This file is indexed.

/usr/share/axiom-20170501/src/algebra/ISUPS.spad is in axiom-source 20170501-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
)abbrev domain ISUPS InnerSparseUnivariatePowerSeries
++ Author: Clifton J. Williamson
++ Date Created: 28 October 1994
++ Date Last Updated: 9 March 1995
++ Description: 
++ InnerSparseUnivariatePowerSeries is an internal domain
++ used for creating sparse Taylor and Laurent series.

InnerSparseUnivariatePowerSeries(Coef) : SIG == CODE where
  Coef  : Ring

  B    ==> Boolean
  COM  ==> OrderedCompletion Integer
  I    ==> Integer
  L    ==> List
  NNI  ==> NonNegativeInteger
  OUT  ==> OutputForm
  PI   ==> PositiveInteger
  REF  ==> Reference OrderedCompletion Integer
  RN   ==> Fraction Integer
  Term ==> Record(k:Integer,c:Coef)
  SG   ==> String
  ST   ==> Stream Term

  SIG ==> UnivariatePowerSeriesCategory(Coef,Integer) with

    makeSeries: (REF,ST) -> %
      ++ makeSeries(refer,str) creates a power series from the reference
      ++ \spad{refer} and the stream \spad{str}.

    getRef: % -> REF
      ++ getRef(f) returns a reference containing the order to which the
      ++ terms of f have been computed.

    getStream: % -> ST
      ++ getStream(f) returns the stream of terms representing the series f.

    series: ST -> %
      ++ series(st) creates a series from a stream of non-zero terms,
      ++ where a term is an exponent-coefficient pair.  The terms in the
      ++ stream should be ordered by increasing order of exponents.

    monomial?: % -> B
      ++ monomial?(f) tests if f is a single monomial.

    multiplyCoefficients: (I -> Coef,%) -> %
      ++ multiplyCoefficients(fn,f) returns the series
      ++ \spad{sum(fn(n) * an * x^n,n = n0..)},
      ++ where f is the series \spad{sum(an * x^n,n = n0..)}.

    iExquo: (%,%,B) -> Union(%,"failed")
      ++ iExquo(f,g,taylor?) is the quotient of the power series f and g.
      ++ If \spad{taylor?} is \spad{true}, then we must have
      ++ \spad{order(f) >= order(g)}.

    taylorQuoByVar: % -> %
      ++ taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)
      ++ returns \spad{a1 + a2 x + a3 x**2 + ...}

    iCompose: (%,%) -> %
      ++ iCompose(f,g) returns \spad{f(g(x))}.  This is an internal function
      ++ which should only be called for Taylor series \spad{f(x)} and
      ++ \spad{g(x)} such that the constant coefficient of \spad{g(x)} is zero.

    seriesToOutputForm: (ST,REF,Symbol,Coef,RN) -> OutputForm
      ++ seriesToOutputForm(st,refer,var,cen,r) prints the series
      ++ \spad{f((var - cen)^r)}.

    if Coef has Algebra Fraction Integer then

      integrate : % -> %
        ++ integrate(f(x)) returns an anti-derivative of the power series
        ++ \spad{f(x)} with constant coefficient 0.
        ++ Warning: function does not check for a term of degree -1.

      cPower : (%,Coef) -> %
        ++ cPower(f,r) computes \spad{f^r}, where f has constant coefficient 1.
        ++ For use when the coefficient ring is commutative.

      cRationalPower : (%,RN) -> %
        ++ cRationalPower(f,r) computes \spad{f^r}.
        ++ For use when the coefficient ring is commutative.

      cExp : % -> %
        ++ cExp(f) computes the exponential of the power series f.
        ++ For use when the coefficient ring is commutative.

      cLog : % -> %
        ++ cLog(f) computes the logarithm of the power series f.
        ++ For use when the coefficient ring is commutative.

      cSin : % -> %
        ++ cSin(f) computes the sine of the power series f.
        ++ For use when the coefficient ring is commutative.

      cCos : % -> %
        ++ cCos(f) computes the cosine of the power series f.
        ++ For use when the coefficient ring is commutative.

      cTan : % -> %
        ++ cTan(f) computes the tangent of the power series f.
        ++ For use when the coefficient ring is commutative.

      cCot : % -> %
        ++ cCot(f) computes the cotangent of the power series f.
        ++ For use when the coefficient ring is commutative.

      cSec : % -> %
        ++ cSec(f) computes the secant of the power series f.
        ++ For use when the coefficient ring is commutative.

      cCsc : % -> %
        ++ cCsc(f) computes the cosecant of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAsin : % -> %
        ++ cAsin(f) computes the arcsine of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAcos : % -> %
        ++ cAcos(f) computes the arccosine of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAtan : % -> %
        ++ cAtan(f) computes the arctangent of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAcot : % -> %
        ++ cAcot(f) computes the arccotangent of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAsec : % -> %
        ++ cAsec(f) computes the arcsecant of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAcsc : % -> %
        ++ cAcsc(f) computes the arccosecant of the power series f.
        ++ For use when the coefficient ring is commutative.

      cSinh : % -> %
        ++ cSinh(f) computes the hyperbolic sine of the power series f.
        ++ For use when the coefficient ring is commutative.

      cCosh : % -> %
        ++ cCosh(f) computes the hyperbolic cosine of the power series f.
        ++ For use when the coefficient ring is commutative.

      cTanh : % -> %
        ++ cTanh(f) computes the hyperbolic tangent of the power series f.
        ++ For use when the coefficient ring is commutative.

      cCoth : % -> %
        ++ cCoth(f) computes the hyperbolic cotangent of the power series f.
        ++ For use when the coefficient ring is commutative.

      cSech : % -> %
        ++ cSech(f) computes the hyperbolic secant of the power series f.
        ++ For use when the coefficient ring is commutative.

      cCsch : % -> %
        ++ cCsch(f) computes the hyperbolic cosecant of the power series f.
        ++ For use when the coefficient ring is commutative.

      cAsinh : % -> %
        ++ cAsinh(f) computes the inverse hyperbolic sine of the power
        ++ series f.  For use when the coefficient ring is commutative.

      cAcosh : % -> %
        ++ cAcosh(f) computes the inverse hyperbolic cosine of the power
        ++ series f.  For use when the coefficient ring is commutative.

      cAtanh : % -> %
        ++ cAtanh(f) computes the inverse hyperbolic tangent of the power
        ++ series f.  For use when the coefficient ring is commutative.

      cAcoth : % -> %
        ++ cAcoth(f) computes the inverse hyperbolic cotangent of the power
        ++ series f.  For use when the coefficient ring is commutative.

      cAsech : % -> %
        ++ cAsech(f) computes the inverse hyperbolic secant of the power
        ++ series f.  For use when the coefficient ring is commutative.

      cAcsch : % -> %
        ++ cAcsch(f) computes the inverse hyperbolic cosecant of the power
        ++ series f.  For use when the coefficient ring is commutative.

