/usr/include/tesseract/language_model.h is in libtesseract-dev 3.02.01-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 | ///////////////////////////////////////////////////////////////////////
// File: language_model.h
// Description: Functions that utilize the knowledge about the properties,
// structure and statistics of the language to help recognition.
// Author: Daria Antonova
// Created: Mon Nov 11 11:26:43 PST 2009
//
// (C) Copyright 2009, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////
#ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#define TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#include "associate.h"
#include "dawg.h"
#include "dict.h"
#include "fontinfo.h"
#include "intproto.h"
#include "matrix.h"
#include "oldheap.h"
#include "params.h"
#include "pageres.h"
namespace tesseract {
// Used for expressing various language model flags.
typedef unsigned char LanguageModelFlagsType;
// Struct for keeping track of the consistency of the path.
struct LanguageModelConsistencyInfo {
LanguageModelConsistencyInfo()
: punc_ref(NO_EDGE), num_punc(0), invalid_punc(false),
num_non_first_upper(0), num_lower(0),
script_id(0), inconsistent_script(false),
num_alphas(0), num_digits(0), num_other(0),
num_inconsistent_spaces(0), inconsistent_font(false) {}
inline int NumInconsistentPunc() const {
return invalid_punc ? num_punc : 0;
}
inline int NumInconsistentCase() const {
return (num_non_first_upper > num_lower) ? num_lower : num_non_first_upper;
}
inline int NumInconsistentChartype() const {
return (NumInconsistentPunc() + num_other +
((num_alphas > num_digits) ? num_digits : num_alphas));
}
inline bool Consistent() const {
return (NumInconsistentPunc() == 0 && NumInconsistentCase() == 0 &&
NumInconsistentChartype() == 0 && !inconsistent_script);
}
inline int NumInconsistentSpaces() const {
return num_inconsistent_spaces;
}
EDGE_REF punc_ref;
int num_punc;
bool invalid_punc;
int num_non_first_upper;
int num_lower;
int script_id;
bool inconsistent_script;
int num_alphas;
int num_digits;
int num_other;
int num_inconsistent_spaces;
bool inconsistent_font;
};
// The following structs are used for storing the state of the language model
// in the segmentation search graph. In this graph the nodes are BLOB_CHOICEs
// and the links are the replationships between the underlying blobs (see
// segsearch.h for a more detailed description).
// Each of the BLOB_CHOICEs contains LanguageModelState struct, which has
// a list of N best paths (list of ViterbiStateEntry) explored by the Viterbi
// search leading up to and including this BLOB_CHOICE.
// Each ViterbiStateEntry contains information from various components of the
// language model: dawgs in which the path is found, character ngram model
// probability of the path, script/chartype/font consistency info, state for
// language-specific heuristics (e.g. hyphenated and compund words, lower/upper
// case preferences, etc).
// Each ViterbiStateEntry also contains the parent pointer, so that the path
// that it represents (WERD_CHOICE) can be constructed by following these
// parent pointers.
// Struct for storing additional information used by Dawg language model
// component. It stores the set of active dawgs in which the sequence of
// letters on a path can be found and the constraints that have to be
// satisfied at the end of the word (e.g. beginning/ending punctuation).
struct LanguageModelDawgInfo {
LanguageModelDawgInfo(DawgInfoVector *a, DawgInfoVector *c,
PermuterType pt) : permuter(pt) {
active_dawgs = new DawgInfoVector(*a);
constraints = new DawgInfoVector(*c);
}
~LanguageModelDawgInfo() {
delete active_dawgs;
delete constraints;
}
DawgInfoVector *active_dawgs;
DawgInfoVector *constraints;
PermuterType permuter;
};
// Struct for storing additional information used by Ngram language model
// component.
struct LanguageModelNgramInfo {
LanguageModelNgramInfo(const char *c, int l, bool p, float np, float nc)
: context(c), context_unichar_step_len(l), pruned(p), ngram_prob(np),
ngram_cost(nc) {}
STRING context; // context string
// Length of the context measured by advancing using UNICHAR::utf8_step()
// (should be at most the order of the character ngram model used).
int context_unichar_step_len;
// The paths with pruned set are pruned out from the perspective of the
// character ngram model. They are explored further because they represent
// a dictionary match or a top choice. Thus ngram_info is still computed
// for them in order to calculate the combined cost.
