/usr/share/axiom-20170501/src/algebra/LGROBP.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | )abbrev package LGROBP LinGroebnerPackage
++ References:
++ Normxx Notes 13: How to Compute a Groebner Basis
++ Description:
++ Given a Groebner basis B with respect to the total degree ordering for
++ a zero-dimensional ideal I, compute
++ a Groebner basis with respect to the lexicographical ordering by using
++ linear algebra.
LinGroebnerPackage(lv,F) : SIG == CODE where
lv : List Symbol
F : GcdDomain
Z ==> Integer
DP ==> DirectProduct(#lv,NonNegativeInteger)
DPoly ==> DistributedMultivariatePolynomial(lv,F)
HDP ==> HomogeneousDirectProduct(#lv,NonNegativeInteger)
HDPoly ==> HomogeneousDistributedMultivariatePolynomial(lv,F)
OV ==> OrderedVariableList(lv)
NNI ==> NonNegativeInteger
LVals ==> Record(gblist : List DPoly,gvlist : List Z)
VF ==> Vector F
VV ==> Vector NNI
MF ==> Matrix F
cLVars ==> Record(glbase:List DPoly,glval:List Z)
SIG ==> with
linGenPos : List HDPoly -> LVals
++ linGenPos \undocumented
groebgen : List DPoly -> cLVars
++ groebgen \undocumented
totolex : List HDPoly -> List DPoly
++ totolex \undocumented
minPol : (List HDPoly,List HDPoly,OV) -> HDPoly
++ minPol \undocumented
minPol : (List HDPoly,OV) -> HDPoly
++ minPol \undocumented
computeBasis : List HDPoly -> List HDPoly
++ computeBasis \undocumented
coord : (HDPoly,List HDPoly) -> VF
++ coord \undocumented
anticoord : (List F,DPoly,List DPoly) -> DPoly
++ anticoord \undocumented
intcompBasis : (OV,List HDPoly,List HDPoly) -> List HDPoly
++ intcompBasis \undocumented
choosemon : (DPoly,List DPoly) -> DPoly
++ choosemon \undocumented
transform : DPoly -> HDPoly
++ transform \undocumented
CODE ==> add
import GroebnerPackage(F,DP,OV,DPoly)
import GroebnerPackage(F,HDP,OV,HDPoly)
import GroebnerInternalPackage(F,HDP,OV,HDPoly)
import GroebnerInternalPackage(F,DP,OV,DPoly)
lvar :=[variable(yx)::OV for yx in lv]
reduceRow(M:MF, v : VF, lastRow: Integer, pivots: Vector(Integer)) : VF ==
a1:F := 1
b:F := 0
dim := #v
for j in 1..lastRow repeat -- scan over rows
mj := row(M,j)
k:=pivots(j)
b:=mj.k
vk := v.k
for kk in 1..(k-1) repeat
v(kk) := ((-b*v(kk)) exquo a1) :: F
for kk in k..dim repeat
v(kk) := ((vk*mj(kk)-b*v(kk)) exquo a1)::F
a1 := b
v
rRedPol(f:HDPoly, B:List HDPoly):Record(poly:HDPoly, mult:F) ==
gm := redPo(f,B)
gm.poly = 0 => gm
gg := reductum(gm.poly)
ggm := rRedPol(gg,B)
[ggm.mult*(gm.poly - gg) + ggm.poly, ggm.mult*gm.mult]
----- transform the total basis B in lex basis -----
totolex(B : List HDPoly) : List DPoly ==
result:List DPoly :=[]
ltresult:List DPoly :=[]
vBasis:= computeBasis B
nBasis:List DPoly :=[1$DPoly]
ndim:=(#vBasis)::PositiveInteger
ndim1:NNI:=ndim+1
lm:VF
linmat:MF:=zero(ndim,2*ndim+1)
linmat(1,1):=1$F
linmat(1,ndim1):=1
pivots:Vector Integer := new(ndim,0)
pivots(1) := 1
firstmon:DPoly:=1$DPoly
ofirstmon:DPoly:=1$DPoly