  CODE ==> add

    import REF

    Rep := Record(%ord: REF,%str: Stream Term)
    -- when the value of 'ord' is n, this indicates that all non-zero
    -- terms of order up to and including n have been computed;
    -- when 'ord' is plusInfinity, all terms have been computed;
    -- lazy evaluation of 'str' has the side-effect of modifying the value
    -- of 'ord'

--% Local functions

    makeTerm:        (Integer,Coef) -> Term
    getCoef:         Term -> Coef
    getExpon:        Term -> Integer
    iSeries:         (ST,REF) -> ST
    iExtend:         (ST,COM,REF) -> ST
    iTruncate0:      (ST,REF,REF,COM,I,I) -> ST
    iTruncate:       (%,COM,I) -> %
    iCoefficient:    (ST,Integer) -> Coef
    iOrder:          (ST,COM,REF) -> I
    iMap1:           ((Coef,I) -> Coef,I -> I,B,ST,REF,REF,Integer) -> ST
    iMap2:           ((Coef,I) -> Coef,I -> I,B,%) -> %
    iPlus1:          ((Coef,Coef) -> Coef,ST,REF,ST,REF,REF,I) -> ST
    iPlus2:          ((Coef,Coef) -> Coef,%,%) -> %
    productByTerm:   (Coef,I,ST,REF,REF,I) -> ST
    productLazyEval: (ST,REF,ST,REF,COM) -> Void
    iTimes:          (ST,REF,ST,REF,REF,I) -> ST
    iDivide:         (ST,REF,ST,REF,Coef,I,REF,I) -> ST
    divide:          (%,I,%,I,Coef) -> %
    compose0:        (ST,REF,ST,REF,I,%,%,I,REF,I) -> ST
    factorials?:     () -> Boolean
    termOutput:      (RN,Coef,OUT) -> OUT
    showAll?:        () -> Boolean

--% macros

    makeTerm(exp,coef) == [exp,coef]

    getCoef term == term.c

    getExpon term == term.k

    makeSeries(refer,x) == [refer,x]

    getRef ups == ups.%ord

    getStream ups == ups.%str

--% creation and destruction of series

    monomial(coef,expon) ==
      nix : ST := empty()
      st :=
        zero? coef => nix
        concat(makeTerm(expon,coef),nix)
      makeSeries(ref plusInfinity(),st)

    monomial? ups == (not empty? getStream ups) and (empty? rst getStream ups)

    coerce(n:I)    == n :: Coef :: %

    coerce(r:Coef) == monomial(r,0)

    iSeries(x,refer) ==
      empty? x => (setelt(refer,plusInfinity()); empty())
      setelt(refer,(getExpon frst x) :: COM)
      concat(frst x,iSeries(rst x,refer))

    series(x:ST) ==
      empty? x => 0
      n := getExpon frst x; refer := ref(n :: COM)
      makeSeries(refer,iSeries(x,refer))

--% values

    characteristic() == characteristic()$Coef

    0 == monomial(0,0)

    1 == monomial(1,0)

    iExtend(st,n,refer) ==
      (elt refer) < n =>
        explicitlyEmpty? st => (setelt(refer,plusInfinity()); st)
        explicitEntries? st => iExtend(rst st,n,refer)
        iExtend(lazyEvaluate st,n,refer)
      st

    extend(x,n) == (iExtend(getStream x,n :: COM,getRef x); x)

    complete x  == (iExtend(getStream x,plusInfinity(),getRef x); x)

    iTruncate0(x,xRefer,refer,minExp,maxExp,n) == delay
      explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
      nn := n :: COM
      while (elt xRefer) < nn repeat lazyEvaluate x
      explicitEntries? x =>
        (nx := getExpon(xTerm := frst x)) > maxExp =>
          (setelt(refer,plusInfinity()); empty())
        setelt(refer,nx :: COM)
        (nx :: COM) >= minExp =>
          concat(makeTerm(nx,getCoef xTerm),_
                 iTruncate0(rst x,xRefer,refer,minExp,maxExp,nx + 1))
        iTruncate0(rst x,xRefer,refer,minExp,maxExp,nx + 1)
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := retract(elt xRefer)@I
      setelt(refer,degr :: COM)
      iTruncate0(x,xRefer,refer,minExp,maxExp,degr + 1)

    iTruncate(ups,minExp,maxExp) ==
      x := getStream ups; xRefer := getRef ups
      explicitlyEmpty? x => 0
      explicitEntries? x =>
        deg := getExpon frst x
        refer := ref((deg - 1) :: COM)
        makeSeries(refer,iTruncate0(x,xRefer,refer,minExp,maxExp,deg))
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := retract(elt xRefer)@I
      refer := ref(degr :: COM)
      makeSeries(refer,iTruncate0(x,xRefer,refer,minExp,maxExp,degr + 1))

    truncate(ups,n) == iTruncate(ups,minusInfinity(),n)

    truncate(ups,n1,n2) ==
      if n1 > n2 then (n1,n2) := (n2,n1)
      iTruncate(ups,n1 :: COM,n2)

    iCoefficient(st,n) ==
      explicitEntries? st =>
        term := frst st
        (expon := getExpon term) > n => 0
        expon = n => getCoef term
        iCoefficient(rst st,n)
      0

