This file is indexed.

/usr/share/axiom-20170501/src/algebra/NUMERIC.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
)abbrev package NUMERIC Numeric
++ Author: Manuel Bronstein
++ Date Created: 21 Feb 1990
++ Date Last Updated: 24 January 1997
++ Description: 
++ Numeric provides real and complex numerical evaluation
++ functions for various symbolic types.
 
Numeric(S) : SIG == CODE where
  S : ConvertibleTo Float

  SIG ==> with

    numeric : S -> Float
      ++ numeric(x) returns a real approximation of x.

    numeric : (S, PositiveInteger) -> Float
      ++ numeric(x, n) returns a real approximation of x up to n decimal
      ++ places.

    complexNumeric : S -> Complex Float
      ++ complexNumeric(x) returns a complex approximation of x.

    complexNumeric : (S, PositiveInteger) -> Complex Float
      ++ complexNumeric(x, n) returns a complex approximation of x up
      ++ to n decimal places.

    if S has CommutativeRing then

      complexNumeric : Complex S -> Complex Float
        ++ complexNumeric(x) returns a complex approximation of x.

      complexNumeric : (Complex S, PositiveInteger) -> Complex Float
        ++ complexNumeric(x, n) returns a complex approximation of x up
        ++ to n decimal places.

      complexNumeric : Polynomial Complex S -> Complex Float
        ++ complexNumeric(x) returns a complex approximation of x.

      complexNumeric : (Polynomial Complex S, PositiveInteger) -> Complex Float
        ++ complexNumeric(x, n) returns a complex approximation of x up
        ++ to n decimal places.

    if S has Ring then

      numeric : Polynomial S -> Float
        ++ numeric(x) returns a real approximation of x.

      numeric : (Polynomial S, PositiveInteger) -> Float
        ++ numeric(x,n) returns a real approximation of x up to n decimal
        ++ places.

      complexNumeric : Polynomial S -> Complex Float
        ++ complexNumeric(x) returns a complex approximation of x.

      complexNumeric : (Polynomial S, PositiveInteger) -> Complex Float
        ++ complexNumeric(x, n) returns a complex approximation of x
        ++ up to n decimal places.

    if S has IntegralDomain then

      numeric : Fraction Polynomial S -> Float
        ++ numeric(x) returns a real approximation of x.

      numeric : (Fraction Polynomial S, PositiveInteger) -> Float
        ++ numeric(x,n) returns a real approximation of x up to n decimal
        ++ places.

      complexNumeric : Fraction Polynomial S -> Complex Float
        ++ complexNumeric(x) returns a complex approximation of x.

      complexNumeric : (Fraction Polynomial S, PositiveInteger) -> Complex Float
        ++ complexNumeric(x, n) returns a complex approximation of x

      complexNumeric : Fraction Polynomial Complex S -> Complex Float
        ++ complexNumeric(x) returns a complex approximation of x.

      complexNumeric : (Fraction Polynomial Complex S, PositiveInteger) -> 
                                                                Complex Float
        ++ complexNumeric(x, n) returns a complex approximation of x
        ++ up to n decimal places.

      if S has OrderedSet then

        numeric : Expression S -> Float
          ++ numeric(x) returns a real approximation of x.

        numeric : (Expression S, PositiveInteger) -> Float
          ++ numeric(x, n) returns a real approximation of x up to n
          ++ decimal places.

        complexNumeric : Expression S -> Complex Float
          ++ complexNumeric(x) returns a complex approximation of x.

        complexNumeric : (Expression S, PositiveInteger) -> Complex Float
          ++ complexNumeric(x, n) returns a complex approximation of x
          ++ up to n decimal places.

        complexNumeric : Expression Complex S -> Complex Float
          ++ complexNumeric(x) returns a complex approximation of x.

        complexNumeric : (Expression Complex S, PositiveInteger) -> Complex Float
          ++ complexNumeric(x, n) returns a complex approximation of x
          ++ up to n decimal places.

    if S has CommutativeRing then

      complexNumericIfCan : Polynomial Complex S -> Union(Complex Float,"failed")
        ++ complexNumericIfCan(x) returns a complex approximation of x,
        ++ or "failed" if \axiom{x} is not constant.

      complexNumericIfCan : (Polynomial Complex S, PositiveInteger) ->
                                                  Union(Complex Float,"failed")
        ++ complexNumericIfCan(x, n) returns a complex approximation of x up
        ++ to n decimal places, or "failed" if \axiom{x} is not a constant.

    if S has Ring then

      numericIfCan : Polynomial S -> Union(Float,"failed")
        ++ numericIfCan(x) returns a real approximation of x,
        ++ or "failed" if \axiom{x} is not a constant.