bool pruned;
// -ln(P_ngram_model(path))
float ngram_prob;
// -[ ln(P_classifier(path)) + scale_factor * ln(P_ngram_model(path)) ]
float ngram_cost;
};
// Struct for storing the information about a path in the segmentation graph
// explored by Viterbi search.
struct ViterbiStateEntry : public ELIST_LINK {
ViterbiStateEntry(BLOB_CHOICE *pb, ViterbiStateEntry *pe,
BLOB_CHOICE *b, float c, float ol,
const LanguageModelConsistencyInfo &ci,
const AssociateStats &as,
LanguageModelFlagsType tcf,
LanguageModelDawgInfo *d, LanguageModelNgramInfo *n)
: cost(c), parent_b(pb), parent_vse(pe), ratings_sum(b->rating()),
min_certainty(b->certainty()), adapted(b->adapted()), length(1),
outline_length(ol), consistency_info(ci), associate_stats(as),
top_choice_flags(tcf), dawg_info(d), ngram_info(n), updated(true) {
if (pe != NULL) {
ratings_sum += pe->ratings_sum;
if (pe->min_certainty < min_certainty) {
min_certainty = pe->min_certainty;
}
adapted += pe->adapted;
length += pe->length;
outline_length += pe->outline_length;
}
}
~ViterbiStateEntry() {
delete dawg_info;
delete ngram_info;
}
// Comparator function for sorting ViterbiStateEntry_LISTs in
// non-increasing order of costs.
static int Compare(const void *e1, const void *e2) {
const ViterbiStateEntry *ve1 =
*reinterpret_cast<const ViterbiStateEntry * const *>(e1);
const ViterbiStateEntry *ve2 =
*reinterpret_cast<const ViterbiStateEntry * const *>(e2);
return (ve1->cost < ve2->cost) ? -1 : 1;
}
inline bool Consistent() const {
if (dawg_info != NULL && consistency_info.NumInconsistentCase() == 0) {
return true;
}
return consistency_info.Consistent();
}
// The cost is an adjusted ratings sum, that is adjusted by all the language
// model components that use Viterbi search.
float cost;
// Pointers to parent BLOB_CHOICE and ViterbiStateEntry (not owned by this).
BLOB_CHOICE *parent_b;
ViterbiStateEntry *parent_vse;
// Various information about the characters on the path represented
// by this ViterbiStateEntry.
float ratings_sum; // sum of ratings of character on the path
float min_certainty; // minimum certainty on the path
int adapted; // number of BLOB_CHOICES from adapted templates
int length; // number of characters on the path
float outline_length; // length of the outline so far
LanguageModelConsistencyInfo consistency_info; // path consistency info
AssociateStats associate_stats; // character widths/gaps/seams
// Flags for marking the entry as a top choice path with
// the smallest rating or lower/upper case letters).
LanguageModelFlagsType top_choice_flags;
// Extra information maintained by Dawg laguage model component
// (owned by ViterbiStateEntry).
LanguageModelDawgInfo *dawg_info;
// Extra information maintained by Ngram laguage model component
// (owned by ViterbiStateEntry).
LanguageModelNgramInfo *ngram_info;
bool updated; // set to true if the entry has just been created/updated
};
ELISTIZEH(ViterbiStateEntry);
// Struct to store information maintained by various language model components.
struct LanguageModelState {
LanguageModelState(int col, int row) : contained_in_col(col),
contained_in_row(row), viterbi_state_entries_prunable_length(0),
viterbi_state_entries_length(0),
viterbi_state_entries_prunable_max_cost(MAX_FLOAT32) {}
~LanguageModelState() {}
// Ratings matrix cell that holds this LanguageModelState
// (needed to construct best STATE for rebuild_current_state()
// and best BLOB_CHOICE_LIST_VECTOR for AcceptableChoice()).
int contained_in_col;
int contained_in_row;
// Storage for the Viterbi state.
ViterbiStateEntry_LIST viterbi_state_entries;
// Number and max cost of prunable paths in viterbi_state_entries.
int viterbi_state_entries_prunable_length;
// Total number of entries in viterbi_state_entries.
int viterbi_state_entries_length;
float viterbi_state_entries_prunable_max_cost;
// TODO(daria): add font consistency checking.