    coefficient(x,n)   == (extend(x,n); iCoefficient(getStream x,n))

    elt(x:%,n:Integer) == coefficient(x,n)

    iOrder(st,n,refer) ==
      explicitlyEmpty? st =>
        finite?(n) => retract(n)@Integer
        error "order: series has infinite order"
      explicitEntries? st =>
        ((r := getExpon frst st) :: COM) >= n => retract(n)@Integer
        r
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := retract(elt refer)@I
      (degr :: COM) >= n => retract(n)@Integer
      iOrder(lazyEvaluate st,n,refer)

    order x    == iOrder(getStream x,plusInfinity(),getRef x)

    order(x,n) == iOrder(getStream x,n :: COM,getRef x)

    terms x    == getStream x

--% predicates

    zero? ups ==
      x := getStream ups; ref := getRef ups
      whatInfinity(n := elt ref) = 1 => explicitlyEmpty? x
      count : NNI := _$streamCount$Lisp
      for i in 1..count repeat
        explicitlyEmpty? x => return true
        explicitEntries? x => return false
        lazyEvaluate x
      false

    ups1 = ups2 == zero?(ups1 - ups2)

--% arithmetic

    iMap1(cFcn,eFcn,check?,x,xRefer,refer,n) == delay
      -- when this function is called, all terms in 'x' of order < n have been
      -- computed and we compute the eFcn(n)th order coefficient of the result
      explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
      -- if terms in 'x' up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM
      while (elt xRefer) < nn repeat lazyEvaluate x
      -- 'x' may now be empty: retest
      explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
      -- must have nx >= n
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
        newCoef := cFcn(xCoef,nx); m := eFcn nx
        setelt(refer,m :: COM)
        not check? =>
          concat(makeTerm(m,newCoef),_
                 iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1))
        zero? newCoef => iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1)
        concat(makeTerm(m,newCoef),_
               iMap1(cFcn,eFcn,check?,rst x,xRefer,refer,nx + 1))
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := retract(elt xRefer)@I
      setelt(refer,eFcn(degr) :: COM)
      iMap1(cFcn,eFcn,check?,x,xRefer,refer,degr + 1)

    iMap2(cFcn,eFcn,check?,ups) ==
      -- 'eFcn' must be a strictly increasing function,
      -- i < j => eFcn(i) < eFcn(j)
      xRefer := getRef ups; x := getStream ups
      explicitlyEmpty? x => 0
      explicitEntries? x =>
        deg := getExpon frst x
        refer := ref(eFcn(deg - 1) :: COM)
        makeSeries(refer,iMap1(cFcn,eFcn,check?,x,xRefer,refer,deg))
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := retract(elt xRefer)@I
      refer := ref(eFcn(degr) :: COM)
      makeSeries(refer,iMap1(cFcn,eFcn,check?,x,xRefer,refer,degr + 1))

    map(fcn,x)                == iMap2((y,n) +-> fcn(y), z +->z,      true, x)

    differentiate x           == iMap2((y,n) +-> n*y,    z +-> z - 1, true, x)

    multiplyCoefficients(f,x) == iMap2((y,n) +-> f(n)*y, z +-> z,     true, x)

    multiplyExponents(x,n)    == iMap2((y,m) +-> y,      z +-> n*z,   false, x)

    iPlus1(op,x,xRefer,y,yRefer,refer,n) == delay
      -- when this function is called, all terms in 'x' and 'y' of order < n
      -- have been computed and we are computing the nth order coefficient of
      -- the result; note the 'op' is either '+' or '-'
      explicitlyEmpty? x => 
        iMap1((x1,m) +-> op(0,x1), z +-> z, false, y, yRefer, refer, n)
      explicitlyEmpty? y => 
        iMap1((x1,m) +-> op(x1,0), z +-> z, false, x, xRefer, refer, n)
      -- if terms up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM
      while (elt xRefer) < nn repeat lazyEvaluate x
      while (elt yRefer) < nn repeat lazyEvaluate y
      -- 'x' or 'y' may now be empty: retest
      explicitlyEmpty? x => 
        iMap1((x1,m) +-> op(0,x1), z +-> z, false, y, yRefer, refer, n)
      explicitlyEmpty? y => 
        iMap1((x1,m) +-> op(x1,0), z +-> z, false, x, xRefer, refer, n)
      -- must have nx >= n, ny >= n
      -- both x and y have explicit terms
      explicitEntries?(x) and explicitEntries?(y) =>
        xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
        yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
        nx = ny =>
          setelt(refer,nx :: COM)
          zero? (coef := op(xCoef,yCoef)) =>
            iPlus1(op,rst x,xRefer,rst y,yRefer,refer,nx + 1)
          concat(makeTerm(nx,coef),_
                 iPlus1(op,rst x,xRefer,rst y,yRefer,refer,nx + 1))
        nx < ny =>
          setelt(refer,nx :: COM)
          concat(makeTerm(nx,op(xCoef,0)),_
                 iPlus1(op,rst x,xRefer,y,yRefer,refer,nx + 1))
        setelt(refer,ny :: COM)
        concat(makeTerm(ny,op(0,yCoef)),_
               iPlus1(op,x,xRefer,rst y,yRefer,refer,ny + 1))
      -- y has no term of degree n
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
        -- can't have elt(yRefer) = infty unless all terms have been computed
        (degr := retract(elt yRefer)@I) < nx =>
          setelt(refer,elt yRefer)
          iPlus1(op,x,xRefer,y,yRefer,refer,degr + 1)
        setelt(refer,nx :: COM)
        concat(makeTerm(nx,op(xCoef,0)),_
               iPlus1(op,rst x,xRefer,y,yRefer,refer,nx + 1))
      -- x has no term of degree n
      explicitEntries? y =>
        yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
        -- can't have elt(xRefer) = infty unless all terms have been computed
        (degr := retract(elt xRefer)@I) < ny =>
          setelt(refer,elt xRefer)
          iPlus1(op,x,xRefer,y,yRefer,refer,degr + 1)
        setelt(refer,ny :: COM)
        concat(makeTerm(ny,op(0,yCoef)),_
               iPlus1(op,x,xRefer,rst y,yRefer,refer,ny + 1))
      -- neither x nor y has a term of degree n
      setelt(refer,xyRef := min(elt xRefer,elt yRefer))
      -- can't have xyRef = infty unless all terms have been computed
      iPlus1(op,x,xRefer,y,yRefer,refer,retract(xyRef)@I + 1)

