This file is indexed.

/usr/share/axiom-20170501/src/algebra/TABLBUMP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
)abbrev package TABLBUMP TableauxBumpers
++ Author: William H. Burge
++ Date Created: 1987
++ Date Last Updated: 23 Sept 1991
++ Description:
++ TableauBumpers implements the Schenstead-Knuth
++ correspondence between sequences and pairs of Young tableaux.
++ The 2 Young tableaux are represented as a single tableau with
++ pairs as components.

TableauxBumpers(S) : SIG == CODE where
  S : OrderedSet

  L==>List
  ST==>Stream
  B==>Boolean
  ROW==>Record(fs:B,sd:L S,td:L L S)
  RC==>Record(f1:L S,f2:L L L S,f3:L L S,f4:L L L S)
  PAIR==>L S

  SIG ==> with

    bumprow : ((S,S)->B,PAIR,L PAIR)->ROW
      ++ bumprow(cf,pr,r) is an auxiliary function which
      ++ bumps a row r with a pair pr
      ++ using comparison function cf, and returns a record

    bumptab : ((S,S)->B,PAIR,L L PAIR)->L L PAIR
      ++ bumptab(cf,pr,t) bumps a tableau t with a pair pr
      ++ using comparison function cf, returning a new tableau

    bumptab1 : (PAIR,L L PAIR)->L L PAIR
      ++ bumptab1(pr,t) bumps a tableau t with a pair pr
      ++ using comparison function \spadfun{<},
      ++ returning a new tableau

    untab : (L PAIR,L L PAIR)->L PAIR
      ++ untab(lp,llp) is an auxiliary function
      ++ which unbumps a tableau llp,
      ++ using lp to accumulate pairs

    bat1 : L L PAIR->L PAIR
      ++ bat1(llp) unbumps a tableau llp.
      ++ Operation bat1 is the inverse of tab1.

    bat : Tableau(L S)->L L S
      ++ bat(ls) unbumps a tableau ls

    tab1 : L PAIR->L L PAIR
      ++ tab1(lp) creates a tableau from a list of pairs lp

    tab : L S->Tableau(L S)
      ++ tab(ls) creates a tableau from ls by first creating
      ++ a list of pairs using slex,
      ++ then creating a tableau using tab1.

    lex : L PAIR->L PAIR
      ++ lex(ls) sorts a list of pairs to lexicographic order

    slex : L S->L PAIR
      ++ slex(ls) sorts the argument sequence ls, then zips (see map) the
      ++ original argument sequence with the sorted result to
      ++ a list of pairs

    inverse : L S->L S
      ++ inverse(ls) forms the inverse of a sequence ls

    maxrow : (PAIR,L L PAIR,L PAIR,L L PAIR,L L PAIR,L L PAIR)->RC
      ++ maxrow(a,b,c,d,e) is an auxiliary function for mr

    mr : L L PAIR->RC
      ++ mr(t) is an auxiliary function which
      ++ finds the position of the maximum element of a tableau t
      ++ which is in the lowest row, producing a record of results

  CODE ==> add

       cf:(S,S)->B

       bumprow(cf,x:(PAIR),lls:(L PAIR))==
         if null lls
         then [false,x,[x]]$ROW
         else (y:(PAIR):=first lls;
               if cf(x.2,y.2)
               then [true,[x.1,y.2],cons([y.1,x.2],rest lls)]$ROW
               else (rw:ROW:=bumprow(cf,x,rest lls);
                       [rw.fs,rw.sd,cons(first lls,rw.td)]$ROW ))

       bumptab(cf,x:(PAIR),llls:(L L PAIR))==
           if null llls
           then [[x]]
           else (rw:ROW:= bumprow(cf,x,first llls);
                 if rw.fs
                 then cons(rw.td, bumptab(cf,rw.sd,rest llls))
                 else cons(rw.td,rest llls))

       bumptab1(x,llls)==bumptab((s1,s2) +-> s1<s2, x, llls)

       rd==> reduce$StreamFunctions2(PAIR,L L PAIR)

       tab1(lls:(L PAIR))== rd([],bumptab1,lls::(ST PAIR))

       srt==>sort$(PAIR)

       lexorder:(PAIR,PAIR)->B
       lexorder(p1,p2)==if p1.1=p2.1 then p1.2<p2.2 else p1.1<p2.1

       lex lp==(sort$(L PAIR))((s1,s2) +-> lexorder(s1,s2), lp)

       slex ls==lex([[i,j] for i in srt((s1, s2) +-> s1<s2, ls) for j in ls])

       inverse ls==[lss.2 for lss in
                    lex([[j,i] for i in srt((s1,s2) +-> s1<s2, ls) 
                               for j in ls])]

       tab(ls:(PAIR))==(tableau tab1 slex ls )

       maxrow(n,a,b,c,d,llls)==
        if null llls or null(first llls)
        then [n,a,b,c]$RC
        else (fst:=first first llls;rst:=rest first llls;
              if fst.1>n.1
              then maxrow(fst,d,rst,rest llls,cons(first llls,d),rest llls)
              else maxrow(n,a,b,c,cons(first llls,d),rest llls))

       mr llls==maxrow(first first llls,[],rest first llls,rest llls,
                                                               [],llls)

       untab(lp, llls)==
         if null llls
         then lp
         else (rc:RC:=mr llls;
               rv:=reverse (bumptab((s1:S,s2:S):B +-> s2<s1, rc. f1, rc. f2));
               untab(cons(first first rv,lp)
                     ,append(rest rv,
                                         if null rc.f3
                                         then []
                                         else cons(rc.f3,rc.f4))))

       bat1 llls==untab([],[reverse lls for lls in llls])
       bat tb==bat1(listOfLists tb)