orecfmon:Record(poly:HDPoly, mult:F) := [1,1]
i:NNI:=2
while (firstmon:=choosemon(firstmon,ltresult))^=1 repeat
if (v:=firstmon exquo ofirstmon) case "failed" then
recfmon:=rRedPol(transform firstmon,B)
else
recfmon:=rRedPol(transform(v::DPoly) *orecfmon.poly,B)
recfmon.mult := recfmon.mult * orecfmon.mult
cc := gcd(content recfmon.poly, recfmon.mult)
recfmon.poly := (recfmon.poly exquo cc)::HDPoly
recfmon.mult := (recfmon.mult exquo cc)::F
veccoef:VF:=coord(recfmon.poly,vBasis)
ofirstmon:=firstmon
orecfmon := recfmon
lm:=zero(2*ndim+1)
for j in 1..ndim repeat lm(j):=veccoef(j)
lm(ndim+i):=recfmon.mult
lm := reduceRow(linmat, lm, i-1, pivots)
if i=ndim1 then j:=ndim1
else
j:=1
while lm(j) = 0 and j< ndim1 repeat j:=j+1
if j=ndim1 then
cordlist:List F:=[lm(k) for k in ndim1..ndim1+(#nBasis)]
antc:=+/[c*b for c in reverse cordlist
for b in concat(firstmon,nBasis)]
antc:=primitivePart antc
result:=concat(antc,result)
ltresult:=concat(antc-reductum antc,ltresult)
else
pivots(i) := j
setRow_!(linmat,i,lm)
i:=i+1
nBasis:=cons(firstmon,nBasis)
result
---- Compute the univariate polynomial for x
----oldBasis is a total degree Groebner basis
minPol(oldBasis:List HDPoly,x:OV) :HDPoly ==
algBasis:= computeBasis oldBasis
minPol(oldBasis,algBasis,x)
---- Compute the univariate polynomial for x
---- oldBasis is total Groebner, algBasis is the basis as algebra
minPol(oldBasis:List HDPoly,algBasis:List HDPoly,x:OV) :HDPoly ==
nvp:HDPoly:=x::HDPoly
f:=1$HDPoly
omult:F :=1
ndim:=(#algBasis)::PositiveInteger
ndim1:NNI:=ndim+1
lm:VF
linmat:MF:=zero(ndim,2*ndim+1)
linmat(1,1):=1$F
linmat(1,ndim1):=1
pivots:Vector Integer := new(ndim,0)
pivots(1) := 1
for i in 2..ndim1 repeat
recf:=rRedPol(f*nvp,oldBasis)
omult := recf.mult * omult
f := recf.poly
cc := gcd(content f, omult)
f := (f exquo cc)::HDPoly
omult := (omult exquo cc)::F
veccoef:VF:=coord(f,algBasis)
lm:=zero(2*ndim+1)
for j in 1..ndim repeat lm(j) := veccoef(j)
lm(ndim+i):=omult
lm := reduceRow(linmat, lm, i-1, pivots)
j:=1
while lm(j)=0 and j<ndim1 repeat j:=j+1
if j=ndim1 then return
g:HDPoly:=0
for k in ndim1..2*ndim+1 repeat
g:=g+lm(k) * nvp**((k-ndim1):NNI)
primitivePart g
pivots(i) := j
setRow_!(linmat,i,lm)
----- transform a DPoly in a HDPoly -----
transform(dpol:DPoly) : HDPoly ==
dpol=0 => 0$HDPoly
monomial(leadingCoefficient dpol,
directProduct(degree(dpol)::VV)$HDP)$HDPoly +
transform(reductum dpol)
----- compute the basis for the vector space determined by B -----
computeBasis(B:List HDPoly) : List HDPoly ==
mB:List HDPoly:=[monomial(1$F,degree f)$HDPoly for f in B]
result:List HDPoly := [1$HDPoly]
for var in lvar repeat
part:=intcompBasis(var,result,mB)
result:=concat(result,part)
result
----- internal function for computeBasis -----
intcompBasis(x:OV,lr:List HDPoly,mB : List HDPoly):List HDPoly ==
lr=[] => lr
part:List HDPoly :=[]
for f in lr repeat
g:=x::HDPoly * f
if redPo(g,mB).poly^=0 then part:=concat(g,part)