    iPlus2(op,ups1,ups2) ==
      xRefer := getRef ups1; x := getStream ups1
      xDeg :=
        explicitlyEmpty? x => return map(z +-> op(0$Coef,z),ups2)
        explicitEntries? x => (getExpon frst x) - 1
        -- can't have elt(xRefer) = infty unless all terms have been computed
        retract(elt xRefer)@I
      yRefer := getRef ups2; y := getStream ups2
      yDeg :=
        explicitlyEmpty? y => return map(z +-> op(z,0$Coef),ups1)
        explicitEntries? y => (getExpon frst y) - 1
        -- can't have elt(yRefer) = infty unless all terms have been computed
        retract(elt yRefer)@I
      deg := min(xDeg,yDeg); refer := ref(deg :: COM)
      makeSeries(refer,iPlus1(op,x,xRefer,y,yRefer,refer,deg + 1))

    x + y == iPlus2((xi,yi) +-> xi + yi, x, y)

    x - y == iPlus2((xi,yi) +-> xi - yi, x, y)

    - y   == iMap2((x,n) +-> -x, z +-> z, false, y)

    -- gives correct defaults for I, NNI and PI
    n:I   * x:% == (zero? n => 0; map(z +-> n*z, x))

    n:NNI * x:% == (zero? n => 0; map(z +-> n*z, x))

    n:PI  * x:% == (zero? n => 0; map(z +-> n*z, x))

    productByTerm(coef,expon,x,xRefer,refer,n) ==
      iMap1((y,m) +-> coef*y, z +-> z+expon, true, x, xRefer, refer, n)

    productLazyEval(x,xRefer,y,yRefer,nn) ==
      explicitlyEmpty?(x) or explicitlyEmpty?(y) => void()
      explicitEntries? x =>
        explicitEntries? y => void()
        xDeg := (getExpon frst x) :: COM
        while (xDeg + elt(yRefer)) < nn repeat lazyEvaluate y
        void()
      explicitEntries? y =>
        yDeg := (getExpon frst y) :: COM
        while (yDeg + elt(xRefer)) < nn repeat lazyEvaluate x
        void()
      lazyEvaluate x
      -- if x = y, then y may now have explicit entries
      if lazy? y then lazyEvaluate y
      productLazyEval(x,xRefer,y,yRefer,nn)

    iTimes(x,xRefer,y,yRefer,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the product
      productLazyEval(x,xRefer,y,yRefer,n :: COM)
      explicitlyEmpty?(x) or explicitlyEmpty?(y) =>
        (setelt(refer,plusInfinity()); empty())
      -- must have nx + ny >= n
      explicitEntries?(x) and explicitEntries?(y) =>
        xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm
        yCoef := getCoef(yTerm := frst y); yExpon := getExpon yTerm
        expon := xExpon + yExpon
        setelt(refer,expon :: COM)
        scRefer := ref(expon :: COM)
        scMult := productByTerm(xCoef,xExpon,rst y,yRefer,scRefer,yExpon + 1)
        prRefer := ref(expon :: COM)
        pr := iTimes(rst x,xRefer,y,yRefer,prRefer,expon + 1)
        sm := iPlus1((a,b) +-> a+b,scMult,scRefer,pr,prRefer,refer,expon + 1)
        zero?(coef := xCoef * yCoef) => sm
        concat(makeTerm(expon,coef),sm)
      explicitEntries? x =>
        xExpon := getExpon frst x
        -- can't have elt(yRefer) = infty unless all terms have been computed
        degr := retract(elt yRefer)@I
        setelt(refer,(xExpon + degr) :: COM)
        iTimes(x,xRefer,y,yRefer,refer,xExpon + degr + 1)
      explicitEntries? y =>
        yExpon := getExpon frst y
        -- can't have elt(xRefer) = infty unless all terms have been computed
        degr := retract(elt xRefer)@I
        setelt(refer,(yExpon + degr) :: COM)
        iTimes(x,xRefer,y,yRefer,refer,yExpon + degr + 1)
      -- can't have elt(xRefer) = infty unless all terms have been computed
      xDegr := retract(elt xRefer)@I
      yDegr := retract(elt yRefer)@I
      setelt(refer,(xDegr + yDegr) :: COM)
      iTimes(x,xRefer,y,yRefer,refer,xDegr + yDegr + 1)

    ups1:% * ups2:% ==
      xRefer := getRef ups1; x := getStream ups1
      xDeg :=
        explicitlyEmpty? x => return 0
        explicitEntries? x => (getExpon frst x) - 1
        -- can't have elt(xRefer) = infty unless all terms have been computed
        retract(elt xRefer)@I
      yRefer := getRef ups2; y := getStream ups2
      yDeg :=
        explicitlyEmpty? y => return 0
        explicitEntries? y => (getExpon frst y) - 1
        -- can't have elt(yRefer) = infty unless all terms have been computed
        retract(elt yRefer)@I
      deg := xDeg + yDeg + 1; refer := ref(deg :: COM)
      makeSeries(refer,iTimes(x,xRefer,y,yRefer,refer,deg + 1))

    iDivide(x,xRefer,y,yRefer,rym,m,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the result
      explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
      -- if terms up to order n - m have not been computed,
      -- apply lazy evaluation
      nm := (n + m) :: COM
      while (elt xRefer) < nm repeat lazyEvaluate x
      -- 'x' may now be empty: retest
      explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
      -- must have nx >= n + m
      explicitEntries? x =>
        newCoef := getCoef(xTerm := frst x) * rym; nx := getExpon xTerm
        prodRefer := ref(nx :: COM)
        prod := productByTerm(-newCoef,nx - m,rst y,yRefer,prodRefer,1)
        sumRefer := ref(nx :: COM)
        sum := iPlus1((a,b)+->a+b,rst x,xRefer,prod,prodRefer,sumRefer,nx + 1)
        setelt(refer,(nx - m) :: COM); term := makeTerm(nx - m,newCoef)
        concat(term,iDivide(sum,sumRefer,y,yRefer,rym,m,refer,nx - m + 1))
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := retract(elt xRefer)@I
      setelt(refer,(degr - m) :: COM)
      iDivide(x,xRefer,y,yRefer,rym,m,refer,degr - m + 1)

