This file is indexed.

/usr/include/tesseract/language_model.h is in libtesseract-dev 3.02.01-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
///////////////////////////////////////////////////////////////////////
// File:        language_model.h
// Description: Functions that utilize the knowledge about the properties,
//              structure and statistics of the language to help recognition.
// Author:      Daria Antonova
// Created:     Mon Nov 11 11:26:43 PST 2009
//
// (C) Copyright 2009, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////

#ifndef TESSERACT_WORDREC_LANGUAGE_MODEL_H_
#define TESSERACT_WORDREC_LANGUAGE_MODEL_H_

#include "associate.h"
#include "dawg.h"
#include "dict.h"
#include "fontinfo.h"
#include "intproto.h"
#include "matrix.h"
#include "oldheap.h"
#include "params.h"
#include "pageres.h"

namespace tesseract {

// Used for expressing various language model flags.
typedef unsigned char LanguageModelFlagsType;

// Struct for keeping track of the consistency of the path.
struct LanguageModelConsistencyInfo {
  LanguageModelConsistencyInfo()
    : punc_ref(NO_EDGE), num_punc(0), invalid_punc(false),
      num_non_first_upper(0), num_lower(0),
      script_id(0), inconsistent_script(false),
      num_alphas(0), num_digits(0), num_other(0),
      num_inconsistent_spaces(0), inconsistent_font(false) {}
  inline int NumInconsistentPunc() const {
    return invalid_punc ? num_punc : 0;
  }
  inline int NumInconsistentCase() const {
    return (num_non_first_upper > num_lower) ? num_lower : num_non_first_upper;
  }
  inline int NumInconsistentChartype() const {
    return (NumInconsistentPunc() + num_other +
            ((num_alphas > num_digits) ? num_digits : num_alphas));
  }
  inline bool Consistent() const {
    return (NumInconsistentPunc() == 0 && NumInconsistentCase() == 0 &&
            NumInconsistentChartype() == 0 && !inconsistent_script);
  }
  inline int  NumInconsistentSpaces() const {
    return num_inconsistent_spaces;
  }

  EDGE_REF punc_ref;
  int num_punc;
  bool invalid_punc;
  int num_non_first_upper;
  int num_lower;
  int script_id;
  bool inconsistent_script;
  int num_alphas;
  int num_digits;
  int num_other;
  int num_inconsistent_spaces;
  bool inconsistent_font;
};


// The following structs are used for storing the state of the language model
// in the segmentation search graph. In this graph the nodes are BLOB_CHOICEs
// and the links are the replationships between the underlying blobs (see
// segsearch.h for a more detailed description).
// Each of the BLOB_CHOICEs contains LanguageModelState struct, which has
// a list of N best paths (list of ViterbiStateEntry) explored by the Viterbi
// search leading up to and including this BLOB_CHOICE.
// Each ViterbiStateEntry contains information from various components of the
// language model: dawgs in which the path is found, character ngram model
// probability of the path, script/chartype/font consistency info, state for
// language-specific heuristics (e.g. hyphenated and compund words, lower/upper
// case preferences, etc).
// Each ViterbiStateEntry also contains the parent pointer, so that the path
// that it represents (WERD_CHOICE) can be constructed by following these
// parent pointers.

// Struct for storing additional information used by Dawg language model
// component. It stores the set of active dawgs in which the sequence of
// letters on a path can be found and the constraints that have to be
// satisfied at the end of the word (e.g. beginning/ending punctuation).
struct LanguageModelDawgInfo {
  LanguageModelDawgInfo(DawgInfoVector *a, DawgInfoVector *c,
                        PermuterType pt) : permuter(pt) {
    active_dawgs = new DawgInfoVector(*a);
    constraints = new DawgInfoVector(*c);
  }
  ~LanguageModelDawgInfo() {
    delete active_dawgs;
    delete constraints;
  }
  DawgInfoVector *active_dawgs;
  DawgInfoVector *constraints;
  PermuterType permuter;
};

// Struct for storing additional information used by Ngram language model
// component.
struct LanguageModelNgramInfo {
  LanguageModelNgramInfo(const char *c, int l, bool p, float np, float nc)
    : context(c), context_unichar_step_len(l), pruned(p), ngram_prob(np),
      ngram_cost(nc) {}
  STRING context;  // context string
  // Length of the context measured by advancing using UNICHAR::utf8_step()
  // (should be at most the order of the character ngram model used).
  int context_unichar_step_len;
  // The paths with pruned set are pruned out from the perspective of the
  // character ngram model. They are explored further because they represent
  // a dictionary match or a top choice. Thus ngram_info is still computed
  // for them in order to calculate the combined cost.
  bool pruned;
  // -ln(P_ngram_model(path))
  float ngram_prob;
  // -[ ln(P_classifier(path)) + scale_factor * ln(P_ngram_model(path)) ]
  float ngram_cost;
};

