/usr/share/pyshared/Scientific/Physics/PhysicalQuantities.py is in python-scientific 2.8-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 | # Physical quantities with units
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# with contributions from Greg Ward
# last revision: 2007-5-25
#
"""
Physical quantities with units.
This module provides a data type that represents a physical
quantity together with its unit. It is possible to add and
subtract these quantities if the units are compatible, and
a quantity can be converted to another compatible unit.
Multiplication, subtraction, and raising to integer powers
is allowed without restriction, and the result will have
the correct unit. A quantity can be raised to a non-integer
power only if the result can be represented by integer powers
of the base units.
The values of physical constants are taken from the 1986
recommended values from CODATA. Other conversion factors
(e.g. for British units) come from various sources. I can't
guarantee for the correctness of all entries in the unit
table, so use this at your own risk.
"""
from Scientific.NumberDict import NumberDict
from Scientific import N
import re, string
# Class definitions
class PhysicalQuantity:
"""
Physical quantity with units
PhysicalQuantity instances allow addition, subtraction,
multiplication, and division with each other as well as
multiplication, division, and exponentiation with numbers.
Addition and subtraction check that the units of the two operands
are compatible and return the result in the units of the first
operand. A limited set of mathematical functions (from module
Numeric) is applicable as well:
- sqrt: equivalent to exponentiation with 0.5.
- sin, cos, tan: applicable only to objects whose unit is
compatible with 'rad'.
See the documentation of the PhysicalQuantities module for a list
of the available units.
Here is an example on usage:
>>> from PhysicalQuantities import PhysicalQuantity as p # short hand
>>> distance1 = p('10 m')
>>> distance2 = p('10 km')
>>> total = distance1 + distance2
>>> total
PhysicalQuantity(10010.0,'m')
>>> total.convertToUnit('km')
>>> total.getValue()
10.01
>>> total.getUnitName()
'km'
>>> total = total.inBaseUnits()
>>> total
PhysicalQuantity(10010.0,'m')
>>>
>>> t = p(314159., 's')
>>> # convert to days, hours, minutes, and second:
>>> t2 = t.inUnitsOf('d','h','min','s')
>>> t2_print = ' '.join([str(i) for i in t2])
>>> t2_print
'3.0 d 15.0 h 15.0 min 59.0 s'
>>>
>>> e = p('2.7 Hartree*Nav')
>>> e.convertToUnit('kcal/mol')
>>> e
PhysicalQuantity(1694.2757596034764,'kcal/mol')
>>> e = e.inBaseUnits()
>>> str(e)
'7088849.77818 kg*m**2/s**2/mol'
>>>
>>> freeze = p('0 degC')
>>> freeze = freeze.inUnitsOf ('degF')
>>> str(freeze)
'32.0 degF'
>>>
"""
def __init__(self, *args):
"""
There are two constructor calling patterns:
1. PhysicalQuantity(value, unit), where value is any number
and unit is a string defining the unit
2. PhysicalQuantity(value_with_unit), where value_with_unit
is a string that contains both the value and the unit,
i.e. '1.5 m/s'. This form is provided for more convenient
interactive use.
@param args: either (value, unit) or (value_with_unit,)
@type args: (number, C{str}) or (C{str},)
"""
if len(args) == 2:
self.value = args[0]
self.unit = _findUnit(args[1])
else:
s = string.strip(args[0])
match = PhysicalQuantity._number.match(s)
if match is None:
raise TypeError('No number found')
self.value = string.atof(match.group(0))
self.unit = _findUnit(s[len(match.group(0)):])
_number = re.compile('[+-]?[0-9]+(\\.[0-9]*)?([eE][+-]?[0-9]+)?')