concat(part,intcompBasis(x,part,mB))
----- coordinate of f with respect to the basis B -----
----- f is a reduced polynomial -----
coord(f:HDPoly,B:List HDPoly) : VF ==
ndim := #B
vv:VF:=new(ndim,0$F)$VF
while f^=0 repeat
rf := reductum f
lf := f-rf
lcf := leadingCoefficient f
i:Z:=position(monomial(1$F,degree lf),B)
vv.i:=lcf
f := rf
vv
----- reconstruct the polynomial from its coordinate -----
anticoord(vv:List F,mf:DPoly,B:List DPoly) : DPoly ==
for f in B for c in vv repeat (mf:=mf-c*f)
mf
----- choose the next monom -----
choosemon(mf:DPoly,nB:List DPoly) : DPoly ==
nB = [] => ((lvar.last)::DPoly)*mf
for x in reverse lvar repeat
xx:=x ::DPoly
mf:=xx*mf
if redPo(mf,nB).poly ^= 0 then return mf
dx := degree(mf,x)
mf := (mf exquo (xx ** dx))::DPoly
mf
----- put B in general position, B is Groebner -----
linGenPos(B : List HDPoly) : LVals ==
result:List DPoly :=[]
ltresult:List DPoly :=[]
vBasis:= computeBasis B
nBasis:List DPoly :=[1$DPoly]
ndim:=#vBasis : PositiveInteger
ndim1:NNI:=ndim+1
lm:VF
linmat:MF:=zero(ndim,2*ndim+1)
linmat(1,1):=1$F
linmat(1,ndim1):=1
pivots:Vector Integer := new(ndim,0)
pivots(1) := 1
i:NNI:=2
rval:List Z :=[]
for ii in 1..(#lvar-1) repeat
c:Z:=0
while c=0 repeat c:=random()$Z rem 11
rval:=concat(c,rval)
nval:DPoly := (last.lvar)::DPoly -
(+/[r*(vv)::DPoly for r in rval for vv in lvar])
firstmon:DPoly:=1$DPoly
ofirstmon:DPoly:=1$DPoly
orecfmon:Record(poly:HDPoly, mult:F) := [1,1]
lx:= lvar.last
while (firstmon:=choosemon(firstmon,ltresult))^=1 repeat
if (v:=firstmon exquo ofirstmon) case "failed" then
recfmon:=rRedPol(transform(eval(firstmon,lx,nval)),B)
else
recfmon:=rRedPol(transform(eval(v,lx,nval))*orecfmon.poly,B)
recfmon.mult := recfmon.mult * orecfmon.mult
cc := gcd(content recfmon.poly, recfmon.mult)
recfmon.poly := (recfmon.poly exquo cc)::HDPoly
recfmon.mult := (recfmon.mult exquo cc)::F
veccoef:VF:=coord(recfmon.poly,vBasis)
ofirstmon:=firstmon
orecfmon := recfmon
lm:=zero(2*ndim+1)
for j in 1..ndim repeat lm(j):=veccoef(j)
lm(ndim+i):=recfmon.mult
lm := reduceRow(linmat, lm, i-1, pivots)
j:=1
while lm(j) = 0 and j<ndim1 repeat j:=j+1
if j=ndim1 then
cordlist:List F:=[lm(j) for j in ndim1..ndim1+(#nBasis)]
antc:=+/[c*b for c in reverse cordlist
for b in concat(firstmon,nBasis)]
result:=concat(primitivePart antc,result)
ltresult:=concat(antc-reductum antc,ltresult)
else
pivots(i) := j
setRow_!(linmat,i,lm)
i:=i+1
nBasis:=concat(firstmon,nBasis)
[result,rval]$LVals
----- given a basis of a zero-dimensional ideal,
----- performs a random change of coordinates
----- computes a Groebner basis for the lex ordering
groebgen(L:List DPoly) : cLVars ==
xn:=lvar.last
val := xn::DPoly
nvar1:NNI:=(#lvar-1):NNI
ll: List Z :=[random()$Z rem 11 for i in 1..nvar1]
val:=val+ +/[ll.i*(lvar.i)::DPoly for i in 1..nvar1]
LL:=[elt(univariate(f,xn),val) for f in L]
LL:= groebner(LL)
[LL,ll]$cLVars
|