// Struct for storing the information about a path in the segmentation graph
// explored by Viterbi search.
struct ViterbiStateEntry : public ELIST_LINK {
  ViterbiStateEntry(BLOB_CHOICE *pb, ViterbiStateEntry *pe,
                    BLOB_CHOICE *b, float c, float ol,
                    const LanguageModelConsistencyInfo &ci,
                    const AssociateStats &as,
                    LanguageModelFlagsType tcf,
                    LanguageModelDawgInfo *d, LanguageModelNgramInfo *n)
    : cost(c), parent_b(pb), parent_vse(pe), ratings_sum(b->rating()),
      min_certainty(b->certainty()), adapted(b->adapted()), length(1),
      outline_length(ol), consistency_info(ci), associate_stats(as),
      top_choice_flags(tcf), dawg_info(d), ngram_info(n), updated(true) {
    if (pe != NULL) {
      ratings_sum += pe->ratings_sum;
      if (pe->min_certainty < min_certainty) {
        min_certainty = pe->min_certainty;
      }
      adapted += pe->adapted;
      length += pe->length;
      outline_length += pe->outline_length;
    }
  }
  ~ViterbiStateEntry() {
    delete dawg_info;
    delete ngram_info;
  }
  // Comparator function for sorting ViterbiStateEntry_LISTs in
  // non-increasing order of costs.
  static int Compare(const void *e1, const void *e2) {
    const ViterbiStateEntry *ve1 =
      *reinterpret_cast<const ViterbiStateEntry * const *>(e1);
    const ViterbiStateEntry *ve2 =
      *reinterpret_cast<const ViterbiStateEntry * const *>(e2);
    return (ve1->cost < ve2->cost) ? -1 : 1;
  }
  inline bool Consistent() const {
    if (dawg_info != NULL && consistency_info.NumInconsistentCase() == 0) {
      return true;
    }
    return consistency_info.Consistent();
  }

  // The cost is an adjusted ratings sum, that is adjusted by all the language
  // model components that use Viterbi search.
  float cost;

  // Pointers to parent BLOB_CHOICE and ViterbiStateEntry (not owned by this).
  BLOB_CHOICE *parent_b;
  ViterbiStateEntry *parent_vse;

  // Various information about the characters on the path represented
  // by this ViterbiStateEntry.
  float ratings_sum;  // sum of ratings of character on the path
  float min_certainty;  // minimum certainty on the path
  int adapted;  // number of BLOB_CHOICES from adapted templates
  int length;  // number of characters on the path
  float outline_length;  // length of the outline so far
  LanguageModelConsistencyInfo consistency_info;  // path consistency info
  AssociateStats associate_stats;  // character widths/gaps/seams

  // Flags for marking the entry as a top choice path with
  // the smallest rating or lower/upper case letters).
  LanguageModelFlagsType top_choice_flags;

  // Extra information maintained by Dawg laguage model component
  // (owned by ViterbiStateEntry).
  LanguageModelDawgInfo *dawg_info;

  // Extra information maintained by Ngram laguage model component
  // (owned by ViterbiStateEntry).
  LanguageModelNgramInfo *ngram_info;

  bool updated;  // set to true if the entry has just been created/updated
};

ELISTIZEH(ViterbiStateEntry);

// Struct to store information maintained by various language model components.
struct LanguageModelState {
  LanguageModelState(int col, int row) : contained_in_col(col),
      contained_in_row(row), viterbi_state_entries_prunable_length(0),
      viterbi_state_entries_length(0),
      viterbi_state_entries_prunable_max_cost(MAX_FLOAT32) {}
  ~LanguageModelState() {}

  // Ratings matrix cell that holds this LanguageModelState
  // (needed to construct best STATE for rebuild_current_state()
  // and best BLOB_CHOICE_LIST_VECTOR for AcceptableChoice()).
  int contained_in_col;
  int contained_in_row;

  // Storage for the Viterbi state.
  ViterbiStateEntry_LIST viterbi_state_entries;
  // Number and max cost of prunable paths in viterbi_state_entries.
  int viterbi_state_entries_prunable_length;
  // Total number of entries in viterbi_state_entries.
  int viterbi_state_entries_length;
  float viterbi_state_entries_prunable_max_cost;

  // TODO(daria): add font consistency checking.
};

// Bundle together all the things pertaining to the best choice/state.
struct BestChoiceBundle {
  BestChoiceBundle(STATE *s, WERD_CHOICE *bc, WERD_CHOICE *rc,
                   BLOB_CHOICE_LIST_VECTOR *bcc)
    : best_state(s), best_choice(bc), raw_choice(rc),
      best_char_choices(bcc), updated(false), best_vse(NULL), best_b(NULL) {}