def __str__(self):
return str(self.value) + ' ' + self.unit.name()
def __repr__(self):
return (self.__class__.__name__ + '(' + `self.value` + ',' +
`self.unit.name()` + ')')
def _sum(self, other, sign1, sign2):
if not isPhysicalQuantity(other):
raise TypeError('Incompatible types')
new_value = sign1*self.value + \
sign2*other.value*other.unit.conversionFactorTo(self.unit)
return self.__class__(new_value, self.unit)
def __add__(self, other):
return self._sum(other, 1, 1)
__radd__ = __add__
def __sub__(self, other):
return self._sum(other, 1, -1)
def __rsub__(self, other):
return self._sum(other, -1, 1)
def __cmp__(self, other):
diff = self._sum(other, 1, -1)
return cmp(diff.value, 0)
def __mul__(self, other):
if not isPhysicalQuantity(other):
return self.__class__(self.value*other, self.unit)
value = self.value*other.value
unit = self.unit*other.unit
if unit.isDimensionless():
return value*unit.factor
else:
return self.__class__(value, unit)
__rmul__ = __mul__
def __div__(self, other):
if not isPhysicalQuantity(other):
return self.__class__(self.value/other, self.unit)
value = self.value/other.value
unit = self.unit/other.unit
if unit.isDimensionless():
return value*unit.factor
else:
return self.__class__(value, unit)
def __rdiv__(self, other):
if not isPhysicalQuantity(other):
return self.__class__(other/self.value, pow(self.unit, -1))
value = other.value/self.value
unit = other.unit/self.unit
if unit.isDimensionless():
return value*unit.factor
else:
return self.__class__(value, unit)
def __pow__(self, other):
if isPhysicalQuantity(other):
raise TypeError('Exponents must be dimensionless')
return self.__class__(pow(self.value, other), pow(self.unit, other))
def __rpow__(self, other):
raise TypeError('Exponents must be dimensionless')
def __abs__(self):
return self.__class__(abs(self.value), self.unit)
def __pos__(self):
return self
def __neg__(self):
return self.__class__(-self.value, self.unit)
def __nonzero__(self):
return self.value != 0
def convertToUnit(self, unit):
"""
Change the unit and adjust the value such that
the combination is equivalent to the original one. The new unit
must be compatible with the previous unit of the object.
@param unit: a unit
@type unit: C{str}
@raise TypeError: if the unit string is not a know unit or a
unit incompatible with the current one
"""
unit = _findUnit(unit)
self.value = _convertValue (self.value, self.unit, unit)
self.unit = unit
def inUnitsOf(self, *units):
"""
Express the quantity in different units. If one unit is
specified, a new PhysicalQuantity object is returned that
expresses the quantity in that unit. If several units
are specified, the return value is a tuple of
PhysicalObject instances with with one element per unit such
that the sum of all quantities in the tuple equals the the
original quantity and all the values except for the last one
are integers. This is used to convert to irregular unit
systems like hour/minute/second.
@param units: one or several units
@type units: C{str} or sequence of C{str}
@returns: one or more physical quantities
@rtype: L{PhysicalQuantity} or C{tuple} of L{PhysicalQuantity}
@raises TypeError: if any of the specified units are not compatible
with the original unit
"""
units = map(_findUnit, units)
if len(units) == 1:
unit = units[0]
value = _convertValue (self.value, self.unit, unit)
return self.__class__(value, unit)
else:
units.sort()
result = []
value = self.value
unit = self.unit
for i in range(len(units)-1,-1,-1):
value = value*unit.conversionFactorTo(units[i])
if i == 0:
rounded = value
else:
rounded = _round(value)
result.append(self.__class__(rounded, units[i]))
value = value - rounded
unit = units[i]
return tuple(result)
# Contributed by Berthold Hoellmann
def inBaseUnits(self):
"""
@returns: the same quantity converted to base units,
i.e. SI units in most cases
@rtype: L{PhysicalQuantity}
"""
new_value = self.value * self.unit.factor
num = ''
denom = ''
for i in xrange(9):
unit = _base_names[i]
power = self.unit.powers[i]
if power < 0:
denom = denom + '/' + unit
if power < -1:
denom = denom + '**' + str(-power)
elif power > 0:
num = num + '*' + unit
if power > 1:
num = num + '**' + str(power)
if len(num) == 0:
num = '1'
else:
num = num[1:]
return self.__class__(new_value, num + denom)
def isCompatible (self, unit):
"""
@param unit: a unit
@type unit: C{str}
@returns: C{True} if the specified unit is compatible with the
one of the quantity
@rtype: C{bool}
"""
unit = _findUnit (unit)
return self.unit.isCompatible (unit)
def getValue(self):
"""Return value (float) of physical quantity (no unit)."""
return self.value
def getUnitName(self):
"""Return unit (string) of physical quantity."""
return self.unit.name()
def sqrt(self):
return pow(self, 0.5)
def sin(self):
if self.unit.isAngle():
return N.sin(self.value * \
self.unit.conversionFactorTo(_unit_table['rad']))
else:
raise TypeError('Argument of sin must be an angle')
def cos(self):
if self.unit.isAngle():
return N.cos(self.value * \
self.unit.conversionFactorTo(_unit_table['rad']))
else:
raise TypeError('Argument of cos must be an angle')
def tan(self):
if self.unit.isAngle():
return N.tan(self.value * \
self.unit.conversionFactorTo(_unit_table['rad']))
else:
raise TypeError('Argument of tan must be an angle')
class PhysicalUnit:
"""
Physical unit
A physical unit is defined by a name (possibly composite), a scaling
factor, and the exponentials of each of the SI base units that enter into
it. Units can be multiplied, divided, and raised to integer powers.