    divide(ups1,deg1,ups2,deg2,r) ==
      xRefer := getRef ups1; x := getStream ups1
      yRefer := getRef ups2; y := getStream ups2
      refer := ref((deg1 - deg2) :: COM)
      makeSeries(refer,iDivide(x,xRefer,y,yRefer,r,deg2,refer,deg1 - deg2 + 1))

    iExquo(ups1,ups2,taylor?) ==
      xRefer := getRef ups1; x := getStream ups1
      yRefer := getRef ups2; y := getStream ups2
      n : I := 0
      -- try to find first non-zero term in y
      -- give up after 1000 lazy evaluations
      while not explicitEntries? y repeat
        explicitlyEmpty? y => return "failed"
        lazyEvaluate y
        (n := n + 1) > 1000 => return "failed"
      yCoef := getCoef(yTerm := frst y); ny := getExpon yTerm
      (ry := recip yCoef) case "failed" => "failed"
      nn := ny :: COM
      if taylor? then
        while (elt(xRefer) < nn) repeat
          explicitlyEmpty? x => return 0
          explicitEntries? x => return "failed"
          lazyEvaluate x
      -- check if ups2 is a monomial
      empty? rst y => iMap2((y1,m) +-> y1*(ry::Coef),z +->z-ny, false, ups1)
      explicitlyEmpty? x => 0
      nx :=
        explicitEntries? x =>
          ((deg := getExpon frst x) < ny) and taylor? => return "failed"
          deg - 1
        -- can't have elt(xRefer) = infty unless all terms have been computed
        retract(elt xRefer)@I
      divide(ups1,nx,ups2,ny,ry :: Coef)

    taylorQuoByVar ups ==
      iMap2((y,n) +-> y, z +-> z-1,false,ups - monomial(coefficient(ups,0),0))

    compose0(x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,n) == delay
      -- when this function is called, we are computing the nth order
      -- coefficient of the composite
      explicitlyEmpty? x => (setelt(refer,plusInfinity()); empty())
      -- if terms in 'x' up to order n have not been computed,
      -- apply lazy evaluation
      nn := n :: COM; yyOrd := yOrd :: COM
      while (yyOrd * elt(xRefer)) < nn repeat lazyEvaluate x
      explicitEntries? x =>
        xCoef := getCoef(xTerm := frst x); n1 := getExpon xTerm
        zero? n1 =>
          setelt(refer,n1 :: COM)
          concat(makeTerm(n1,xCoef),_
                 compose0(rst x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,n1 + 1))
        yn1 := yn0 * y1 ** ((n1 - n0) :: NNI)
        z := getStream yn1; zRefer := getRef yn1
        degr := yOrd * n1; prodRefer := ref((degr - 1) :: COM)
        prod := iMap1((s,k)+->xCoef*s,m+->m,true,z,zRefer,prodRefer,degr)
        coRefer := ref((degr + yOrd - 1) :: COM)
        co := compose0(rst x,xRefer,y,yRefer,yOrd,y1,yn1,n1,coRefer,degr+yOrd)
        setelt(refer,(degr - 1) :: COM)
        iPlus1((a,b)+->a+b,prod,prodRefer,co,coRefer,refer,degr)
      -- can't have elt(xRefer) = infty unless all terms have been computed
      degr := yOrd * (retract(elt xRefer)@I + 1)
      setelt(refer,(degr - 1) :: COM)
      compose0(x,xRefer,y,yRefer,yOrd,y1,yn0,n0,refer,degr)

    iCompose(ups1,ups2) ==
      x := getStream ups1; xRefer := getRef ups1
      y := getStream ups2; yRefer := getRef ups2
      -- try to compute the order of 'ups2'
      n : I := _$streamCount$Lisp
      for i in 1..n while not explicitEntries? y repeat
        explicitlyEmpty? y => coefficient(ups1,0) :: %
        lazyEvaluate y
      explicitlyEmpty? y => coefficient(ups1,0) :: %
      yOrd : I :=
        explicitEntries? y => getExpon frst y
        retract(elt yRefer)@I
      compRefer := ref((-1) :: COM)
      makeSeries(compRefer,_
                 compose0(x,xRefer,y,yRefer,yOrd,ups2,1,0,compRefer,0))

    if Coef has Algebra Fraction Integer then

      integrate x == iMap2((y,n) +-> 1/(n+1)*y, z +-> z+1, true, x)

--% Fixed point computations

      Ys ==> Y$ParadoxicalCombinatorsForStreams(Term)

      integ0: (ST,REF,REF,I) -> ST
      integ0(x,intRef,ansRef,n) == delay
        nLess1 := (n - 1) :: COM
        while (elt intRef) < nLess1 repeat lazyEvaluate x
        explicitlyEmpty? x => (setelt(ansRef,plusInfinity()); empty())
        explicitEntries? x =>
          xCoef := getCoef(xTerm := frst x); nx := getExpon xTerm
          setelt(ansRef,(n1 := (nx + 1)) :: COM)
          concat(makeTerm(n1,inv(n1 :: RN) * xCoef),_
                 integ0(rst x,intRef,ansRef,n1))
        -- can't have elt(intRef) = infty unless all terms have been computed
        degr := retract(elt intRef)@I; setelt(ansRef,(degr + 1) :: COM)
        integ0(x,intRef,ansRef,degr + 2)

      integ1: (ST,REF,REF) -> ST
      integ1(x,intRef,ansRef) == integ0(x,intRef,ansRef,1)