};
// Bundle together all the things pertaining to the best choice/state.
struct BestChoiceBundle {
BestChoiceBundle(STATE *s, WERD_CHOICE *bc, WERD_CHOICE *rc,
BLOB_CHOICE_LIST_VECTOR *bcc)
: best_state(s), best_choice(bc), raw_choice(rc),
best_char_choices(bcc), updated(false), best_vse(NULL), best_b(NULL) {}
STATE *best_state;
WERD_CHOICE *best_choice;
WERD_CHOICE *raw_choice;
BLOB_CHOICE_LIST_VECTOR *best_char_choices;
bool updated;
DANGERR fixpt;
ViterbiStateEntry *best_vse; // best ViterbiStateEntry and BLOB_CHOICE
BLOB_CHOICE *best_b; // at the end of the best choice path
};
struct BestPathByColumn {
float avg_cost;
ViterbiStateEntry *best_vse;
BLOB_CHOICE *best_b;
};
// This class that contains the data structures and functions necessary
// to represent and use the knowledge about the language.
class LanguageModel {
public:
// Adjustments to pain point priority.
static const float kInitialPainPointPriorityAdjustment;
static const float kDefaultPainPointPriorityAdjustment;
static const float kBestChoicePainPointPriorityAdjustment;
static const float kCriticalPainPointPriorityAdjustment;
// Denominator for normalizing per-letter ngram cost when deriving
// penalty adjustments.
static const float kMaxAvgNgramCost;
// Minimum word length for fixed length dawgs.
// TODO(daria): check in the new chi/jpn.traineddata without the
// fixed length dawg of length 1 and delete this variable.
static const int kMinFixedLengthDawgLength;
// If there is a significant drop in character ngram probability or a
// dangerous ambiguity make the thresholds on what blob combinations
// can be classified looser.
static const float kLooseMaxCharWhRatio;
// Masks for interpreting which language model components
// were changed by the call to UpdateState().
static const LanguageModelFlagsType kSmallestRatingFlag = 0x1;
static const LanguageModelFlagsType kLowerCaseFlag = 0x2;
static const LanguageModelFlagsType kUpperCaseFlag = 0x4;
static const LanguageModelFlagsType kConsistentFlag = 0x8;
static const LanguageModelFlagsType kDawgFlag = 0x10;
static const LanguageModelFlagsType kNgramFlag = 0x20;
static const LanguageModelFlagsType kJustClassifiedFlag = 0x80;
static const LanguageModelFlagsType kAllChangedFlag = 0xff;
LanguageModel(const UnicityTable<FontInfo> *fontinfo_table, Dict *dict);
~LanguageModel();
// Updates data structures that are used for the duration of the segmentation
// search on the current word;
void InitForWord(const WERD_CHOICE *prev_word,
bool fixed_pitch, float best_choice_cert,
float max_char_wh_ratio, float rating_cert_scale,
HEAP *pain_points, CHUNKS_RECORD *chunks_record,
BlamerBundle *blamer_bundle, bool debug_blamer);
// Resets all the "updated" flags used by the Viterbi search that were
// "registered" during the update of the ratings matrix.
void CleanUp();
// Deletes and sets to NULL language model states of each of the
// BLOB_CHOICEs in the given BLOB_CHOICE_LIST.
void DeleteState(BLOB_CHOICE_LIST *choices);
// Updates language model state of the given BLOB_CHOICE_LIST (from
// the ratings matrix) a its parent. Updates pain_points if new
// problematic points are found in the segmentation graph.
//
// At most language_model_viterbi_list_size are kept in each
// LanguageModelState.viterbi_state_entries list.
// At most language_model_viterbi_list_max_num_prunable of those are prunable
// (non-dictionary) paths.
// The entries that represent dictionary word paths are kept at the front
// of the list.
// The list ordered by cost that is computed collectively by several
// language model components (currently dawg and ngram components).
//
// best_path_by_column records the lowest cost path found so far for each
// column of the chunks_record->ratings matrix over all the rows. This
// array is updated if a lower cost ViterbiStateEntry is created in curr_col.
LanguageModelFlagsType UpdateState(
LanguageModelFlagsType changed,
int curr_col, int curr_row,
BLOB_CHOICE_LIST *curr_list,
BLOB_CHOICE_LIST *parent_list,
HEAP *pain_points,
BestPathByColumn *best_path_by_column[],
CHUNKS_RECORD *chunks_record,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Generates pain points from the problematic top choice paths when the
// segmentation search is guided by the character ngram model.