"""
def __init__(self, names, factor, powers, offset=0):
"""
@param names: a dictionary mapping each name component to its
associated integer power (e.g. C{{'m': 1, 's': -1}})
for M{m/s}). As a shorthand, a string may be passed
which is assigned an implicit power 1.
@type names: C{dict} or C{str}
@param factor: a scaling factor
@type factor: C{float}
@param powers: the integer powers for each of the nine base units
@type powers: C{list} of C{int}
@param offset: an additive offset to the base unit (used only for
temperatures)
@type offset: C{float}
"""
if type(names) == type(''):
self.names = NumberDict()
self.names[names] = 1
else:
self.names = names
self.factor = factor
self.offset = offset
self.powers = powers
def __repr__(self):
return '<PhysicalUnit ' + self.name() + '>'
__str__ = __repr__
def __cmp__(self, other):
if self.powers != other.powers:
raise TypeError('Incompatible units')
return cmp(self.factor, other.factor)
def __mul__(self, other):
if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0):
raise TypeError("cannot multiply units with non-zero offset")
if isPhysicalUnit(other):
return PhysicalUnit(self.names+other.names,
self.factor*other.factor,
map(lambda a,b: a+b,
self.powers, other.powers))
else:
return PhysicalUnit(self.names+{str(other): 1},
self.factor*other,
self.powers,
self.offset * other)
__rmul__ = __mul__
def __div__(self, other):
if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0):
raise TypeError("cannot divide units with non-zero offset")
if isPhysicalUnit(other):
return PhysicalUnit(self.names-other.names,
self.factor/other.factor,
map(lambda a,b: a-b,
self.powers, other.powers))
else:
return PhysicalUnit(self.names+{str(other): -1},
self.factor/other, self.powers)
def __rdiv__(self, other):
if self.offset != 0 or (isPhysicalUnit (other) and other.offset != 0):
raise TypeError("cannot divide units with non-zero offset")
if isPhysicalUnit(other):
return PhysicalUnit(other.names-self.names,
other.factor/self.factor,
map(lambda a,b: a-b,
other.powers, self.powers))
else:
return PhysicalUnit({str(other): 1}-self.names,
other/self.factor,
map(lambda x: -x, self.powers))
def __pow__(self, other):
if self.offset != 0:
raise TypeError("cannot exponentiate units with non-zero offset")
if isinstance(other, int):
return PhysicalUnit(other*self.names, pow(self.factor, other),
map(lambda x,p=other: x*p, self.powers))
if isinstance(other, float):
inv_exp = 1./other
rounded = int(N.floor(inv_exp+0.5))
if abs(inv_exp-rounded) < 1.e-10:
if reduce(lambda a, b: a and b,
map(lambda x, e=rounded: x%e == 0, self.powers)):
f = pow(self.factor, other)
p = map(lambda x,p=rounded: x/p, self.powers)
if reduce(lambda a, b: a and b,
map(lambda x, e=rounded: x%e == 0,
self.names.values())):
names = self.names/rounded
else:
names = NumberDict()
if f != 1.:
names[str(f)] = 1
for i in range(len(p)):
names[_base_names[i]] = p[i]
return PhysicalUnit(names, f, p)
else:
raise TypeError('Illegal exponent')
raise TypeError('Only integer and inverse integer exponents allowed')
def conversionFactorTo(self, other):
"""
@param other: another unit
@type other: L{PhysicalUnit}
@returns: the conversion factor from this unit to another unit
@rtype: C{float}
@raises TypeError: if the units are not compatible
"""
if self.powers != other.powers:
raise TypeError('Incompatible units')
if self.offset != other.offset and self.factor != other.factor:
raise TypeError(('Unit conversion (%s to %s) cannot be expressed ' +
'as a simple multiplicative factor') % \
(self.name(), other.name()))
return self.factor/other.factor
def conversionTupleTo(self, other): # added 1998/09/29 GPW
"""
@param other: another unit
@type other: L{PhysicalUnit}
@returns: the conversion factor and offset from this unit to
another unit
@rtype: (C{float}, C{float})
@raises TypeError: if the units are not compatible
"""
if self.powers != other.powers:
raise TypeError('Incompatible units')
# let (s1,d1) be the conversion tuple from 'self' to base units
# (ie. (x+d1)*s1 converts a value x from 'self' to base units,
# and (x/s1)-d1 converts x from base to 'self' units)
# and (s2,d2) be the conversion tuple from 'other' to base units
# then we want to compute the conversion tuple (S,D) from
# 'self' to 'other' such that (x+D)*S converts x from 'self'
# units to 'other' units
# the formula to convert x from 'self' to 'other' units via the
# base units is (by definition of the conversion tuples):
# ( ((x+d1)*s1) / s2 ) - d2
# = ( (x+d1) * s1/s2) - d2
# = ( (x+d1) * s1/s2 ) - (d2*s2/s1) * s1/s2
# = ( (x+d1) - (d1*s2/s1) ) * s1/s2
# = (x + d1 - d2*s2/s1) * s1/s2
# thus, D = d1 - d2*s2/s1 and S = s1/s2
factor = self.factor / other.factor
offset = self.offset - (other.offset * other.factor / self.factor)
return (factor, offset)
def isCompatible (self, other): # added 1998/10/01 GPW
"""
@param other: another unit
@type other: L{PhysicalUnit}
@returns: C{True} if the units are compatible, i.e. if the powers of
the base units are the same
@rtype: C{bool}
"""
return self.powers == other.powers
def isDimensionless(self):
return not reduce(lambda a,b: a or b, self.powers)
def isAngle(self):
return self.powers[7] == 1 and \
reduce(lambda a,b: a + b, self.powers) == 1
def setName(self, name):
self.names = NumberDict()
self.names[name] = 1
def name(self):
num = ''
denom = ''
for unit in self.names.keys():
power = self.names[unit]
if power < 0:
denom = denom + '/' + unit
if power < -1:
denom = denom + '**' + str(-power)
elif power > 0:
num = num + '*' + unit
if power > 1:
num = num + '**' + str(power)
if len(num) == 0:
num = '1'
else:
num = num[1:]
return num + denom
# Type checks
def isPhysicalUnit(x):
"""
@param x: an object
@type x: any
@returns: C{True} if x is a L{PhysicalUnit}
@rtype: C{bool}
"""
return hasattr(x, 'factor') and hasattr(x, 'powers')
def isPhysicalQuantity(x):
"""
@param x: an object
@type x: any
@returns: C{True} if x is a L{PhysicalQuantity}
@rtype: C{bool}
"""
return hasattr(x, 'value') and hasattr(x, 'unit')
# Helper functions
def _findUnit(unit):
if type(unit) == type(''):
name = string.strip(unit)
unit = eval(name, _unit_table)
for cruft in ['__builtins__', '__args__']:
try: del _unit_table[cruft]
except: pass
if not isPhysicalUnit(unit):
raise TypeError(str(unit) + ' is not a unit')
return unit
def _round(x):
if N.greater(x, 0.):
return N.floor(x)
else:
return N.ceil(x)
def _convertValue (value, src_unit, target_unit):
(factor, offset) = src_unit.conversionTupleTo(target_unit)
return (value + offset) * factor
# SI unit definitions
_base_names = ['m', 'kg', 's', 'A', 'K', 'mol', 'cd', 'rad', 'sr']
_base_units = [('m', PhysicalUnit('m', 1., [1,0,0,0,0,0,0,0,0])),
('g', PhysicalUnit('g', 0.001, [0,1,0,0,0,0,0,0,0])),
('s', PhysicalUnit('s', 1., [0,0,1,0,0,0,0,0,0])),
('A', PhysicalUnit('A', 1., [0,0,0,1,0,0,0,0,0])),