  STATE *best_state;
  WERD_CHOICE *best_choice;
  WERD_CHOICE *raw_choice;
  BLOB_CHOICE_LIST_VECTOR *best_char_choices;
  bool updated;
  DANGERR fixpt;
  ViterbiStateEntry *best_vse; // best ViterbiStateEntry and BLOB_CHOICE
  BLOB_CHOICE *best_b;         // at the end of the best choice path
};

struct BestPathByColumn {
  float avg_cost;
  ViterbiStateEntry *best_vse;
  BLOB_CHOICE *best_b;
};

// This class that contains the data structures and functions necessary
// to represent and use the knowledge about the language.
class LanguageModel {
 public:
  // Adjustments to pain point priority.
  static const float kInitialPainPointPriorityAdjustment;
  static const float kDefaultPainPointPriorityAdjustment;
  static const float kBestChoicePainPointPriorityAdjustment;
  static const float kCriticalPainPointPriorityAdjustment;

  // Denominator for normalizing per-letter ngram cost when deriving
  // penalty adjustments.
  static const float kMaxAvgNgramCost;
  // Minimum word length for fixed length dawgs.
  // TODO(daria): check in the new chi/jpn.traineddata without the
  // fixed length dawg of length 1 and delete this variable.
  static const int kMinFixedLengthDawgLength;
  // If there is a significant drop in character ngram probability or a
  // dangerous ambiguity make the thresholds on what blob combinations
  // can be classified looser.
  static const float kLooseMaxCharWhRatio;

  // Masks for interpreting which language model components
  // were changed by the call to UpdateState().
  static const LanguageModelFlagsType kSmallestRatingFlag = 0x1;
  static const LanguageModelFlagsType kLowerCaseFlag = 0x2;
  static const LanguageModelFlagsType kUpperCaseFlag = 0x4;
  static const LanguageModelFlagsType kConsistentFlag = 0x8;
  static const LanguageModelFlagsType kDawgFlag = 0x10;
  static const LanguageModelFlagsType kNgramFlag = 0x20;
  static const LanguageModelFlagsType kJustClassifiedFlag = 0x80;
  static const LanguageModelFlagsType kAllChangedFlag = 0xff;

  LanguageModel(const UnicityTable<FontInfo> *fontinfo_table, Dict *dict);
  ~LanguageModel();

  // Updates data structures that are used for the duration of the segmentation
  // search on the current word;
  void InitForWord(const WERD_CHOICE *prev_word,
                   bool fixed_pitch, float best_choice_cert,
                   float max_char_wh_ratio, float rating_cert_scale,
                   HEAP *pain_points, CHUNKS_RECORD *chunks_record,
                   BlamerBundle *blamer_bundle, bool debug_blamer);
  // Resets all the "updated" flags used by the Viterbi search that were
  // "registered" during the update of the ratings matrix.
  void CleanUp();
  // Deletes and sets to NULL language model states of each of the
  // BLOB_CHOICEs in the given BLOB_CHOICE_LIST.
  void DeleteState(BLOB_CHOICE_LIST *choices);

  // Updates language model state of the given BLOB_CHOICE_LIST (from
  // the ratings matrix) a its parent. Updates pain_points if new
  // problematic points are found in the segmentation graph.
  //
  // At most language_model_viterbi_list_size are kept in each
  // LanguageModelState.viterbi_state_entries list.
  // At most language_model_viterbi_list_max_num_prunable of those are prunable
  // (non-dictionary) paths.
  // The entries that represent dictionary word paths are kept at the front
  // of the list.
  // The list ordered by cost that is computed collectively by several
  // language model components (currently dawg and ngram components).
  //
  // best_path_by_column records the lowest cost path found so far for each
  // column of the chunks_record->ratings matrix over all the rows. This
  // array is updated if a lower cost ViterbiStateEntry is created in curr_col.
  LanguageModelFlagsType UpdateState(
      LanguageModelFlagsType changed,
      int curr_col, int curr_row,
      BLOB_CHOICE_LIST *curr_list,
      BLOB_CHOICE_LIST *parent_list,
      HEAP *pain_points,
      BestPathByColumn *best_path_by_column[],
      CHUNKS_RECORD *chunks_record,
      BestChoiceBundle *best_choice_bundle,
      BlamerBundle *blamer_bundle);