// It is necessary to consider problematic the top choice paths instead of
// the problematic lowest cost paths because the character ngram model
// might assign a very high cost to very improbably paths. For example,
// "liot" might have a much lower cost than "llot", and the character ngram
// model might detect a dip in probability for p(t|lio) at the end of the
// word, but not at the beginning (p(i|l) would be ok). However, looking at
// the dips in character ngram probability of the top choices we would be
// able to stop the problematic points (p(l| l) would be low).
void GenerateNgramModelPainPointsFromColumn(int col, int row,
HEAP *pain_points,
CHUNKS_RECORD *chunks_record);
// Generates pain points from the problematic lowest cost paths that are
// "promising" (i.e. would have the cost lower than the one recorded in
// best_path_by_column if the problematic ending of the path is removed
// and after being combined with another blob the certainty of the last
// blob is improved).
void GenerateProblematicPathPainPointsFromColumn(
int col, int row, float best_choice_cert,
HEAP *pain_points, BestPathByColumn *best_path_by_column[],
CHUNKS_RECORD *chunks_record);
// This function can be called after processing column col of the
// chunks_record->ratings matrix in order to find the promising paths
// that were terminated or made inconsistent by the character choices
// in column col. If such paths are identified, this function generates
// pain points to combine the problematic cells of the matrix.
void GeneratePainPointsFromColumn(
int col,
const GenericVector<int> &non_empty_rows,
float best_choice_cert,
HEAP *pain_points,
BestPathByColumn *best_path_by_column[],
CHUNKS_RECORD *chunks_record);
// Generates a pain point for each problematic point on the best choice
// path. Such problematic points could be a termination of a dicionary
// word, dip in ngram probability, invalid punctuation, inconsistent
// case/chartype/script or punctuation in the middle of a word.
void GeneratePainPointsFromBestChoice(
HEAP *pain_points,
CHUNKS_RECORD *chunks_record,
BestChoiceBundle *best_choice_bundle);
// Adds a pain point to the given pain_points queue that will cause
// the entry at chunks_record->ratings(col, row) to be classified.
// The priority of the pain point is set to be:
//
// priority_adjustment * sqrt(avg_parent_cost)
// ----------------------------------------------------
// sqrt(dict_parent_path_length) * |worst_piece_cert|
//
// The priority is further lowered if fragmented is true.
// Reurns true if a new pain point was added to pain_points.
bool GeneratePainPoint(int col, int row, bool ok_to_extend,
float priority_adjustment,
float worst_piece_cert,
bool fragmented,
float best_choice_cert,
float max_char_wh_ratio,
BLOB_CHOICE *parent_b,
ViterbiStateEntry *parent_vse,
CHUNKS_RECORD *chunks_record,
HEAP *pain_points);
// Returns true if an acceptable best choice was discovered.
inline bool AcceptableChoiceFound() { return acceptable_choice_found_; }
// Fills cert with the worst certainty of the top non-fragmented choice
// of the left and right neighbor of the given col,row.
// Sets fragmented if any of the neighbors have a fragmented character
// as the top choice.
inline void GetWorstPieceCertainty(int col, int row, MATRIX *ratings,
float *cert, bool *fragmented) {
*cert = 0.0f;
*fragmented = false;
if (row > 0) {
GetPieceCertainty(ratings->get(col, row-1), cert, fragmented);
}
if (col+1 < ratings->dimension()) {
GetPieceCertainty(ratings->get(col+1, row), cert, fragmented);
}
ASSERT_HOST(*cert < 0.0f);
}
// Returns outline length of the given blob is computed as:
// rating_cert_scale * rating / certainty
// Since from Wordrec::SegSearch() in segsearch.cpp
// rating_cert_scale = -1.0 * getDict().certainty_scale / rating_scale
// And from Classify::ConvertMatchesToChoices() in adaptmatch.cpp
// Rating = Certainty = next.rating
// Rating *= rating_scale * Results->BlobLength
// Certainty *= -(getDict().certainty_scale)
inline float ComputeOutlineLength(BLOB_CHOICE *b) {
return rating_cert_scale_ * b->rating() / b->certainty();
}
protected:
inline float CertaintyScore(float cert) {
if (language_model_use_sigmoidal_certainty) {
// cert is assumed to be between 0 and -dict_->certainty_scale.