('K', PhysicalUnit('K', 1., [0,0,0,0,1,0,0,0,0])),
('mol', PhysicalUnit('mol', 1., [0,0,0,0,0,1,0,0,0])),
('cd', PhysicalUnit('cd', 1., [0,0,0,0,0,0,1,0,0])),
('rad', PhysicalUnit('rad', 1., [0,0,0,0,0,0,0,1,0])),
('sr', PhysicalUnit('sr', 1., [0,0,0,0,0,0,0,0,1])),
]
_prefixes = [('Y', 1.e24),
('Z', 1.e21),
('E', 1.e18),
('P', 1.e15),
('T', 1.e12),
('G', 1.e9),
('M', 1.e6),
('k', 1.e3),
('h', 1.e2),
('da', 1.e1),
('d', 1.e-1),
('c', 1.e-2),
('m', 1.e-3),
('mu', 1.e-6),
('n', 1.e-9),
('p', 1.e-12),
('f', 1.e-15),
('a', 1.e-18),
('z', 1.e-21),
('y', 1.e-24),
]
_unit_table = {}
for unit in _base_units:
_unit_table[unit[0]] = unit[1]
_help = []
def _addUnit(name, unit, comment=''):
if _unit_table.has_key(name):
raise KeyError, 'Unit ' + name + ' already defined'
if comment:
_help.append((name, comment, unit))
if type(unit) == type(''):
unit = eval(unit, _unit_table)
for cruft in ['__builtins__', '__args__']:
try: del _unit_table[cruft]
except: pass
unit.setName(name)
_unit_table[name] = unit
def _addPrefixed(unit):
_help.append('Prefixed units for %s:' % unit)
_prefixed_names = []
for prefix in _prefixes:
name = prefix[0] + unit
_addUnit(name, prefix[1]*_unit_table[unit])
_prefixed_names.append(name)
_help.append(', '.join(_prefixed_names))
# SI derived units; these automatically get prefixes
_help.append('SI derived units; these automatically get prefixes:\n' + \
', '.join([prefix + ' (%.0E)' % value for prefix, value in _prefixes]) + \
'\n')
_unit_table['kg'] = PhysicalUnit('kg', 1., [0,1,0,0,0,0,0,0,0])
_addUnit('Hz', '1/s', 'Hertz')
_addUnit('N', 'm*kg/s**2', 'Newton')
_addUnit('Pa', 'N/m**2', 'Pascal')
_addUnit('J', 'N*m', 'Joule')
_addUnit('W', 'J/s', 'Watt')
_addUnit('C', 's*A', 'Coulomb')
_addUnit('V', 'W/A', 'Volt')
_addUnit('F', 'C/V', 'Farad')
_addUnit('ohm', 'V/A', 'Ohm')
_addUnit('S', 'A/V', 'Siemens')
_addUnit('Wb', 'V*s', 'Weber')
_addUnit('T', 'Wb/m**2', 'Tesla')
_addUnit('H', 'Wb/A', 'Henry')
_addUnit('lm', 'cd*sr', 'Lumen')
_addUnit('lx', 'lm/m**2', 'Lux')
_addUnit('Bq', '1/s', 'Becquerel')
_addUnit('Gy', 'J/kg', 'Gray')
_addUnit('Sv', 'J/kg', 'Sievert')
del _unit_table['kg']
for unit in _unit_table.keys():
_addPrefixed(unit)
# Fundamental constants
_help.append('Fundamental constants:')
_unit_table['pi'] = N.pi
_addUnit('c', '299792458.*m/s', 'speed of light')
_addUnit('mu0', '4.e-7*pi*N/A**2', 'permeability of vacuum')
_addUnit('eps0', '1/mu0/c**2', 'permittivity of vacuum')
_addUnit('Grav', '6.67259e-11*m**3/kg/s**2', 'gravitational constant')
_addUnit('hplanck', '6.6260755e-34*J*s', 'Planck constant')
_addUnit('hbar', 'hplanck/(2*pi)', 'Planck constant / 2pi')
_addUnit('e', '1.60217733e-19*C', 'elementary charge')
_addUnit('me', '9.1093897e-31*kg', 'electron mass')
_addUnit('mp', '1.6726231e-27*kg', 'proton mass')
_addUnit('Nav', '6.0221367e23/mol', 'Avogadro number')
_addUnit('k', '1.380658e-23*J/K', 'Boltzmann constant')
# Time units
_help.append('Time units:')
_addUnit('min', '60*s', 'minute')
_addUnit('h', '60*min', 'hour')
_addUnit('d', '24*h', 'day')
_addUnit('wk', '7*d', 'week')
_addUnit('yr', '365.25*d', 'year')
# Length units
_help.append('Length units:')
_addUnit('inch', '2.54*cm', 'inch')
_addUnit('ft', '12*inch', 'foot')
_addUnit('yd', '3*ft', 'yard')
_addUnit('mi', '5280.*ft', '(British) mile')
_addUnit('nmi', '1852.*m', 'Nautical mile')
_addUnit('Ang', '1.e-10*m', 'Angstrom')
_addUnit('lyr', 'c*yr', 'light year')