      numericIfCan : (Polynomial S, PositiveInteger) -> Union(Float,"failed")
        ++ numericIfCan(x,n) returns a real approximation of x up to n decimal
        ++ places, or "failed" if \axiom{x} is not a constant.

      complexNumericIfCan : Polynomial S -> Union(Complex Float,"failed")
        ++ complexNumericIfCan(x) returns a complex approximation of x,
        ++ or "failed" if \axiom{x} is not a constant.

      complexNumericIfCan : (Polynomial S, PositiveInteger) ->
                                                 Union(Complex Float,"failed")
        ++ complexNumericIfCan(x, n) returns a complex approximation of x
        ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.

    if S has IntegralDomain then

      numericIfCan : Fraction Polynomial S -> Union(Float,"failed")
        ++ numericIfCan(x) returns a real approximation of x,
        ++ or "failed" if \axiom{x} is not a constant.

      numericIfCan : (Fraction Polynomial S, PositiveInteger) -> Union(Float,"failed")
        ++ numericIfCan(x,n) returns a real approximation of x up to n decimal
        ++ places, or "failed" if \axiom{x} is not a constant.

      complexNumericIfCan : Fraction Polynomial S -> Union(Complex Float,"failed")
        ++ complexNumericIfCan(x) returns a complex approximation of x,
        ++ or "failed" if \axiom{x} is not a constant.

      complexNumericIfCan : (Fraction Polynomial S, PositiveInteger) ->
                                                      Union(Complex Float,"failed")
        ++ complexNumericIfCan(x, n) returns a complex approximation of x,
        ++ or "failed" if \axiom{x} is not a constant.

      complexNumericIfCan : Fraction Polynomial Complex S ->
                                                      Union(Complex Float,"failed")
        ++ complexNumericIfCan(x) returns a complex approximation of x,
        ++ or "failed" if \axiom{x} is not a constant.

      complexNumericIfCan : (Fraction Polynomial Complex S, PositiveInteger) -> 
                                                  Union(Complex Float,"failed")
        ++ complexNumericIfCan(x, n) returns a complex approximation of x
        ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.

      if S has OrderedSet then

        numericIfCan : Expression S -> Union(Float,"failed")
          ++ numericIfCan(x) returns a real approximation of x,
          ++ or "failed" if \axiom{x} is not a constant.

        numericIfCan : (Expression S, PositiveInteger) -> Union(Float,"failed")
          ++ numericIfCan(x, n) returns a real approximation of x up to n
          ++ decimal places, or "failed" if \axiom{x} is not a constant.

        complexNumericIfCan : Expression S -> Union(Complex Float,"failed")
          ++ complexNumericIfCan(x) returns a complex approximation of x,
          ++ or "failed" if \axiom{x} is not a constant.

        complexNumericIfCan : (Expression S, PositiveInteger) ->
                                                  Union(Complex Float,"failed")
          ++ complexNumericIfCan(x, n) returns a complex approximation of x
          ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.

        complexNumericIfCan : Expression Complex S -> 
                                                  Union(Complex Float,"failed")
          ++ complexNumericIfCan(x) returns a complex approximation of x,
          ++ or "failed" if \axiom{x} is not a constant.

        complexNumericIfCan : (Expression Complex S, PositiveInteger) ->
                                                  Union(Complex Float,"failed")
          ++ complexNumericIfCan(x, n) returns a complex approximation of x
          ++ up to n decimal places, or "failed" if \axiom{x} is not a constant.

  CODE ==> add
 
    if S has CommutativeRing then

      complexNumericIfCan(p:Polynomial Complex S) ==
        p' : Union(Complex(S),"failed") := retractIfCan p
        p' case "failed" => "failed"
        complexNumeric(p')

      complexNumericIfCan(p:Polynomial Complex S,n:PositiveInteger) ==
        p' : Union(Complex(S),"failed") := retractIfCan p
        p' case "failed" => "failed"
        complexNumeric(p',n)
 
    if S has Ring then

      numericIfCan(p:Polynomial S) ==
        p' : Union(S,"failed") := retractIfCan p
        p' case "failed" => "failed"
        numeric(p')

      complexNumericIfCan(p:Polynomial S) ==
        p' : Union(S,"failed") := retractIfCan p
        p' case "failed" => "failed"
        complexNumeric(p')
 
      complexNumericIfCan(p:Polynomial S, n:PositiveInteger) ==
        p' : Union(S,"failed") := retractIfCan p
        p' case "failed" => "failed"
        complexNumeric(p', n)
 
      numericIfCan(p:Polynomial S, n:PositiveInteger) ==
        old := digits(n)$Float
        ans := numericIfCan p
        digits(old)$Float
        ans
 