  // Generates pain points from the problematic top choice paths when the
  // segmentation search is guided by the character ngram model.
  // It is necessary to consider problematic the top choice paths instead of
  // the problematic lowest cost paths because the character ngram model
  // might assign a very high cost to very improbably paths. For example,
  // "liot" might have a much lower cost than "llot", and the character ngram
  // model might detect a dip in probability for p(t|lio) at the end of the
  // word, but not at the beginning (p(i|l) would be ok). However, looking at
  // the dips in character ngram probability of the top choices we would be
  // able to stop the problematic points (p(l| l) would be low).
  void GenerateNgramModelPainPointsFromColumn(int col, int row,
                                              HEAP *pain_points,
                                              CHUNKS_RECORD *chunks_record);

  // Generates pain points from the problematic lowest cost paths that are
  // "promising" (i.e. would have the cost lower than the one recorded in
  // best_path_by_column if the problematic ending of the path is removed
  // and after being combined with another blob the certainty of the last
  // blob is improved).
  void GenerateProblematicPathPainPointsFromColumn(
      int col, int row, float best_choice_cert,
      HEAP *pain_points, BestPathByColumn *best_path_by_column[],
      CHUNKS_RECORD *chunks_record);

  // This function can be called after processing column col of the
  // chunks_record->ratings matrix in order to find the promising paths
  // that were terminated or made inconsistent by the character choices
  // in column col. If such paths are identified, this function generates
  // pain points to combine the problematic cells of the matrix.
  void GeneratePainPointsFromColumn(
    int col,
    const GenericVector<int> &non_empty_rows,
    float best_choice_cert,
    HEAP *pain_points,
    BestPathByColumn *best_path_by_column[],
    CHUNKS_RECORD *chunks_record);

  // Generates a pain point for each problematic point on the best choice
  // path. Such problematic points could be a termination of a dicionary
  // word, dip in ngram probability, invalid punctuation, inconsistent
  // case/chartype/script or punctuation in the middle of a word.
  void GeneratePainPointsFromBestChoice(
      HEAP *pain_points,
      CHUNKS_RECORD *chunks_record,
      BestChoiceBundle *best_choice_bundle);

  // Adds a pain point to the given pain_points queue that will cause
  // the entry at chunks_record->ratings(col, row) to be classified.
  // The priority of the pain point is set to be:
  //
  // priority_adjustment * sqrt(avg_parent_cost)
  // ----------------------------------------------------
  // sqrt(dict_parent_path_length) * |worst_piece_cert|
  //
  // The priority is further lowered if fragmented is true.
  // Reurns true if a new pain point was added to pain_points.
  bool GeneratePainPoint(int col, int row, bool ok_to_extend,
                         float priority_adjustment,
                         float worst_piece_cert,
                         bool fragmented,
                         float best_choice_cert,
                         float max_char_wh_ratio,
                         BLOB_CHOICE *parent_b,
                         ViterbiStateEntry *parent_vse,
                         CHUNKS_RECORD *chunks_record,
                         HEAP *pain_points);

  // Returns true if an acceptable best choice was discovered.
  inline bool AcceptableChoiceFound() { return acceptable_choice_found_; }

  // Fills cert with the worst certainty of the top non-fragmented choice
  // of the left and right neighbor of the given col,row.
  // Sets fragmented if any of the neighbors have a fragmented character
  // as the top choice.
  inline void GetWorstPieceCertainty(int col, int row, MATRIX *ratings,
                                     float *cert, bool *fragmented) {
    *cert = 0.0f;
    *fragmented = false;
    if (row > 0) {
      GetPieceCertainty(ratings->get(col, row-1), cert, fragmented);
    }
    if (col+1 < ratings->dimension()) {
      GetPieceCertainty(ratings->get(col+1, row), cert, fragmented);
    }
    ASSERT_HOST(*cert < 0.0f);
  }

  // Returns outline length of the given blob is computed as:
  // rating_cert_scale * rating / certainty
  // Since from Wordrec::SegSearch() in segsearch.cpp
  // rating_cert_scale = -1.0 * getDict().certainty_scale / rating_scale
  // And from Classify::ConvertMatchesToChoices() in adaptmatch.cpp
  // Rating = Certainty = next.rating
  // Rating *= rating_scale * Results->BlobLength
  // Certainty *= -(getDict().certainty_scale)
  inline float ComputeOutlineLength(BLOB_CHOICE *b) {
    return rating_cert_scale_ * b->rating() / b->certainty();
  }

 protected:

  inline float CertaintyScore(float cert) {
    if (language_model_use_sigmoidal_certainty) {
      // cert is assumed to be between 0 and -dict_->certainty_scale.
      // If you enable language_model_use_sigmoidal_certainty, you
      // need to adjust language_model_ngram_nonmatch_score as well.
      cert = -cert / dict_->certainty_scale;
      return 1.0f / (1.0f + exp(10.0f * cert));
    } else {
      return (-1.0f / cert);
    }
  }