// If you enable language_model_use_sigmoidal_certainty, you
// need to adjust language_model_ngram_nonmatch_score as well.
cert = -cert / dict_->certainty_scale;
return 1.0f / (1.0f + exp(10.0f * cert));
} else {
return (-1.0f / cert);
}
}
inline bool NonAlphaOrDigitMiddle(int col, int row, int dimension,
UNICHAR_ID unichar_id) {
return (!dict_->getUnicharset().get_isalpha(unichar_id) &&
!dict_->getUnicharset().get_isdigit(unichar_id) &&
col > 0 && row+1 < dimension);
}
inline bool IsFragment(BLOB_CHOICE *b) {
return dict_->getUnicharset().get_fragment(b->unichar_id());
}
inline bool IsHan(int script_id) {
return ((dict_->getUnicharset().han_sid() !=
dict_->getUnicharset().null_sid()) &&
(script_id == dict_->getUnicharset().han_sid()));
}
// Finds the first non-fragmented character in the given BLOB_CHOICE_LIST
// and updates cert if its certainty is less than the one recorded in cert.
// Sets fragmented if the first choice in BLOB_CHOICE_LIST is a fragment.
inline void GetPieceCertainty(BLOB_CHOICE_LIST *blist,
float *cert, bool *fragmented) {
if (blist == NOT_CLASSIFIED || blist->empty()) return;
BLOB_CHOICE_IT bit(blist);
while (!bit.at_last() && IsFragment(bit.data())) {
*fragmented = true;
bit.forward(); // skip fragments
}
// Each classification must have at least one non-fragmented choice.
ASSERT_HOST(!IsFragment(bit.data()));
if (bit.data()->certainty() < *cert) *cert = bit.data()->certainty();
}
inline float ComputeAdjustment(int num_problems, float penalty) {
if (num_problems == 0) return 0.0f;
if (num_problems == 1) return penalty;
return (penalty + (language_model_penalty_increment *
static_cast<float>(num_problems-1)));
}
// Computes the adjustment to the ratings sum based on the given
// consistency_info. The paths with invalid punctuation, inconsistent
// case and character type are penalized proportionally to the number
// of inconsistencies on the path.
inline float ComputeConsistencyAdjustment(
const LanguageModelDawgInfo *dawg_info,
const LanguageModelConsistencyInfo &consistency_info) {
if (dawg_info != NULL) {
return ComputeAdjustment(consistency_info.NumInconsistentCase(),
language_model_penalty_case);
}
return (ComputeAdjustment(consistency_info.NumInconsistentPunc(),
language_model_penalty_punc) +
ComputeAdjustment(consistency_info.NumInconsistentCase(),
language_model_penalty_case) +
ComputeAdjustment(consistency_info.NumInconsistentChartype(),
language_model_penalty_chartype) +
ComputeAdjustment(consistency_info.NumInconsistentSpaces(),
language_model_penalty_spacing) +
(consistency_info.inconsistent_script ?
language_model_penalty_script : 0.0f) +
(consistency_info.inconsistent_font ?
language_model_penalty_font : 0.0f));
}
// Returns an adjusted ratings sum that includes inconsistency penalties.
inline float ComputeConsistencyAdjustedRatingsSum(
float ratings_sum,
const LanguageModelDawgInfo *dawg_info,
const LanguageModelConsistencyInfo &consistency_info) {
return (ratings_sum * (1.0f + ComputeConsistencyAdjustment(
dawg_info, consistency_info)));
}
// Returns an adjusted ratings sum that includes inconsistency penalties,
// penalties for non-dictionary paths and paths with dips in ngram
// probability.
float ComputeAdjustedPathCost(
float ratings_sum, int length, float dawg_score,
const LanguageModelDawgInfo *dawg_info,
const LanguageModelNgramInfo *ngram_info,
const LanguageModelConsistencyInfo &consistency_info,
const AssociateStats &associate_stats,
ViterbiStateEntry *parent_vse);
// Returns true if the given ViterbiStateEntry represents a problematic
// path. A path is considered problematic if the last unichar makes it
// inconsistent, introduces a dip in ngram probability or transforms a
// dictionary path into a non-dictionary one.
bool ProblematicPath(const ViterbiStateEntry &vse,
UNICHAR_ID unichar_id, bool word_end);
// Finds the first lower and upper case character in curr_list.
// If none found, chooses the first character in the list.
void GetTopChoiceLowerUpper(LanguageModelFlagsType changed,
BLOB_CHOICE_LIST *curr_list,
BLOB_CHOICE **first_lower,
BLOB_CHOICE **first_upper);
// Helper function that computes the cost of the path composed of the
// path in the given parent ViterbiStateEntry and the given BLOB_CHOICE.