    if S has IntegralDomain then

      numericIfCan(f:Fraction Polynomial S)==
        num := numericIfCan(numer(f))
        num case "failed" => "failed"
        den := numericIfCan(denom f)
        den case "failed" => "failed"
        num/den
 
      complexNumericIfCan(f:Fraction Polynomial S) ==
        num := complexNumericIfCan(numer f)
        num case "failed" => "failed"
        den := complexNumericIfCan(denom f)
        den case "failed" => "failed"
        num/den
 
      complexNumericIfCan(f:Fraction Polynomial S, n:PositiveInteger) ==
        num := complexNumericIfCan(numer f, n)
        num case "failed" => "failed"
        den := complexNumericIfCan(denom f, n)
        den case "failed" => "failed"
        num/den
 
      numericIfCan(f:Fraction Polynomial S, n:PositiveInteger) ==
        old := digits(n)$Float
        ans := numericIfCan f
        digits(old)$Float
        ans

      complexNumericIfCan(f:Fraction Polynomial Complex S) ==
        num := complexNumericIfCan(numer f)
        num case "failed" => "failed"
        den := complexNumericIfCan(denom f)
        den case "failed" => "failed"
        num/den
 
      complexNumericIfCan(f:Fraction Polynomial Complex S, n:PositiveInteger) ==
        num := complexNumericIfCan(numer f, n)
        num case "failed" => "failed"
        den := complexNumericIfCan(denom f, n)
        den case "failed" => "failed"
        num/den
 
      if S has OrderedSet then

        numericIfCan(x:Expression S) ==
          retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float))
 
        --s2cs(u:S):Complex(S) == complex(u,0)

        complexNumericIfCan(x:Expression S) ==
           complexNumericIfCan map(coerce, x)$ExpressionFunctions2(S,Complex S)
 
        numericIfCan(x:Expression S, n:PositiveInteger) ==
          old := digits(n)$Float
          x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float)
          ans : Union(Float,"failed") := retractIfCan x'
          digits(old)$Float
          ans
 
        complexNumericIfCan(x:Expression S, n:PositiveInteger) ==
          old := digits(n)$Float
          x' : Expression Complex S := _
            map(coerce, x)$ExpressionFunctions2(S, Complex S)
          ans : Union(Complex Float,"failed") := complexNumericIfCan(x')
          digits(old)$Float
          ans

        if S has RealConstant then

          complexNumericIfCan(x:Expression Complex S) ==
            retractIfCan(map(convert, x)_
              $ExpressionFunctions2(Complex S,Complex Float))
 
          complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) ==
            old := digits(n)$Float
            x' : Expression Complex Float :=
             map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)
            ans : Union(Complex Float,"failed") := retractIfCan x'
            digits(old)$Float
            ans

        else

          convert(x:Complex S):Complex(Float) ==
            map(convert,x)$ComplexFunctions2(S,Float)
  
          complexNumericIfCan(x:Expression Complex S) ==
            retractIfCan(map(convert, x)_
              $ExpressionFunctions2(Complex S,Complex Float))
 
          complexNumericIfCan(x:Expression Complex S, n:PositiveInteger) ==
            old := digits(n)$Float
            x' : Expression Complex Float :=
             map(convert, x)$ExpressionFunctions2(Complex S,Complex Float)
            ans : Union(Complex Float,"failed") := retractIfCan x'
            digits(old)$Float
            ans

    numeric(s:S) == convert(s)@Float
 
    if S has ConvertibleTo Complex Float then

      complexNumeric(s:S) == convert(s)@Complex(Float)
 
      complexNumeric(s:S, n:PositiveInteger) ==
        old := digits(n)$Float
        ans := complexNumeric s
        digits(old)$Float
        ans
 
    else

      complexNumeric(s:S) == convert(s)@Float :: Complex(Float)
 
      complexNumeric(s:S,n:PositiveInteger) ==
        numeric(s, n)::Complex(Float)

    if S has CommutativeRing then

      complexNumeric(p:Polynomial Complex S) ==
        p' : Union(Complex(S),"failed") := retractIfCan p
        p' case "failed" => 
          error "Cannot compute the numerical value of a non-constant polynomial"
        complexNumeric(p')

      complexNumeric(p:Polynomial Complex S,n:PositiveInteger) ==
        p' : Union(Complex(S),"failed") := retractIfCan p
        p' case "failed" => 
          error "Cannot compute the numerical value of a non-constant polynomial"
        complexNumeric(p',n)

      if S has RealConstant then

        complexNumeric(s:Complex S) == convert(s)$Complex(S)
  
        complexNumeric(s:Complex S, n:PositiveInteger) ==
          old := digits(n)$Float
          ans := complexNumeric s
          digits(old)$Float
          ans

      else if Complex(S) has ConvertibleTo(Complex Float) then

        complexNumeric(s:Complex S) == convert(s)@Complex(Float)
  