_addUnit('Bohr', '4*pi*eps0*hbar**2/me/e**2', 'Bohr radius')
# Area units
_help.append('Area units:')
_addUnit('ha', '10000*m**2', 'hectare')
_addUnit('acres', 'mi**2/640', 'acre')
_addUnit('b', '1.e-28*m', 'barn')
# Volume units
_help.append('Volume units:')
_addUnit('l', 'dm**3', 'liter')
_addUnit('dl', '0.1*l', 'deci liter')
_addUnit('cl', '0.01*l', 'centi liter')
_addUnit('ml', '0.001*l', 'milli liter')
_addUnit('tsp', '4.92892159375*ml', 'teaspoon')
_addUnit('tbsp', '3*tsp', 'tablespoon')
_addUnit('floz', '2*tbsp', 'fluid ounce')
_addUnit('cup', '8*floz', 'cup')
_addUnit('pt', '16*floz', 'pint')
_addUnit('qt', '2*pt', 'quart')
_addUnit('galUS', '4*qt', 'US gallon')
_addUnit('galUK', '4.54609*l', 'British gallon')
# Mass units
_help.append('Mass units:')
_addUnit('amu', '1.6605402e-27*kg', 'atomic mass units')
_addUnit('oz', '28.349523125*g', 'ounce')
_addUnit('lb', '16*oz', 'pound')
_addUnit('ton', '2000*lb', 'ton')
# Force units
_help.append('Force units:')
_addUnit('dyn', '1.e-5*N', 'dyne (cgs unit)')
# Energy units
_help.append('Energy units:')
_addUnit('erg', '1.e-7*J', 'erg (cgs unit)')
_addUnit('eV', 'e*V', 'electron volt')
_addUnit('Hartree', 'me*e**4/16/pi**2/eps0**2/hbar**2', 'Wavenumbers/inverse cm')
_addUnit('Ken', 'k*K', 'Kelvin as energy unit')
_addUnit('cal', '4.184*J', 'thermochemical calorie')
_addUnit('kcal', '1000*cal', 'thermochemical kilocalorie')
_addUnit('cali', '4.1868*J', 'international calorie')
_addUnit('kcali', '1000*cali', 'international kilocalorie')
_addUnit('Btu', '1055.05585262*J', 'British thermal unit')
_addPrefixed('eV')
# Power units
_help.append('Power units:')
_addUnit('hp', '745.7*W', 'horsepower')
# Pressure units
_help.append('Pressure units:')
_addUnit('bar', '1.e5*Pa', 'bar (cgs unit)')
_addUnit('atm', '101325.*Pa', 'standard atmosphere')
_addUnit('torr', 'atm/760', 'torr = mm of mercury')
_addUnit('psi', '6894.75729317*Pa', 'pounds per square inch')
# Angle units
_help.append('Angle units:')
_addUnit('deg', 'pi*rad/180', 'degrees')
_help.append('Temperature units:')
# Temperature units -- can't use the 'eval' trick that _addUnit provides
# for degC and degF because you can't add units
kelvin = _findUnit ('K')
_addUnit ('degR', '(5./9.)*K', 'degrees Rankine')
_addUnit ('degC', PhysicalUnit (None, 1.0, kelvin.powers, 273.15),
'degrees Celcius')
_addUnit ('degF', PhysicalUnit (None, 5./9., kelvin.powers, 459.67),
'degree Fahrenheit')
del kelvin
def description():
"""Return a string describing all available units."""
s = '' # collector for description text
for entry in _help:
if isinstance(entry, basestring):
# headline for new section
s += '\n' + entry + '\n'
elif isinstance(entry, tuple):
name, comment, unit = entry
s += '%-8s %-26s %s\n' % (name, comment, unit)
else:
# impossible
raise TypeError, 'wrong construction of _help list'
return s
# add the description of the units to the module's doc string:
__doc__ += '\n' + description()
# Some demonstration code. Run with "python -i PhysicalQuantities.py"
# to have this available.
if __name__ == '__main__':
from Scientific.N import *
l = PhysicalQuantity(10., 'm')
big_l = PhysicalQuantity(10., 'km')
print big_l + l
t = PhysicalQuantity(314159., 's')
print t.inUnitsOf('d','h','min','s')
p = PhysicalQuantity # just a shorthand...
e = p('2.7 Hartree*Nav')
e.convertToUnit('kcal/mol')
print e
print e.inBaseUnits()
freeze = p('0 degC')
print freeze.inUnitsOf ('degF')
|