  inline bool NonAlphaOrDigitMiddle(int col, int row, int dimension,
                                    UNICHAR_ID unichar_id) {
    return (!dict_->getUnicharset().get_isalpha(unichar_id) &&
            !dict_->getUnicharset().get_isdigit(unichar_id) &&
            col > 0 && row+1 < dimension);
  }

  inline bool IsFragment(BLOB_CHOICE *b) {
    return dict_->getUnicharset().get_fragment(b->unichar_id());
  }

  inline bool IsHan(int script_id) {
    return ((dict_->getUnicharset().han_sid() !=
             dict_->getUnicharset().null_sid()) &&
            (script_id == dict_->getUnicharset().han_sid()));
  }

  // Finds the first non-fragmented character in the given BLOB_CHOICE_LIST
  // and updates cert if its certainty is less than the one recorded in cert.
  // Sets fragmented if the first choice in BLOB_CHOICE_LIST is a fragment.
  inline void GetPieceCertainty(BLOB_CHOICE_LIST *blist,
                                float *cert, bool *fragmented) {
    if (blist == NOT_CLASSIFIED || blist->empty()) return;
    BLOB_CHOICE_IT bit(blist);
    while (!bit.at_last() && IsFragment(bit.data())) {
      *fragmented = true;
      bit.forward();  // skip fragments
    }
    // Each classification must have at least one non-fragmented choice.
    ASSERT_HOST(!IsFragment(bit.data()));
    if (bit.data()->certainty() < *cert) *cert = bit.data()->certainty();
  }

  inline float ComputeAdjustment(int num_problems, float penalty) {
    if (num_problems == 0) return 0.0f;
    if (num_problems == 1) return penalty;
    return (penalty + (language_model_penalty_increment *
                       static_cast<float>(num_problems-1)));
  }

  // Computes the adjustment to the ratings sum based on the given
  // consistency_info. The paths with invalid punctuation, inconsistent
  // case and character type are penalized proportionally to the number
  // of inconsistencies on the path.
  inline float ComputeConsistencyAdjustment(
      const LanguageModelDawgInfo *dawg_info,
      const LanguageModelConsistencyInfo &consistency_info) {
    if (dawg_info != NULL) {
      return ComputeAdjustment(consistency_info.NumInconsistentCase(),
                               language_model_penalty_case);
    }
    return (ComputeAdjustment(consistency_info.NumInconsistentPunc(),
                              language_model_penalty_punc) +
            ComputeAdjustment(consistency_info.NumInconsistentCase(),
                              language_model_penalty_case) +
            ComputeAdjustment(consistency_info.NumInconsistentChartype(),
                              language_model_penalty_chartype) +
            ComputeAdjustment(consistency_info.NumInconsistentSpaces(),
                              language_model_penalty_spacing) +
            (consistency_info.inconsistent_script ?
             language_model_penalty_script : 0.0f) +
            (consistency_info.inconsistent_font ?
             language_model_penalty_font : 0.0f));
  }

  // Returns an adjusted ratings sum that includes inconsistency penalties.
  inline float ComputeConsistencyAdjustedRatingsSum(
      float ratings_sum,
      const LanguageModelDawgInfo *dawg_info,
      const LanguageModelConsistencyInfo &consistency_info) {
    return (ratings_sum * (1.0f + ComputeConsistencyAdjustment(
        dawg_info, consistency_info)));
  }

  // Returns an adjusted ratings sum that includes inconsistency penalties,
  // penalties for non-dictionary paths and paths with dips in ngram
  // probability.
  float ComputeAdjustedPathCost(
      float ratings_sum, int length, float dawg_score,
      const LanguageModelDawgInfo *dawg_info,
      const LanguageModelNgramInfo *ngram_info,
      const LanguageModelConsistencyInfo &consistency_info,
      const AssociateStats &associate_stats,
      ViterbiStateEntry *parent_vse);

  // Returns true if the given ViterbiStateEntry represents a problematic
  // path. A path is considered problematic if the last unichar makes it
  // inconsistent, introduces a dip in ngram probability or transforms a
  // dictionary path into a non-dictionary one.
  bool ProblematicPath(const ViterbiStateEntry &vse,
                       UNICHAR_ID unichar_id, bool word_end);

  // Finds the first lower and upper case character in curr_list.
  // If none found, chooses the first character in the list.
  void GetTopChoiceLowerUpper(LanguageModelFlagsType changed,
                              BLOB_CHOICE_LIST *curr_list,
                              BLOB_CHOICE **first_lower,
                              BLOB_CHOICE **first_upper);