        complexNumeric(s:Complex S, n:PositiveInteger) ==
          old := digits(n)$Float
          ans := complexNumeric s
          digits(old)$Float
          ans

      else

        complexNumeric(s:Complex S) ==
          s' : Union(S,"failed") := retractIfCan s
          s' case "failed" =>
            error "Cannot compute the numerical value of a non-constant object"
          complexNumeric(s')
  
        complexNumeric(s:Complex S, n:PositiveInteger) ==
          s' : Union(S,"failed") := retractIfCan s
          s' case "failed" =>
            error "Cannot compute the numerical value of a non-constant object"
          old := digits(n)$Float
          ans := complexNumeric s'
          digits(old)$Float
          ans
 
    numeric(s:S, n:PositiveInteger) ==
      old := digits(n)$Float
      ans := numeric s
      digits(old)$Float
      ans
 
    if S has Ring then

      numeric(p:Polynomial S) ==
        p' : Union(S,"failed") := retractIfCan p
        p' case "failed" => error _
   "Can only compute the numerical value of a constant, real-valued polynomial"
        numeric(p')

      complexNumeric(p:Polynomial S) ==
        p' : Union(S,"failed") := retractIfCan p
        p' case "failed" => 
         error "Cannot compute the numerical value of a non-constant polynomial"
        complexNumeric(p')
 
      complexNumeric(p:Polynomial S, n:PositiveInteger) ==
        p' : Union(S,"failed") := retractIfCan p
        p' case "failed" => 
          error "Cannot compute the numerical value of a non-constant polynomial"
        complexNumeric(p', n)
 
      numeric(p:Polynomial S, n:PositiveInteger) ==
        old := digits(n)$Float
        ans := numeric p
        digits(old)$Float
        ans
 
    if S has IntegralDomain then

      numeric(f:Fraction Polynomial S)==
          numeric(numer(f)) / numeric(denom f)
 
      complexNumeric(f:Fraction Polynomial S) ==
        complexNumeric(numer f)/complexNumeric(denom f)
 
      complexNumeric(f:Fraction Polynomial S, n:PositiveInteger) ==
        complexNumeric(numer f, n)/complexNumeric(denom f, n)
 
      numeric(f:Fraction Polynomial S, n:PositiveInteger) ==
        old := digits(n)$Float
        ans := numeric f
        digits(old)$Float
        ans

      complexNumeric(f:Fraction Polynomial Complex S) ==
        complexNumeric(numer f)/complexNumeric(denom f)
 
      complexNumeric(f:Fraction Polynomial Complex S, n:PositiveInteger) ==
        complexNumeric(numer f, n)/complexNumeric(denom f, n)
 
      if S has OrderedSet then

        numeric(x:Expression S) ==
          x' : Union(Float,"failed") := 
           retractIfCan(map(convert, x)$ExpressionFunctions2(S, Float))
          x' case "failed" => error _
   "Can only compute the numerical value of a constant, real-valued Expression"
          x'
 
        complexNumeric(x:Expression S) ==
          x' : Union(Complex Float,"failed") := retractIfCan(
           map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float))
          x' case "failed" =>
           error _
            "Cannot compute the numerical value of a non-constant expression"
          x'
 
        numeric(x:Expression S, n:PositiveInteger) ==
          old := digits(n)$Float
          x' : Expression Float := map(convert, x)$ExpressionFunctions2(S, Float)
          ans : Union(Float,"failed") := retractIfCan x'
          digits(old)$Float
          ans case "failed" => error _
   "Can only compute the numerical value of a constant, real-valued Expression"
          ans
 
        complexNumeric(x:Expression S, n:PositiveInteger) ==
          old := digits(n)$Float
          x' : Expression Complex Float :=
           map(complexNumeric, x)$ExpressionFunctions2(S,Complex Float)
          ans : Union(Complex Float,"failed") := retractIfCan x'
          digits(old)$Float
          ans case "failed" =>
           error _
            "Cannot compute the numerical value of a non-constant expression"
          ans

        complexNumeric(x:Expression Complex S) ==
          x' : Union(Complex Float,"failed") := retractIfCan(
           map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float))
          x' case "failed" =>
           error _
            "Cannot compute the numerical value of a non-constant expression"
          x'
 
        complexNumeric(x:Expression Complex S, n:PositiveInteger) ==
          old := digits(n)$Float
          x' : Expression Complex Float :=
           map(complexNumeric, x)$ExpressionFunctions2(Complex S,Complex Float)
          ans : Union(Complex Float,"failed") := retractIfCan x'
          digits(old)$Float
          ans case "failed" =>
           error _
            "Cannot compute the numerical value of a non-constant expression"
          ans