// Adds a new ViterbiStateEntry to the list of viterbi entries
// in the given BLOB_CHOICE if the new path looks good enough.
// Returns LanguageModelFlagsType that indicates which language
// model components were involved in creating the new entry.
LanguageModelFlagsType AddViterbiStateEntry(
LanguageModelFlagsType top_choice_flags,
float denom,
bool word_end,
int curr_col, int curr_row,
BLOB_CHOICE *b,
BLOB_CHOICE *parent_b,
ViterbiStateEntry *parent_vse,
HEAP *pain_points,
BestPathByColumn *best_path_by_column[],
CHUNKS_RECORD *chunks_record,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Pretty print information in the given ViterbiStateEntry.
void PrintViterbiStateEntry(const char *msg,
ViterbiStateEntry *vse,
BLOB_CHOICE *b,
CHUNKS_RECORD *chunks_record);
// Determines whether a potential entry is a true top choice and
// updates changed accordingly.
//
// Note: The function assumes that b, top_choice_flags and changed
// are not NULL.
void GenerateTopChoiceInfo(
float ratings_sum,
const LanguageModelDawgInfo *dawg_info,
const LanguageModelConsistencyInfo &consistency_info,
const ViterbiStateEntry *parent_vse,
BLOB_CHOICE *b,
LanguageModelFlagsType *top_choice_flags,
LanguageModelFlagsType *changed);
// Calls dict_->LetterIsOk() with DawgArgs initialized from parent_vse and
// unichar from b.unichar_id(). Constructs and returns LanguageModelDawgInfo
// with updated active dawgs, constraints and permuter.
//
// Note: the caller is responsible for deleting the returned pointer.
LanguageModelDawgInfo *GenerateDawgInfo(bool word_end, int script_id,
int curr_col, int curr_row,
const BLOB_CHOICE &b,
const ViterbiStateEntry *parent_vse,
LanguageModelFlagsType *changed);
// Computes p(unichar | parent context) and records it in ngram_cost.
// If b.unichar_id() is an unlikely continuation of the parent context
// sets found_small_prob to true and returns NULL.
// Otherwise creates a new LanguageModelNgramInfo entry containing the
// updated context (that includes b.unichar_id() at the end) and returns it.
//
// Note: the caller is responsible for deleting the returned pointer.
LanguageModelNgramInfo *GenerateNgramInfo(const char *unichar,
float certainty, float denom,
int curr_col, int curr_row,
const ViterbiStateEntry *parent_vse,
BLOB_CHOICE *parent_b,
LanguageModelFlagsType *changed);
// Computes -(log(prob(classifier)) + log(prob(ngram model)))
// for the given unichar in the given context. If there are multiple
// unichars at one position - takes the average of their probabilities.
// UNICHAR::utf8_step() is used to separate out individual UTF8 characters,
// since probability_in_context() can only handle one at a time (while
// unicharset might contain ngrams and glyphs composed from multiple UTF8
// characters).
float ComputeNgramCost(const char *unichar, float certainty, float denom,
const char *context, int *unichar_step_len,
bool *found_small_prob, float *ngram_prob);
// Computes the normalization factors for the classifier confidences
// (used by ComputeNgramCost()).
float ComputeDenom(BLOB_CHOICE_LIST *curr_list);
// Fills the given consistenty_info based on parent_vse.consistency_info
// and on the consistency of the given unichar_id with parent_vse.
void FillConsistencyInfo(
int curr_col, bool word_end, BLOB_CHOICE *b,
ViterbiStateEntry *parent_vse, BLOB_CHOICE *parent_b,
CHUNKS_RECORD *chunks_record,
LanguageModelConsistencyInfo *consistency_info);
// Constructs WERD_CHOICE by recording unichar_ids of the BLOB_CHOICEs
// on the path represented by the given BLOB_CHOICE and language model
// state entries (lmse, dse). The path is re-constructed by following
// the parent pointers in the the lang model state entries). If the
// constructed WERD_CHOICE is better than the best/raw choice recorded
// in the best_choice_bundle, this function updates the corresponding
// fields and sets best_choice_bunldle->updated to true.
void UpdateBestChoice(BLOB_CHOICE *b,
ViterbiStateEntry *vse,
HEAP *pain_points,
CHUNKS_RECORD *chunks_record,
BestChoiceBundle *best_choice_bundle,
BlamerBundle *blamer_bundle);
// Fills the given floats array with raw features extracted from the
// path represented by the given ViterbiStateEntry.