  // Helper function that computes the cost of the path composed of the
  // path in the given parent ViterbiStateEntry and the given BLOB_CHOICE.
  // Adds a new ViterbiStateEntry to the list of viterbi entries
  // in the given BLOB_CHOICE if the new path looks good enough.
  // Returns LanguageModelFlagsType that indicates which language
  // model components were involved in creating the new entry.
  LanguageModelFlagsType AddViterbiStateEntry(
      LanguageModelFlagsType top_choice_flags,
      float denom,
      bool word_end,
      int curr_col, int curr_row,
      BLOB_CHOICE *b,
      BLOB_CHOICE *parent_b,
      ViterbiStateEntry *parent_vse,
      HEAP *pain_points,
      BestPathByColumn *best_path_by_column[],
      CHUNKS_RECORD *chunks_record,
      BestChoiceBundle *best_choice_bundle,
      BlamerBundle *blamer_bundle);

  // Pretty print information in the given ViterbiStateEntry.
  void PrintViterbiStateEntry(const char *msg,
                              ViterbiStateEntry *vse,
                              BLOB_CHOICE *b,
                              CHUNKS_RECORD *chunks_record);

  // Determines whether a potential entry is a true top choice and
  // updates changed accordingly.
  //
  // Note: The function assumes that b, top_choice_flags and changed
  // are not NULL.
  void GenerateTopChoiceInfo(
      float ratings_sum,
      const LanguageModelDawgInfo *dawg_info,
      const LanguageModelConsistencyInfo &consistency_info,
      const ViterbiStateEntry *parent_vse,
      BLOB_CHOICE *b,
      LanguageModelFlagsType *top_choice_flags,
      LanguageModelFlagsType *changed);

  // Calls dict_->LetterIsOk() with DawgArgs initialized from parent_vse and
  // unichar from b.unichar_id(). Constructs and returns LanguageModelDawgInfo
  // with updated active dawgs, constraints and permuter.
  //
  // Note: the caller is responsible for deleting the returned pointer.
  LanguageModelDawgInfo *GenerateDawgInfo(bool word_end, int script_id,
                                          int curr_col, int curr_row,
                                          const BLOB_CHOICE &b,
                                          const ViterbiStateEntry *parent_vse,
                                          LanguageModelFlagsType *changed);

  // Computes p(unichar | parent context) and records it in ngram_cost.
  // If b.unichar_id() is an unlikely continuation of the parent context
  // sets found_small_prob to true and returns NULL.
  // Otherwise creates a new LanguageModelNgramInfo entry containing the
  // updated context (that includes b.unichar_id() at the end) and returns it.
  //
  // Note: the caller is responsible for deleting the returned pointer.
  LanguageModelNgramInfo *GenerateNgramInfo(const char *unichar,
                                            float certainty, float denom,
                                            int curr_col, int curr_row,
                                            const ViterbiStateEntry *parent_vse,
                                            BLOB_CHOICE *parent_b,
                                            LanguageModelFlagsType *changed);

  // Computes -(log(prob(classifier)) + log(prob(ngram model)))
  // for the given unichar in the given context. If there are multiple
  // unichars at one position - takes the average of their probabilities.
  // UNICHAR::utf8_step() is used to separate out individual UTF8 characters,
  // since probability_in_context() can only handle one at a time (while
  // unicharset might contain ngrams and glyphs composed from multiple UTF8
  // characters).
  float ComputeNgramCost(const char *unichar, float certainty, float denom,
                         const char *context, int *unichar_step_len,
                         bool *found_small_prob, float *ngram_prob);

  // Computes the normalization factors for the classifier confidences
  // (used by ComputeNgramCost()).
  float ComputeDenom(BLOB_CHOICE_LIST *curr_list);

  // Fills the given consistenty_info based on parent_vse.consistency_info
  // and on the consistency of the given unichar_id with parent_vse.
  void FillConsistencyInfo(
      int curr_col, bool word_end, BLOB_CHOICE *b,
      ViterbiStateEntry *parent_vse, BLOB_CHOICE *parent_b,
      CHUNKS_RECORD *chunks_record,
      LanguageModelConsistencyInfo *consistency_info);

  // Constructs WERD_CHOICE by recording unichar_ids of the BLOB_CHOICEs
  // on the path represented by the given BLOB_CHOICE and language model
  // state entries (lmse, dse). The path is re-constructed by following
  // the parent pointers in the the lang model state entries). If the
  // constructed WERD_CHOICE is better than the best/raw choice recorded
  // in the best_choice_bundle, this function updates the corresponding
  // fields and sets best_choice_bunldle->updated to true.
  void UpdateBestChoice(BLOB_CHOICE *b,
                        ViterbiStateEntry *vse,
                        HEAP *pain_points,
                        CHUNKS_RECORD *chunks_record,
                        BestChoiceBundle *best_choice_bundle,
                        BlamerBundle *blamer_bundle);

