: Single;
const Tri: TTriangle3; const TriPlane: TVector4;
const Segment0, SegmentVector: TVector3): boolean;
var
MaybeIntersection: TVector3;
MaybeT: Single;
TriDir: TVector3 absolute TriPlane;
begin
Result := TryPlaneSegmentDirIntersection(MaybeIntersection, MaybeT, TriPlane, Segment0, SegmentVector) and
IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
if Result then
begin
Intersection := MaybeIntersection;
T := MaybeT;
end;
end;
function TryTriangleSegmentDirCollision(var Intersection: TVector3;
const Tri: TTriangle3; const TriPlane: TVector4;
const Segment0, SegmentVector: TVector3): boolean;
var
MaybeIntersection: TVector3;
MaybeT: Single;
TriDir: TVector3 absolute TriPlane;
begin
Result := TryPlaneSegmentDirIntersection(MaybeIntersection, MaybeT, TriPlane, Segment0, SegmentVector) and
IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
if Result then
Intersection := MaybeIntersection;
end;
function IsTriangleSphereCollision(const Tri: TTriangle3;
const TriPlane: TVector4;
const SphereCenter: TVector3; SphereRadius: Single): boolean;
(*$define HAS_PRECALC_PLANE*)
(*$I castletriangles_istrianglespherecollision.inc*)
(*$undef HAS_PRECALC_PLANE*)
function IsTriangleSphereCollision(const Tri: TTriangle3;
const SphereCenter: TVector3; SphereRadius: Single): boolean;
(*$I castletriangles_istrianglespherecollision.inc*)
function IsTriangleSphereCollision2D(const Tri: TTriangle2;
const SphereCenter: TVector2; SphereRadius: Single): boolean;
var
Intersection: TVector2;
SphereRadiusSqr: Single;
I, NextI: integer;
begin
SphereRadiusSqr := Sqr(SphereRadius);
(* Is SphereCenter within the radius of one of triangle corners.
Note that this case is necessary, it is not fully catched by
"SphereCenter close to one of the triangles' edges" lower. *)
if (PointsDistanceSqr(Tri.Data[0], SphereCenter) <= SphereRadiusSqr) or
(PointsDistanceSqr(Tri.Data[1], SphereCenter) <= SphereRadiusSqr) or
(PointsDistanceSqr(Tri.Data[2], SphereCenter) <= SphereRadiusSqr) then
Exit(true);
if IsPointWithinTriangle2D(SphereCenter, Tri) then
Exit(true);
(* Is SphereCenter close to one of the triangles' edges. *)
for I := 0 to 2 do
begin
NextI := (I + 1) mod 3;
Intersection := PointOnLineClosestToPoint(Tri.Data[I],
Tri.Data[NextI] - Tri.Data[I], SphereCenter);
if IsPointOnSegmentLineWithinSegment(Intersection, Tri.Data[I], Tri.Data[NextI]) and
(PointsDistanceSqr(SphereCenter, Intersection) <= SphereRadiusSqr) then
Exit(true);
end;
Result := false;
end;
function IsTriangleSphereCollision2D(const Tri: TTriangle3;
const SphereCenter: TVector2; SphereRadius: Single): boolean;
var
Tri2D: TTriangle2;
begin
{ project Tri on 2D }
Tri2D.Data[0].Data[0] := Tri.Data[0].Data[0];
Tri2D.Data[0].Data[1] := Tri.Data[0].Data[1];
Tri2D.Data[1].Data[0] := Tri.Data[1].Data[0];
Tri2D.Data[1].Data[1] := Tri.Data[1].Data[1];
Tri2D.Data[2].Data[0] := Tri.Data[2].Data[0];
Tri2D.Data[2].Data[1] := Tri.Data[2].Data[1];
Result := IsTriangleSphereCollision2D(Tri2D, SphereCenter, SphereRadius);
end;
function TryTriangleRayCollision(var Intersection: TVector3; var T: Single;
const Tri: TTriangle3; const TriPlane: TVector4;
const RayOrigin, RayDirection: TVector3): boolean;
var
MaybeIntersection: TVector3;
MaybeT: Single;
TriDir: TVector3 absolute TriPlane;
begin
Result := TryPlaneRayIntersection(MaybeIntersection, MaybeT, TriPlane, RayOrigin, RayDirection) and
IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
if Result then
begin
Intersection := MaybeIntersection;
T := MaybeT;
end;
end;
function TryTriangleRayCollision(var Intersection: TVector3;
const Tri: TTriangle3; const TriPlane: TVector4;
const RayOrigin, RayDirection: TVector3): boolean;
var
MaybeIntersection: TVector3;
MaybeT: Single;
TriDir: TVector3 absolute TriPlane;
begin
Result := TryPlaneRayIntersection(MaybeIntersection, MaybeT, TriPlane, RayOrigin, RayDirection) and
IsPointOnTrianglePlaneWithinTriangle(MaybeIntersection, Tri, TriDir);
if Result then
Intersection := MaybeIntersection;
end;
function TriangleDirection(const p0, p1, p2: TVector3): TVector3;
begin
Result := TVector3.CrossProduct(
p2 - p1,
p0 - p1);
end;
function TriangleDir(const p0, p1, p2: TVector3): TVector3;
begin
Result := TVector3.CrossProduct(
p2 - p1,
p0 - p1);
end;
function TriangleNormal(const p0, p1, p2: TVector3): TVector3;
begin
Result := TriangleDirection(p0, p1, p2).Normalize;
end;
function TrianglePlane(const p0, p1, p2: TVector3): TVector4;
var
ResultDir: TVector3 absolute Result;
begin
ResultDir := TriangleDirection(p0, p1, p2);
Result.Data[3] :=
-ResultDir.Data[0] * p0.Data[0]
-ResultDir.Data[1] * p0.Data[1]
-ResultDir.Data[2] * p0.Data[2];
end;
function TriangleDir(const T: TTriangle3): TVector3;
begin
Result := T.Direction;
end;
function TriangleNormal(const T: TTriangle3): TVector3;
begin
Result := T.Normal;
end;
function TrianglePlane(const T: TTriangle3): TVector4;
begin
Result := T.Plane;
end;
function TriangleTransform(const T: TTriangle3;const M: TMatrix4): TTriangle3;
begin
Result := T.Transform(M);
end;
function TriangleNormPlane(const T: TTriangle3): TVector4;
begin
Result := T.NormalizedPlane;
end;
function TriangleArea(const T: TTriangle3): Single;
begin
Result := T.Area;
end;
function Barycentric(const T: TTriangle3; const Point: TVector3): TVector3;
begin
Result := T.Barycentric(Point);
end;
function TriangleToNiceStr(const T: TTriangle3): string; deprecated 'use T.ToString';
begin
Result := T.ToString;
end;
end.
|