// See ccstruct/params_training_featdef.h for feature information.
void ExtractRawFeaturesFromPath(const ViterbiStateEntry &vse,
float *features);
// Constructs a WERD_CHOICE by tracing parent pointers starting with
// the given LanguageModelStateEntry. Returns the constructed word.
// Updates best_char_choices, certainties and state if they are not
// NULL (best_char_choices and certainties are assumed to have the
// length equal to lmse->length).
// The caller is resposible for freeing memory associated with the
// returned WERD_CHOICE.
WERD_CHOICE *ConstructWord(BLOB_CHOICE *b,
ViterbiStateEntry *vse,
CHUNKS_RECORD *chunks_record,
BLOB_CHOICE_LIST_VECTOR *best_char_choices,
float certainties[],
float *dawg_score,
STATE *state,
BlamerBundle *blamer_bundle,
bool *truth_path);
// This function is used for non-space delimited languages when looking
// for word endings recorded while trying to separate the path into words.
//
// The function increments covered if a valid word ending is found in
// active_dawgs (if covered is incremented, skip is set to the number
// of unichars that should be skipped because they are covered by the
// word whose ending was just discovered).
//
// dawg_score and dawg_score_done are updated if:
// -- at the end of the path we discover a valid word ending from a
// non-fixed length dawg (this means that the whole word is a
// valid word, so dawg_score is set to 1.0f
// -- word_start is true (dawg_score is set to covered / word length)
//
// Note: this function assumes that skip, covered, dawg_score and
// dawg_score_done are not NULL.
void UpdateCoveredByFixedLengthDawgs(const DawgInfoVector &active_dawgs,
int word_index, int word_length,
int *skip, int *covered,
float *dawg_score,
bool *dawg_score_done);
// Wrapper around AssociateUtils::ComputeStats().
inline void ComputeAssociateStats(int col, int row,
float max_char_wh_ratio,
ViterbiStateEntry *parent_vse,
CHUNKS_RECORD *chunks_record,
AssociateStats *associate_stats) {
AssociateUtils::ComputeStats(
col, row,
(parent_vse != NULL) ? &(parent_vse->associate_stats) : NULL,
(parent_vse != NULL) ? parent_vse->length : 0,
fixed_pitch_, max_char_wh_ratio,
chunks_record->word_res != NULL ? &chunks_record->word_res->denorm : NULL,
chunks_record, language_model_debug_level, associate_stats);
}
// Returns true if the path with such top_choice_flags and dawg_info
// could be pruned out (i.e. is neither a system/user/frequent dictionary
// nor a top choice path).
// In non-space delimited languages all paths can be "somewhat" dictionary
// words. In such languages we can not do dictionary-driven path prunning,
// so paths with non-empty dawg_info are considered prunable.
inline bool PrunablePath(LanguageModelFlagsType top_choice_flags,
const LanguageModelDawgInfo *dawg_info) {
if (top_choice_flags) return false;
if (dawg_info != NULL &&
(dawg_info->permuter == SYSTEM_DAWG_PERM ||
dawg_info->permuter == USER_DAWG_PERM ||
dawg_info->permuter == FREQ_DAWG_PERM) &&
dict_->GetMaxFixedLengthDawgIndex() < 0) return false;
return true;
}
// Returns true if the given ViterbiStateEntry represents an acceptable path.
inline bool AcceptablePath(const ViterbiStateEntry &vse) {
return (vse.dawg_info != NULL || vse.Consistent() ||
(vse.ngram_info != NULL && !vse.ngram_info->pruned));
}
public:
// Parameters.