  // Fills the given floats array with raw features extracted from the
  // path represented by the given ViterbiStateEntry.
  // See ccstruct/params_training_featdef.h for feature information.
  void ExtractRawFeaturesFromPath(const ViterbiStateEntry &vse,
                                  float *features);

  // Constructs a WERD_CHOICE by tracing parent pointers starting with
  // the given LanguageModelStateEntry. Returns the constructed word.
  // Updates best_char_choices, certainties and state if they are not
  // NULL (best_char_choices and certainties are assumed to have the
  // length equal to lmse->length).
  // The caller is resposible for freeing memory associated with the
  // returned WERD_CHOICE.
  WERD_CHOICE *ConstructWord(BLOB_CHOICE *b,
                             ViterbiStateEntry *vse,
                             CHUNKS_RECORD *chunks_record,
                             BLOB_CHOICE_LIST_VECTOR *best_char_choices,
                             float certainties[],
                             float *dawg_score,
                             STATE *state,
                             BlamerBundle *blamer_bundle,
                             bool *truth_path);

  // This function is used for non-space delimited languages when looking
  // for word endings recorded while trying to separate the path into words.
  //
  // The function increments covered if a valid word ending is found in
  // active_dawgs (if covered is incremented, skip is set to the number
  // of unichars that should be skipped because they are covered by the
  // word whose ending was just discovered).
  //
  // dawg_score and dawg_score_done are updated if:
  // -- at the end of the path we discover a valid word ending from a
  //    non-fixed length dawg (this means that the whole word is a
  //    valid word, so dawg_score is set to 1.0f
  // -- word_start is true (dawg_score is set to covered / word length)
  //
  // Note: this function assumes that skip, covered, dawg_score and
  // dawg_score_done are not NULL.
  void UpdateCoveredByFixedLengthDawgs(const DawgInfoVector &active_dawgs,
                                       int word_index, int word_length,
                                       int *skip, int *covered,
                                       float *dawg_score,
                                       bool *dawg_score_done);

  // Wrapper around AssociateUtils::ComputeStats().
  inline void ComputeAssociateStats(int col, int row,
                                    float max_char_wh_ratio,
                                    ViterbiStateEntry *parent_vse,
                                    CHUNKS_RECORD *chunks_record,
                                    AssociateStats *associate_stats) {
  AssociateUtils::ComputeStats(
      col, row,
      (parent_vse != NULL) ? &(parent_vse->associate_stats) : NULL,
      (parent_vse != NULL) ? parent_vse->length : 0,
      fixed_pitch_, max_char_wh_ratio,
      chunks_record->word_res != NULL ? &chunks_record->word_res->denorm : NULL,
      chunks_record, language_model_debug_level, associate_stats);
  }

  // Returns true if the path with such top_choice_flags and dawg_info
  // could be pruned out (i.e. is neither a system/user/frequent dictionary
  // nor a top choice path).
  // In non-space delimited languages all paths can be "somewhat" dictionary
  // words. In such languages we can not do dictionary-driven path prunning,
  // so paths with non-empty dawg_info are considered prunable.
  inline bool PrunablePath(LanguageModelFlagsType top_choice_flags,
                           const LanguageModelDawgInfo *dawg_info) {
    if (top_choice_flags) return false;
    if (dawg_info != NULL &&
        (dawg_info->permuter == SYSTEM_DAWG_PERM ||
         dawg_info->permuter == USER_DAWG_PERM ||
         dawg_info->permuter == FREQ_DAWG_PERM) &&
         dict_->GetMaxFixedLengthDawgIndex() < 0) return false;
    return true;
  }

  // Returns true if the given ViterbiStateEntry represents an acceptable path.
  inline bool AcceptablePath(const ViterbiStateEntry &vse) {
    return (vse.dawg_info != NULL || vse.Consistent() ||
            (vse.ngram_info != NULL && !vse.ngram_info->pruned));
  }

 public:
  // Parameters.
  INT_VAR_H(language_model_debug_level, 0, "Language model debug level");
  BOOL_VAR_H(language_model_ngram_on, false,
             "Turn on/off the use of character ngram model");
  INT_VAR_H(language_model_ngram_order, 8,
            "Maximum order of the character ngram model");
  INT_VAR_H(language_model_viterbi_list_max_num_prunable, 10,
            "Maximum number of prunable (those for which PrunablePath() is true)"
            "entries in each viterbi list recorded in BLOB_CHOICEs");
  INT_VAR_H(language_model_viterbi_list_max_size, 500,
            "Maximum size of viterbi lists recorded in BLOB_CHOICEs");
  double_VAR_H(language_model_ngram_small_prob, 0.000001,
               "To avoid overly small denominators use this as the floor"
               " of the probability returned by the ngram model");
  double_VAR_H(language_model_ngram_nonmatch_score, -40.0,
               "Average classifier score of a non-matching unichar");
  BOOL_VAR_H(language_model_ngram_use_only_first_uft8_step, false,
             "Use only the first UTF8 step of the given string"
             " when computing log probabilities");
  double_VAR_H(language_model_ngram_scale_factor, 0.03,
               "Strength of the character ngram model relative to the"
               " character classifier ");
  BOOL_VAR_H(language_model_ngram_space_delimited_language, true,
             "Words are delimited by space");

