This file is indexed.

/usr/share/axiom-20170501/src/algebra/LGROBP.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
)abbrev package LGROBP LinGroebnerPackage
++ References:
++ Normxx Notes 13: How to Compute a Groebner Basis
++ Description:
++ Given a Groebner basis B with respect to the total degree ordering for
++ a zero-dimensional ideal I, compute
++ a Groebner basis with respect to the lexicographical ordering by using
++ linear algebra.

LinGroebnerPackage(lv,F) : SIG == CODE where
  lv : List Symbol
  F : GcdDomain

  Z      ==>  Integer
  DP     ==>  DirectProduct(#lv,NonNegativeInteger)
  DPoly  ==>  DistributedMultivariatePolynomial(lv,F)
  HDP    ==>  HomogeneousDirectProduct(#lv,NonNegativeInteger)
  HDPoly ==>  HomogeneousDistributedMultivariatePolynomial(lv,F)
  OV     ==>  OrderedVariableList(lv)
  NNI    ==>  NonNegativeInteger
  LVals  ==>  Record(gblist : List DPoly,gvlist : List Z)
  VF     ==>  Vector F
  VV     ==>  Vector NNI
  MF     ==>  Matrix F
  cLVars ==>  Record(glbase:List DPoly,glval:List Z)

  SIG ==> with

    linGenPos : List HDPoly -> LVals
      ++ linGenPos \undocumented

    groebgen : List DPoly -> cLVars
      ++ groebgen \undocumented

    totolex : List HDPoly -> List DPoly
      ++ totolex \undocumented

    minPol : (List HDPoly,List HDPoly,OV) -> HDPoly
      ++ minPol \undocumented

    minPol : (List HDPoly,OV) -> HDPoly
      ++ minPol \undocumented

    computeBasis : List HDPoly -> List HDPoly
      ++ computeBasis \undocumented

    coord : (HDPoly,List HDPoly) -> VF
      ++ coord \undocumented

    anticoord : (List F,DPoly,List DPoly) -> DPoly
      ++ anticoord \undocumented

    intcompBasis : (OV,List HDPoly,List HDPoly) -> List HDPoly
      ++ intcompBasis \undocumented

    choosemon : (DPoly,List  DPoly) -> DPoly
      ++ choosemon \undocumented

    transform : DPoly -> HDPoly
      ++ transform \undocumented

  CODE ==> add

    import GroebnerPackage(F,DP,OV,DPoly)
    import GroebnerPackage(F,HDP,OV,HDPoly)
    import GroebnerInternalPackage(F,HDP,OV,HDPoly)
    import GroebnerInternalPackage(F,DP,OV,DPoly)

    lvar :=[variable(yx)::OV for yx in lv]

    reduceRow(M:MF, v : VF, lastRow: Integer, pivots: Vector(Integer)) : VF ==
      a1:F := 1
      b:F := 0
      dim := #v
      for j in 1..lastRow repeat -- scan over rows
         mj := row(M,j)
         k:=pivots(j)
         b:=mj.k
         vk := v.k
         for kk in 1..(k-1) repeat
            v(kk) := ((-b*v(kk)) exquo a1) :: F
         for kk in k..dim repeat
            v(kk) := ((vk*mj(kk)-b*v(kk)) exquo a1)::F
         a1 := b
      v

    rRedPol(f:HDPoly, B:List HDPoly):Record(poly:HDPoly, mult:F) ==
      gm := redPo(f,B)
      gm.poly = 0 => gm
      gg := reductum(gm.poly)
      ggm := rRedPol(gg,B)
      [ggm.mult*(gm.poly - gg) + ggm.poly, ggm.mult*gm.mult]