      lazyInteg: (Coef,() -> ST,REF,REF) -> ST
      lazyInteg(a,xf,intRef,ansRef) ==
        ansStr : ST := integ1(delay xf,intRef,ansRef)
        concat(makeTerm(0,a),ansStr)

      cPower(f,r) ==
        -- computes f^r.  f should have constant coefficient 1.
        fp := differentiate f
        fInv := iExquo(1,f,false) :: %; y := r * fp * fInv
        yRef := getRef y; yStr := getStream y
        intRef := ref((-1) :: COM); ansRef := ref(0 :: COM)
        ansStr := 
         Ys(s+->lazyInteg(1,iTimes(s,ansRef,yStr,yRef,intRef,0),intRef,ansRef))
        makeSeries(ansRef,ansStr)

      iExp: (%,Coef) -> %
      iExp(f,cc) ==
        -- computes exp(f).  cc = exp coefficient(f,0)
        fp := differentiate f
        fpRef := getRef fp; fpStr := getStream fp
        intRef := ref((-1) :: COM); ansRef := ref(0 :: COM)
        ansStr := 
         Ys(s+->lazyInteg(cc,
                  iTimes(s,ansRef,fpStr,fpRef,intRef,0),intRef,ansRef))
        makeSeries(ansRef,ansStr)

      sincos0: (Coef,Coef,L ST,REF,REF,ST,REF,ST,REF) -> L ST
      sincos0(sinc,cosc,list,sinRef,cosRef,fpStr,fpRef,fpStr2,fpRef2) ==
        sinStr := first list; cosStr := second list
        prodRef1 := ref((-1) :: COM); prodRef2 := ref((-1) :: COM)
        prodStr1 := iTimes(cosStr,cosRef,fpStr,fpRef,prodRef1,0)
        prodStr2 := iTimes(sinStr,sinRef,fpStr2,fpRef2,prodRef2,0)
        [lazyInteg(sinc,prodStr1,prodRef1,sinRef),_
         lazyInteg(cosc,prodStr2,prodRef2,cosRef)]

      iSincos: (%,Coef,Coef,I) -> Record(%sin: %, %cos: %)
      iSincos(f,sinc,cosc,sign) ==
        fp := differentiate f
        fpRef := getRef fp; fpStr := getStream fp
        fp2 := ((sign = 1) => fp; -fp)
        fpRef2 := getRef fp2; fpStr2 := getStream fp2
        sinRef := ref(0 :: COM); cosRef := ref(0 :: COM)
        sincos :=
         Ys(s+->sincos0(sinc,cosc,s,sinRef,cosRef,fpStr,fpRef,fpStr2,fpRef2),2)
        sinStr := (zero? sinc => rst first sincos; first sincos)
        cosStr := (zero? cosc => rst second sincos; second sincos)
        [makeSeries(sinRef,sinStr),makeSeries(cosRef,cosStr)]

      tan0: (Coef,ST,REF,ST,REF,I) -> ST
      tan0(cc,ansStr,ansRef,fpStr,fpRef,sign) ==
        sqRef := ref((-1) :: COM)
        sqStr := iTimes(ansStr,ansRef,ansStr,ansRef,sqRef,0)
        one : % := 1; oneStr := getStream one; oneRef := getRef one
        yRef := ref((-1) :: COM)
        yStr : ST :=
          (sign = 1) => iPlus1((a,b)+->a+b,oneStr,oneRef,sqStr,sqRef,yRef,0)
          iPlus1((a,b)+->a-b,oneStr,oneRef,sqStr,sqRef,yRef,0)
        intRef := ref((-1) :: COM)
        lazyInteg(cc,iTimes(yStr,yRef,fpStr,fpRef,intRef,0),intRef,ansRef)

      iTan: (%,%,Coef,I) -> %
      iTan(f,fp,cc,sign) ==
        -- computes the tangent (and related functions) of f.
        fpRef := getRef fp; fpStr := getStream fp
        ansRef := ref(0 :: COM)
        ansStr := Ys(s+->tan0(cc,s,ansRef,fpStr,fpRef,sign))
        zero? cc => makeSeries(ansRef,rst ansStr)
        makeSeries(ansRef,ansStr)

--% Error Reporting

      TRCONST : SG := "series expansion involves transcendental constants"
      NPOWERS : SG := "series expansion has terms of negative degree"
      FPOWERS : SG := "series expansion has terms of fractional degree"
      MAYFPOW : SG := "series expansion may have terms of fractional degree"
      LOGS : SG := "series expansion has logarithmic term"
      NPOWLOG : SG :=
         "series expansion has terms of negative degree or logarithmic term"
      NOTINV : SG := "leading coefficient not invertible"

--% Rational powers and transcendental functions

      orderOrFailed : % -> Union(I,"failed")
      orderOrFailed uts ==
      -- returns the order of x or "failed"
      -- if -1 is returned, the series is identically zero
        x := getStream uts
        for n in 0..1000 repeat
          explicitlyEmpty? x => return -1
          explicitEntries? x => return getExpon frst x
          lazyEvaluate x
        "failed"

      RATPOWERS : Boolean := Coef has "**": (Coef,RN) -> Coef
      TRANSFCN  : Boolean := Coef has TranscendentalFunctionCategory

      cRationalPower(uts,r) ==
        (ord0 := orderOrFailed uts) case "failed" =>
          error "**: series with many leading zero coefficients"
        order := ord0 :: I
        (n := order exquo denom(r)) case "failed" =>
          error "**: rational power does not exist"
        cc := coefficient(uts,order)
        (ccInv := recip cc) case "failed" => error concat("**: ",NOTINV)
        ccPow :=
          (cc = 1) => cc
          (denom r) = 1 =>
            not negative?(num := numer r) => cc ** (num :: NNI)
            (ccInv :: Coef) ** ((-num) :: NNI)
          RATPOWERS => cc ** r
          error "** rational power of coefficient undefined"
        uts1 := (ccInv :: Coef) * uts
        uts2 := uts1 * monomial(1,-order)
        monomial(ccPow,(n :: I) * numer(r)) * cPower(uts2,r :: Coef)

