/usr/share/axiom-20170501/src/algebra/D03AGNT.spad is in axiom-source 20170501-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | )abbrev package D03AGNT d03AgentsPackage
++ Author: Brian Dupee
++ Date Created: May 1994
++ Date Last Updated: December 1997
++ Description:
++ \axiom{d03AgentsPackage} contains a set of computational agents
++ for use with Partial Differential Equation solvers.
d03AgentsPackage() : SIG == CODE where
LEDF ==> List Expression DoubleFloat
EDF ==> Expression DoubleFloat
MDF ==> Matrix DoubleFloat
DF ==> DoubleFloat
F ==> Float
INT ==> Integer
NNI ==> NonNegativeInteger
EEDF ==> Equation Expression DoubleFloat
LEEDF ==> List Equation Expression DoubleFloat
LDF ==> List DoubleFloat
LOCDF ==> List OrderedCompletion DoubleFloat
OCDF ==> OrderedCompletion DoubleFloat
LS ==> List Symbol
PDEC ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT,
dStart:MDF, dFinish:MDF)
PDEB ==> Record(pde:LEDF, constraints:List PDEC,
f:List LEDF, st:String, tol:DF)
NOA ==> Record(fn:EDF, init:LDF, lb:LOCDF, cf:LEDF, ub:LOCDF)
SIG ==> with
varList : (Symbol,NonNegativeInteger) -> LS
++ varList(s,n) \undocumented{}
subscriptedVariables : EDF -> EDF
++ subscriptedVariables(e) \undocumented{}
central? : (DF,DF,LEDF) -> Boolean
++ central?(f,g,l) \undocumented{}
elliptic? : PDEB -> Boolean
++ elliptic?(r) \undocumented{}
CODE ==> add
import ExpertSystemToolsPackage
sum(a:EDF,b:EDF):EDF == a+b
varList(s:Symbol,n:NonNegativeInteger):LS ==
[subscript(s,[t::OutputForm]) for t in expand([1..n])$Segment(Integer)]
subscriptedVariables(e:EDF):EDF ==
oldVars:List Symbol := variables(e)
o := [a :: EDF for a in oldVars]
newVars := varList(X::Symbol,# oldVars)
n := [b :: EDF for b in newVars]
subst(e,[a=b for a in o for b in n])
central?(x:DF,y:DF,p:LEDF):Boolean ==
ls := variables(reduce(sum,p))
le := [equation(u::EDF,v)$EEDF for u in ls for v in [x::EDF,y::EDF]]
l := [eval(u,le)$EDF for u in p]
max(l.4,l.5) < 20 * max(l.1,max(l.2,l.3))
elliptic?(args:PDEB):Boolean ==
(args.st)="elliptic" => true
p := args.pde
xcon:PDEC := first(args.constraints)
ycon:PDEC := second(args.constraints)
xs := xcon.start
ys := ycon.start
xf := xcon.finish
yf := ycon.finish
xstart:DF := ((xf-xs)/2)$DF
ystart:DF := ((yf-ys)/2)$DF
optStart:LDF := [xstart,ystart]
lower:LOCDF := [xs::OCDF,ys::OCDF]
upper:LOCDF := [xf::OCDF,yf::OCDF]
v := variables(e := 4*first(p)*third(p)-(second(p))**2)
eq := subscriptedVariables(e)
noa:NOA :=
(# v) = 1 =>
((first v) = X@Symbol) =>
[eq,[xstart],[xs::OCDF],empty()$LEDF,[xf::OCDF]]
[eq,[ystart],[ys::OCDF],empty()$LEDF,[yf::OCDF]]
[eq,optStart,lower,empty()$LEDF,upper]
ell := optimize(noa::NumericalOptimizationProblem)_
$AnnaNumericalOptimizationPackage
o:Union(Any,"failed") := search(objf::Symbol,ell)$Result
o case "failed" => false
ob := o :: Any
obj:DF := retract(ob)$AnyFunctions1(DF)
positive?(obj)
|