----- transform the total basis B in lex basis -----
    totolex(B : List HDPoly) : List DPoly ==
      result:List DPoly :=[]
      ltresult:List DPoly :=[]
      vBasis:= computeBasis B
      nBasis:List DPoly :=[1$DPoly]
      ndim:=(#vBasis)::PositiveInteger
      ndim1:NNI:=ndim+1
      lm:VF
      linmat:MF:=zero(ndim,2*ndim+1)
      linmat(1,1):=1$F
      linmat(1,ndim1):=1
      pivots:Vector Integer := new(ndim,0)
      pivots(1) := 1
      firstmon:DPoly:=1$DPoly
      ofirstmon:DPoly:=1$DPoly
      orecfmon:Record(poly:HDPoly, mult:F) := [1,1]
      i:NNI:=2
      while (firstmon:=choosemon(firstmon,ltresult))^=1 repeat
        if (v:=firstmon exquo ofirstmon) case "failed" then
          recfmon:=rRedPol(transform firstmon,B)
        else
          recfmon:=rRedPol(transform(v::DPoly) *orecfmon.poly,B)
          recfmon.mult := recfmon.mult * orecfmon.mult
        cc := gcd(content recfmon.poly, recfmon.mult)
        recfmon.poly := (recfmon.poly exquo cc)::HDPoly
        recfmon.mult := (recfmon.mult exquo cc)::F
        veccoef:VF:=coord(recfmon.poly,vBasis)
        ofirstmon:=firstmon
        orecfmon := recfmon
        lm:=zero(2*ndim+1)
        for j in 1..ndim repeat lm(j):=veccoef(j)
        lm(ndim+i):=recfmon.mult
        lm := reduceRow(linmat, lm, i-1, pivots)
        if i=ndim1 then j:=ndim1
        else
          j:=1
          while lm(j) = 0 and j< ndim1 repeat j:=j+1
        if j=ndim1 then
          cordlist:List F:=[lm(k) for k in ndim1..ndim1+(#nBasis)]
          antc:=+/[c*b for c in reverse cordlist
                       for b in concat(firstmon,nBasis)]
          antc:=primitivePart antc
          result:=concat(antc,result)
          ltresult:=concat(antc-reductum antc,ltresult)
        else
          pivots(i) := j
          setRow_!(linmat,i,lm)
          i:=i+1
          nBasis:=cons(firstmon,nBasis)
      result

---- Compute the univariate polynomial for x
----oldBasis is a total degree Groebner basis
    minPol(oldBasis:List HDPoly,x:OV) :HDPoly ==
      algBasis:= computeBasis oldBasis
      minPol(oldBasis,algBasis,x)

---- Compute the univariate polynomial for x
---- oldBasis is total Groebner, algBasis is the basis as algebra
    minPol(oldBasis:List HDPoly,algBasis:List HDPoly,x:OV) :HDPoly ==
      nvp:HDPoly:=x::HDPoly
      f:=1$HDPoly
      omult:F :=1
      ndim:=(#algBasis)::PositiveInteger
      ndim1:NNI:=ndim+1
      lm:VF
      linmat:MF:=zero(ndim,2*ndim+1)
      linmat(1,1):=1$F
      linmat(1,ndim1):=1
      pivots:Vector Integer := new(ndim,0)
      pivots(1) := 1
      for i in 2..ndim1 repeat
        recf:=rRedPol(f*nvp,oldBasis)
        omult := recf.mult * omult
        f := recf.poly
        cc := gcd(content f, omult)
        f := (f exquo cc)::HDPoly
        omult := (omult exquo cc)::F
        veccoef:VF:=coord(f,algBasis)
        lm:=zero(2*ndim+1)
        for j in 1..ndim repeat lm(j) := veccoef(j)
        lm(ndim+i):=omult
        lm := reduceRow(linmat, lm, i-1, pivots)
        j:=1
        while lm(j)=0 and j<ndim1 repeat j:=j+1
        if j=ndim1 then return
          g:HDPoly:=0
          for k in ndim1..2*ndim+1 repeat
            g:=g+lm(k) * nvp**((k-ndim1):NNI)
          primitivePart g
        pivots(i) := j
        setRow_!(linmat,i,lm)

----- transform a DPoly in a HDPoly -----
    transform(dpol:DPoly) : HDPoly ==
      dpol=0 => 0$HDPoly
      monomial(leadingCoefficient dpol,
               directProduct(degree(dpol)::VV)$HDP)$HDPoly +
                                      transform(reductum dpol)

----- compute the basis for the vector space determined by B -----
    computeBasis(B:List HDPoly) : List HDPoly ==
      mB:List HDPoly:=[monomial(1$F,degree f)$HDPoly for f in B]
      result:List HDPoly := [1$HDPoly]
      for var in lvar repeat
        part:=intcompBasis(var,result,mB)
        result:=concat(result,part)
      result

----- internal function for computeBasis -----
    intcompBasis(x:OV,lr:List HDPoly,mB : List HDPoly):List HDPoly ==
      lr=[] => lr
      part:List HDPoly :=[]
      for f in lr repeat
        g:=x::HDPoly * f
        if redPo(g,mB).poly^=0 then part:=concat(g,part)
      concat(part,intcompBasis(x,part,mB))