INT_VAR_H(language_model_debug_level, 0, "Language model debug level");
BOOL_VAR_H(language_model_ngram_on, false,
"Turn on/off the use of character ngram model");
INT_VAR_H(language_model_ngram_order, 8,
"Maximum order of the character ngram model");
INT_VAR_H(language_model_viterbi_list_max_num_prunable, 10,
"Maximum number of prunable (those for which PrunablePath() is true)"
"entries in each viterbi list recorded in BLOB_CHOICEs");
INT_VAR_H(language_model_viterbi_list_max_size, 500,
"Maximum size of viterbi lists recorded in BLOB_CHOICEs");
double_VAR_H(language_model_ngram_small_prob, 0.000001,
"To avoid overly small denominators use this as the floor"
" of the probability returned by the ngram model");
double_VAR_H(language_model_ngram_nonmatch_score, -40.0,
"Average classifier score of a non-matching unichar");
BOOL_VAR_H(language_model_ngram_use_only_first_uft8_step, false,
"Use only the first UTF8 step of the given string"
" when computing log probabilities");
double_VAR_H(language_model_ngram_scale_factor, 0.03,
"Strength of the character ngram model relative to the"
" character classifier ");
BOOL_VAR_H(language_model_ngram_space_delimited_language, true,
"Words are delimited by space");
INT_VAR_H(language_model_min_compound_length, 3,
"Minimum length of compound words");
INT_VAR_H(language_model_fixed_length_choices_depth, 3,
"Depth of blob choice lists to explore"
" when fixed length dawgs are on");
// Penalties used for adjusting path costs and final word rating.
double_VAR_H(language_model_penalty_non_freq_dict_word, 0.1,
"Penalty for words not in the frequent word dictionary");
double_VAR_H(language_model_penalty_non_dict_word, 0.15,
"Penalty for non-dictionary words");
double_VAR_H(language_model_penalty_punc, 0.2,
"Penalty for inconsistent punctuation");
double_VAR_H(language_model_penalty_case, 0.1,
"Penalty for inconsistent case");
double_VAR_H(language_model_penalty_script, 0.5,
"Penalty for inconsistent script");
double_VAR_H(language_model_penalty_chartype, 0.3,
"Penalty for inconsistent character type");
double_VAR_H(language_model_penalty_font, 0.00,
"Penalty for inconsistent font");
double_VAR_H(language_model_penalty_spacing, 0.05,
"Penalty for inconsistent spacing");
double_VAR_H(language_model_penalty_increment, 0.01, "Penalty increment");
BOOL_VAR_H(language_model_use_sigmoidal_certainty, false,
"Use sigmoidal score for certainty");
protected:
// Member Variables.
// Temporary DawgArgs struct that is re-used across different words to
// avoid dynamic memory re-allocation (should be cleared before each use).
DawgArgs *dawg_args_;
// List of pointers to updated flags used by Viterbi search to mark
// recently updated ViterbiStateEntries.
GenericVector<bool *> updated_flags_;
// Scaling for recovering blob outline length from rating and certainty.
float rating_cert_scale_;
// The following variables are set at construction time.
// Pointer to fontinfo table (not owned by LanguageModel).
const UnicityTable<FontInfo> *fontinfo_table_;
// Pointer to Dict class, that is used for querying the dictionaries
// (the pointer is not owned by LanguageModel).
Dict *dict_;
// TODO(daria): the following variables should become LanguageModel params
// when the old code in bestfirst.cpp and heuristic.cpp is deprecated.
//
// Set to true if we are dealing with fixed pitch text
// (set to assume_fixed_pitch_char_segment).
bool fixed_pitch_;
// Max char width-to-height ratio allowed
// (set to segsearch_max_char_wh_ratio).
float max_char_wh_ratio_;
// The following variables are initialized with InitForWord().
// String representation of the classification of the previous word
// (since this is only used by the character ngram model component,
// only the last language_model_ngram_order of the word are stored).
STRING prev_word_str_;
int prev_word_unichar_step_len_;
// Active dawg and constraints vector.
DawgInfoVector *beginning_active_dawgs_;
DawgInfoVector *beginning_constraints_;
DawgInfoVector *fixed_length_beginning_active_dawgs_;
DawgInfoVector *empty_dawg_info_vec_;
// Maximum adjustment factor for character ngram choices.
float max_penalty_adjust_;
// Set to true if acceptable choice was discovered.
// Note: it would be nice to use this to terminate the search once an
// acceptable choices is found. However we do not do that and once an
// acceptable choice is found we finish looking for alternative choices
// in the current segmentation graph and then exit the search (no more
// classifications are done after an acceptable choice is found).
// This is needed in order to let the search find the words very close to
// the best choice in rating (e.g. what/What, Cat/cat, etc) and log these
// choices. This way the stopper will know that the best choice is not
// ambiguous (i.e. there are best choices in the best choice list that have
// ratings close to the very best one) and will be less likely to mis-adapt.
bool acceptable_choice_found_;
// Set to true if a choice representing correct segmentation was explored.
bool correct_segmentation_explored_;
};
} // namespace tesseract
#endif // TESSERACT_WORDREC_LANGUAGE_MODEL_H_
|