  INT_VAR_H(language_model_min_compound_length, 3,
            "Minimum length of compound words");
  INT_VAR_H(language_model_fixed_length_choices_depth, 3,
            "Depth of blob choice lists to explore"
            " when fixed length dawgs are on");
  // Penalties used for adjusting path costs and final word rating.
  double_VAR_H(language_model_penalty_non_freq_dict_word, 0.1,
               "Penalty for words not in the frequent word dictionary");
  double_VAR_H(language_model_penalty_non_dict_word, 0.15,
               "Penalty for non-dictionary words");
  double_VAR_H(language_model_penalty_punc, 0.2,
               "Penalty for inconsistent punctuation");
  double_VAR_H(language_model_penalty_case, 0.1,
               "Penalty for inconsistent case");
  double_VAR_H(language_model_penalty_script, 0.5,
               "Penalty for inconsistent script");
  double_VAR_H(language_model_penalty_chartype, 0.3,
               "Penalty for inconsistent character type");
  double_VAR_H(language_model_penalty_font, 0.00,
               "Penalty for inconsistent font");
  double_VAR_H(language_model_penalty_spacing, 0.05,
               "Penalty for inconsistent spacing");
  double_VAR_H(language_model_penalty_increment, 0.01, "Penalty increment");
  BOOL_VAR_H(language_model_use_sigmoidal_certainty, false,
             "Use sigmoidal score for certainty");

 protected:
  // Member Variables.

  // Temporary DawgArgs struct that is re-used across different words to
  // avoid dynamic memory re-allocation (should be cleared before each use).
  DawgArgs *dawg_args_;
  // List of pointers to updated flags used by Viterbi search to mark
  // recently updated ViterbiStateEntries.
  GenericVector<bool *> updated_flags_;
  // Scaling for recovering blob outline length from rating and certainty.
  float rating_cert_scale_;

  // The following variables are set at construction time.

  // Pointer to fontinfo table (not owned by LanguageModel).
  const UnicityTable<FontInfo> *fontinfo_table_;

  // Pointer to Dict class, that is used for querying the dictionaries
  // (the pointer is not owned by LanguageModel).
  Dict *dict_;

  // TODO(daria): the following variables should become LanguageModel params
  // when the old code in bestfirst.cpp and heuristic.cpp is deprecated.
  //
  // Set to true if we are dealing with fixed pitch text
  // (set to assume_fixed_pitch_char_segment).
  bool fixed_pitch_;
  // Max char width-to-height ratio allowed
  // (set to segsearch_max_char_wh_ratio).
  float max_char_wh_ratio_;

  // The following variables are initialized with InitForWord().

  // String representation of the classification of the previous word
  // (since this is only used by the character ngram model component,
  // only the last language_model_ngram_order of the word are stored).
  STRING prev_word_str_;
  int prev_word_unichar_step_len_;
  // Active dawg and constraints vector.
  DawgInfoVector *beginning_active_dawgs_;
  DawgInfoVector *beginning_constraints_;
  DawgInfoVector *fixed_length_beginning_active_dawgs_;
  DawgInfoVector *empty_dawg_info_vec_;
  // Maximum adjustment factor for character ngram choices.
  float max_penalty_adjust_;
  // Set to true if acceptable choice was discovered.
  // Note: it would be nice to use this to terminate the search once an
  // acceptable choices is found. However we do not do that and once an
  // acceptable choice is found we finish looking for alternative choices
  // in the current segmentation graph and then exit the search (no more
  // classifications are done after an acceptable choice is found).
  // This is needed in order to let the search find the words very close to
  // the best choice in rating (e.g. what/What, Cat/cat, etc) and log these
  // choices. This way the stopper will know that the best choice is not
  // ambiguous (i.e. there are best choices in the best choice list that have
  // ratings close to the very best one) and will be less likely to mis-adapt.
  bool acceptable_choice_found_;
  // Set to true if a choice representing correct segmentation was explored.
  bool correct_segmentation_explored_;

};

}  // namespace tesseract

#endif  // TESSERACT_WORDREC_LANGUAGE_MODEL_H_