      cExp uts ==
        zero?(cc := coefficient(uts,0)) => iExp(uts,1)
        TRANSFCN => iExp(uts,exp cc)
        error concat("exp: ",TRCONST)

      cLog uts ==
        zero?(cc := coefficient(uts,0)) =>
          error "log: constant coefficient should not be 0"
        (cc = 1) => integrate(differentiate(uts) * (iExquo(1,uts,true) :: %))
        TRANSFCN =>
          y := iExquo(1,uts,true) :: %
          (log(cc) :: %) + integrate(y * differentiate(uts))
        error concat("log: ",TRCONST)

      sincos: % -> Record(%sin: %, %cos: %)
      sincos uts ==
        zero?(cc := coefficient(uts,0)) => iSincos(uts,0,1,-1)
        TRANSFCN => iSincos(uts,sin cc,cos cc,-1)
        error concat("sincos: ",TRCONST)

      cSin uts == sincos(uts).%sin

      cCos uts == sincos(uts).%cos

      cTan uts ==
        zero?(cc := coefficient(uts,0)) => iTan(uts,differentiate uts,0,1)
        TRANSFCN => iTan(uts,differentiate uts,tan cc,1)
        error concat("tan: ",TRCONST)

      cCot uts ==
        zero? uts => error "cot: cot(0) is undefined"
        zero?(cc := coefficient(uts,0)) => error error concat("cot: ",NPOWERS)
        TRANSFCN => iTan(uts,-differentiate uts,cot cc,1)
        error concat("cot: ",TRCONST)

      cSec uts ==
        zero?(cc := coefficient(uts,0)) => iExquo(1,cCos uts,true) :: %
        TRANSFCN =>
          cosUts := cCos uts
          zero? coefficient(cosUts,0) => error concat("sec: ",NPOWERS)
          iExquo(1,cosUts,true) :: %
        error concat("sec: ",TRCONST)

      cCsc uts ==
        zero? uts => error "csc: csc(0) is undefined"
        TRANSFCN =>
          sinUts := cSin uts
          zero? coefficient(sinUts,0) => error concat("csc: ",NPOWERS)
          iExquo(1,sinUts,true) :: %
        error concat("csc: ",TRCONST)

      cAsin uts ==
        zero?(cc := coefficient(uts,0)) =>
          integrate(cRationalPower(1 - uts*uts,-1/2) * differentiate(uts))
        TRANSFCN =>
          x := 1 - uts * uts
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("asin: ",MAYFPOW)
            (order := ord :: I) = -1 => return asin(cc) :: %
            odd? order => error concat("asin: ",FPOWERS)
            c0 := asin(cc) :: %
            c0 + integrate(cRationalPower(x,-1/2) * differentiate(uts))
          c0 := asin(cc) :: %
          c0 + integrate(cRationalPower(x,-1/2) * differentiate(uts))
        error concat("asin: ",TRCONST)

      cAcos uts ==
        zero? uts =>
          TRANSFCN => acos(0)$Coef :: %
          error concat("acos: ",TRCONST)
        TRANSFCN =>
          x := 1 - uts * uts
          cc := coefficient(uts,0)
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("acos: ",MAYFPOW)
            (order := ord :: I) = -1 => return acos(cc) :: %
            odd? order => error concat("acos: ",FPOWERS)
            c0 := acos(cc) :: %
            c0 + integrate(-cRationalPower(x,-1/2) * differentiate(uts))
          c0 := acos(cc) :: %
          c0 + integrate(-cRationalPower(x,-1/2) * differentiate(uts))
        error concat("acos: ",TRCONST)

      cAtan uts ==
        zero?(cc := coefficient(uts,0)) =>
          y := iExquo(1,(1 :: %) + uts*uts,true) :: %
          integrate(y * (differentiate uts))
        TRANSFCN =>
          (y := iExquo(1,(1 :: %) + uts*uts,true)) case "failed" =>
            error concat("atan: ",LOGS)
          (atan(cc) :: %) + integrate((y :: %) * (differentiate uts))
        error concat("atan: ",TRCONST)

      cAcot uts ==
        TRANSFCN =>
          (y := iExquo(1,(1 :: %) + uts*uts,true)) case "failed" =>
            error concat("acot: ",LOGS)
          cc := coefficient(uts,0)
          (acot(cc) :: %) + integrate(-(y :: %) * (differentiate uts))
        error concat("acot: ",TRCONST)

      cAsec uts ==
        zero?(cc := coefficient(uts,0)) =>
          error "asec: constant coefficient should not be 0"
        TRANSFCN =>
          x := uts * uts - 1
          y :=
            cc = 1 or cc = -1 =>
              -- compute order of 'x'
              (ord := orderOrFailed x) case "failed" =>
                error concat("asec: ",MAYFPOW)
              (order := ord :: I) = -1 => return asec(cc) :: %
              odd? order => error concat("asec: ",FPOWERS)
              cRationalPower(x,-1/2) * differentiate(uts)
            cRationalPower(x,-1/2) * differentiate(uts)
          (z := iExquo(y,uts,true)) case "failed" =>
            error concat("asec: ",NOTINV)
          (asec(cc) :: %) + integrate(z :: %)
        error concat("asec: ",TRCONST)

      cAcsc uts ==
        zero?(cc := coefficient(uts,0)) =>
          error "acsc: constant coefficient should not be 0"
        TRANSFCN =>
          x := uts * uts - 1
          y :=
            cc = 1 or cc = -1 =>
              -- compute order of 'x'
              (ord := orderOrFailed x) case "failed" =>
                error concat("acsc: ",MAYFPOW)
              (order := ord :: I) = -1 => return acsc(cc) :: %
              odd? order => error concat("acsc: ",FPOWERS)
              -cRationalPower(x,-1/2) * differentiate(uts)
            -cRationalPower(x,-1/2) * differentiate(uts)
          (z := iExquo(y,uts,true)) case "failed" =>
            error concat("asec: ",NOTINV)
          (acsc(cc) :: %) + integrate(z :: %)
        error concat("acsc: ",TRCONST)