----- coordinate of f with respect to the basis B -----
----- f is a reduced polynomial -----
    coord(f:HDPoly,B:List HDPoly) : VF ==
      ndim := #B
      vv:VF:=new(ndim,0$F)$VF
      while f^=0 repeat
        rf := reductum f
        lf := f-rf
        lcf := leadingCoefficient f
        i:Z:=position(monomial(1$F,degree lf),B)
        vv.i:=lcf
        f := rf
      vv

----- reconstruct the polynomial from its coordinate -----
    anticoord(vv:List F,mf:DPoly,B:List DPoly) : DPoly ==
      for f in B for c in vv repeat (mf:=mf-c*f)
      mf

----- choose the next monom -----
    choosemon(mf:DPoly,nB:List DPoly) : DPoly ==
      nB = [] => ((lvar.last)::DPoly)*mf
      for x in reverse lvar repeat
        xx:=x ::DPoly
        mf:=xx*mf
        if redPo(mf,nB).poly ^= 0 then return mf
        dx := degree(mf,x)
        mf := (mf exquo (xx ** dx))::DPoly
      mf

----- put B in general position, B is Groebner -----
    linGenPos(B : List HDPoly) : LVals ==
      result:List DPoly :=[]
      ltresult:List DPoly :=[]
      vBasis:= computeBasis B
      nBasis:List DPoly :=[1$DPoly]
      ndim:=#vBasis : PositiveInteger
      ndim1:NNI:=ndim+1
      lm:VF
      linmat:MF:=zero(ndim,2*ndim+1)
      linmat(1,1):=1$F
      linmat(1,ndim1):=1
      pivots:Vector Integer := new(ndim,0)
      pivots(1) := 1
      i:NNI:=2
      rval:List Z :=[]
      for ii in 1..(#lvar-1) repeat
        c:Z:=0
        while c=0 repeat c:=random()$Z rem 11
        rval:=concat(c,rval)
      nval:DPoly := (last.lvar)::DPoly -
                (+/[r*(vv)::DPoly for r in rval for vv in lvar])
      firstmon:DPoly:=1$DPoly
      ofirstmon:DPoly:=1$DPoly
      orecfmon:Record(poly:HDPoly, mult:F) := [1,1]
      lx:= lvar.last
      while (firstmon:=choosemon(firstmon,ltresult))^=1 repeat
        if (v:=firstmon exquo ofirstmon) case "failed" then
          recfmon:=rRedPol(transform(eval(firstmon,lx,nval)),B)
        else
          recfmon:=rRedPol(transform(eval(v,lx,nval))*orecfmon.poly,B)
          recfmon.mult := recfmon.mult * orecfmon.mult
        cc := gcd(content recfmon.poly, recfmon.mult)
        recfmon.poly := (recfmon.poly exquo cc)::HDPoly
        recfmon.mult := (recfmon.mult exquo cc)::F
        veccoef:VF:=coord(recfmon.poly,vBasis)
        ofirstmon:=firstmon
        orecfmon := recfmon
        lm:=zero(2*ndim+1)
        for j in 1..ndim repeat lm(j):=veccoef(j)
        lm(ndim+i):=recfmon.mult
        lm := reduceRow(linmat, lm, i-1, pivots)
        j:=1
        while lm(j) = 0 and j<ndim1 repeat j:=j+1
        if j=ndim1 then
          cordlist:List F:=[lm(j) for j in ndim1..ndim1+(#nBasis)]
          antc:=+/[c*b for c in reverse cordlist
                       for b in concat(firstmon,nBasis)]
          result:=concat(primitivePart antc,result)
          ltresult:=concat(antc-reductum antc,ltresult)
        else
          pivots(i) := j
          setRow_!(linmat,i,lm)
          i:=i+1
          nBasis:=concat(firstmon,nBasis)
      [result,rval]$LVals

    ----- given a basis of a zero-dimensional ideal,
    ----- performs a random change of coordinates
    ----- computes a Groebner basis for the lex ordering
    groebgen(L:List DPoly) : cLVars ==
      xn:=lvar.last
      val := xn::DPoly
      nvar1:NNI:=(#lvar-1):NNI
      ll: List Z :=[random()$Z rem 11 for i in 1..nvar1]
      val:=val+ +/[ll.i*(lvar.i)::DPoly for i in 1..nvar1]
      LL:=[elt(univariate(f,xn),val) for f in L]
      LL:=  groebner(LL)
      [LL,ll]$cLVars