      sinhcosh: % -> Record(%sinh: %, %cosh: %)
      sinhcosh uts ==
        zero?(cc := coefficient(uts,0)) =>
          tmp := iSincos(uts,0,1,1)
          [tmp.%sin,tmp.%cos]
        TRANSFCN =>
          tmp := iSincos(uts,sinh cc,cosh cc,1)
          [tmp.%sin,tmp.%cos]
        error concat("sinhcosh: ",TRCONST)

      cSinh uts == sinhcosh(uts).%sinh
      cCosh uts == sinhcosh(uts).%cosh

      cTanh uts ==
        zero?(cc := coefficient(uts,0)) => iTan(uts,differentiate uts,0,-1)
        TRANSFCN => iTan(uts,differentiate uts,tanh cc,-1)
        error concat("tanh: ",TRCONST)

      cCoth uts ==
        tanhUts := cTanh uts
        zero? tanhUts => error "coth: coth(0) is undefined"
        zero? coefficient(tanhUts,0) => error concat("coth: ",NPOWERS)
        iExquo(1,tanhUts,true) :: %

      cSech uts ==
        coshUts := cCosh uts
        zero? coefficient(coshUts,0) => error concat("sech: ",NPOWERS)
        iExquo(1,coshUts,true) :: %

      cCsch uts ==
        sinhUts := cSinh uts
        zero? coefficient(sinhUts,0) => error concat("csch: ",NPOWERS)
        iExquo(1,sinhUts,true) :: %

      cAsinh uts ==
        x := 1 + uts * uts
        zero?(cc := coefficient(uts,0)) => cLog(uts + cRationalPower(x,1/2))
        TRANSFCN =>
          (ord := orderOrFailed x) case "failed" =>
            error concat("asinh: ",MAYFPOW)
          (order := ord :: I) = -1 => return asinh(cc) :: %
          odd? order => error concat("asinh: ",FPOWERS)
          -- the argument to 'log' must have a non-zero constant term
          cLog(uts + cRationalPower(x,1/2))
        error concat("asinh: ",TRCONST)

      cAcosh uts ==
        zero? uts =>
          TRANSFCN => acosh(0)$Coef :: %
          error concat("acosh: ",TRCONST)
        TRANSFCN =>
          cc := coefficient(uts,0); x := uts*uts - 1
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("acosh: ",MAYFPOW)
            (order := ord :: I) = -1 => return acosh(cc) :: %
            odd? order => error concat("acosh: ",FPOWERS)
            -- the argument to 'log' must have a non-zero constant term
            cLog(uts + cRationalPower(x,1/2))
          cLog(uts + cRationalPower(x,1/2))
        error concat("acosh: ",TRCONST)

      cAtanh uts ==
        half := inv(2 :: RN) :: Coef
        zero?(cc := coefficient(uts,0)) =>
          half * (cLog(1 + uts) - cLog(1 - uts))
        TRANSFCN =>
          cc = 1 or cc = -1 => error concat("atanh: ",LOGS)
          half * (cLog(1 + uts) - cLog(1 - uts))
        error concat("atanh: ",TRCONST)

      cAcoth uts ==
        zero? uts =>
          TRANSFCN => acoth(0)$Coef :: %
          error concat("acoth: ",TRCONST)
        TRANSFCN =>
          cc := coefficient(uts,0); half := inv(2 :: RN) :: Coef
          cc = 1 or cc = -1 => error concat("acoth: ",LOGS)
          half * (cLog(uts + 1) - cLog(uts - 1))
        error concat("acoth: ",TRCONST)

      cAsech uts ==
        zero? uts => error "asech: asech(0) is undefined"
        TRANSFCN =>
          zero?(cc := coefficient(uts,0)) =>
            error concat("asech: ",NPOWLOG)
          x := 1 - uts * uts
          cc = 1 or cc = -1 =>
            -- compute order of 'x'
            (ord := orderOrFailed x) case "failed" =>
              error concat("asech: ",MAYFPOW)
            (order := ord :: I) = -1 => return asech(cc) :: %
            odd? order => error concat("asech: ",FPOWERS)
            (utsInv := iExquo(1,uts,true)) case "failed" =>
              error concat("asech: ",NOTINV)
            cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
          (utsInv := iExquo(1,uts,true)) case "failed" =>
            error concat("asech: ",NOTINV)
          cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
        error concat("asech: ",TRCONST)

      cAcsch uts ==
        zero? uts => error "acsch: acsch(0) is undefined"
        TRANSFCN =>
          zero?(cc := coefficient(uts,0)) => error concat("acsch: ",NPOWLOG)
          x := uts * uts + 1
          -- compute order of 'x'
          (ord := orderOrFailed x) case "failed" =>
            error concat("acsc: ",MAYFPOW)
          (order := ord :: I) = -1 => return acsch(cc) :: %
          odd? order => error concat("acsch: ",FPOWERS)
          (utsInv := iExquo(1,uts,true)) case "failed" =>
            error concat("acsch: ",NOTINV)
          cLog((1 + cRationalPower(x,1/2)) * (utsInv :: %))
        error concat("acsch: ",TRCONST)

--% Output forms

    -- check a global Lisp variable
    factorials?() == false

    termOutput(k,c,vv) ==
    -- creates a term c * vv ** k
      k = 0 => c :: OUT
      mon := (k = 1 => vv; vv ** (k :: OUT))
      c = 1 => mon
      c = -1 => -mon
      (c :: OUT) * mon

    -- check a global Lisp variable
    showAll?() == true

    seriesToOutputForm(st,refer,var,cen,r) ==
      vv :=
        zero? cen => var :: OUT
        paren(var :: OUT - cen :: OUT)
      l : L OUT := empty()
      while explicitEntries? st repeat
        term := frst st
        l := concat(termOutput(getExpon(term) * r,getCoef term,vv),l)
        st := rst st
      l :=
        explicitlyEmpty? st => l
        (deg := retractIfCan(elt refer)@Union(I,"failed")) case I =>
          concat(prefix("O" :: OUT,[vv ** ((((deg :: I) + 1) * r) :: OUT)]),l)
        l
      empty? l => (0$Coef) :: OUT
      reduce("+",reverse_! l)