/usr/share/pyshared/Scientific/Functions/Derivatives.py is in python-scientific 2.8-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | # Automatic nth-order derivatives
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 2007-5-25
#
"""
Automatic differentiation for functions of
any number of variables up to any order
An instance of the class DerivVar represents the value of a function
and the values of its partial X{derivatives} with respect to a list of
variables. All common mathematical operations and functions are
available for these numbers. There is no restriction on the type of
the numbers fed into the code; it works for real and complex numbers
as well as for any Python type that implements the necessary
operations.
If only first-order derivatives are required, the module
FirstDerivatives should be used. It is compatible to this
one, but significantly faster.
Example::
print sin(DerivVar(2))
produces the output::
(0.909297426826, [-0.416146836547])
The first number is the value of sin(2); the number in the following
list is the value of the derivative of sin(x) at x=2, i.e. cos(2).
When there is more than one variable, DerivVar must be called with
an integer second argument that specifies the number of the variable.
Example::
>>>x = DerivVar(7., 0)
>>>y = DerivVar(42., 1)
>>>z = DerivVar(pi, 2)
>>>print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))
produces the output
>>>(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])
The numbers in the list are the partial derivatives with respect
to x, y, and z, respectively.
Higher-order derivatives are requested with an optional third
argument to DerivVar.
Example::
>>>x = DerivVar(3., 0, 3)
>>>y = DerivVar(5., 1, 3)
>>>print sqrt(x*y)
produces the output
>>>(3.87298334621,
>>> [0.645497224368, 0.387298334621],
>>> [[-0.107582870728, 0.0645497224368],
>>> [0.0645497224368, -0.0387298334621]],
>>> [[[0.053791435364, -0.0107582870728],
>>> [-0.0107582870728, -0.00645497224368]],
>>> [[-0.0107582870728, -0.00645497224368],
>>> [-0.00645497224368, 0.0116189500386]]])
The individual orders can be extracted by indexing::
>>>print sqrt(x*y)[0]
>>>3.87298334621
>>>print sqrt(x*y)[1]
>>>[0.645497224368, 0.387298334621]
An n-th order derivative is represented by a nested list of
depth n.
When variables with different differentiation orders are mixed,
the result has the lower one of the two orders. An exception are
zeroth-order variables, which are treated as constants.
Caution: Higher-order derivatives are implemented by recursively
using DerivVars to represent derivatives. This makes the code
very slow for high orders.
Note: It doesn't make sense to use multiple DerivVar objects with
different values for the same variable index in one calculation, but
there is no check for this. I.e.::
>>>print DerivVar(3, 0)+DerivVar(5, 0)
produces
>>>(8, [2])
but this result is meaningless.
"""
from Scientific import N; Numeric = N
# The following class represents variables with derivatives:
class DerivVar:
"""
Numerical variable with automatic derivatives of arbitrary order
"""
def __init__(self, value, index=0, order = 1, recursive = None):
"""
@param value: the numerical value of the variable
@type value: number
@param index: the variable index, which serves to
distinguish between variables and as an index for
the derivative lists. Each explicitly created
instance of DerivVar must have a unique index.
@type index: C{int}
@param order: the derivative order
@type order: C{int}
@raise ValueError: if order < 0
"""
if order < 0:
raise ValueError('Negative derivative order')
self.value = value
if recursive:
d = 0
else:
d = 1
if type(index) == type([]):
self.deriv = index
elif order == 0:
self.deriv = []
elif order == 1:
self.deriv = index*[0] + [d]
else:
self.deriv = []
for i in range(index):
self.deriv.append(DerivVar(0, index, order-1, 1))
self.deriv.append(DerivVar(d, index, order-1, 1))
self.order = order
def toOrder(self, order):
"""
@param order: the highest derivative order to be kept
@type order: C{int}
@return: a DerivVar object with a lower derivative order
@rtype: L{DerivVar}
"""
if self.order <= order:
return self
if order == 0:
return self.value
return DerivVar(self.value, map(lambda x, o=order-1: x.toOrder(o),
self.deriv), order)
def __getitem__(self, order):
"""
@param order: derivative order
@type order: C{int}
@return: a list of all derivatives of the given order
@rtype: C{list}
@raise ValueError: if order < 0 or order > self.order
"""
if order < 0 or order > self.order:
raise ValueError('Index out of range')
if order == 0:
return self.value
else:
return map(lambda d, i=order-1: _indexDeriv(d,i), self.deriv)
def __repr__(self):
return repr(tuple(map(lambda n, x=self: x[n], range(self.order+1))))
def __str__(self):
return str(tuple(map(lambda n, x=self: x[n], range(self.order+1))))
def __coerce__(self, other):
if isDerivVar(other):
if self.order==other.order or self.order==0 or other.order==0:
return self, other
order = min(self.order, other.order)
return self.toOrder(order), other.toOrder(order)
else:
return self, DerivVar(other, [], 0)
def __cmp__(self, other):
return cmp(self.value, other.value)
def __neg__(self):
return DerivVar(-self.value,map(lambda a: -a, self.deriv), self.order)
def __pos__(self):
return self
def __abs__(self):
absvalue = abs(self.value)
return DerivVar(absvalue, map(lambda a, d=self.value/absvalue:
d*a, self.deriv), self.order)
def __nonzero__(self):
return self.value != 0
def __add__(self, other):
return DerivVar(self.value + other.value,
_mapderiv(lambda a,b: a+b, self.deriv, other.deriv),
max(self.order, other.order))
__radd__ = __add__
def __sub__(self, other):
return DerivVar(self.value - other.value,
_mapderiv(lambda a,b: a-b, self.deriv, other.deriv),
max(self.order, other.order))
def __rsub__(self, other):
return DerivVar(other.value - self.value,
_mapderiv(lambda a,b: a-b, other.deriv, self.deriv),
max(self.order, other.order))
def __mul__(self, other):
if self.order < 2:
s1 = self.value
else:
s1 = self.toOrder(self.order-1)
if other.order < 2:
o1 = other.value
else:
o1 = other.toOrder(other.order-1)
return DerivVar(self.value*other.value,
_mapderiv(lambda a,b: a+b,
map(lambda x,f=o1: f*x, self.deriv),
map(lambda x,f=s1: f*x, other.deriv)),
max(self.order, other.order))
__rmul__ = __mul__
def __div__(self, other):
if not other.value:
raise ZeroDivisionError('DerivVar division')
if self.order < 2:
s1 = self.value
else:
s1 = self.toOrder(self.order-1)
if other.order < 2:
o1i = 1./other.value
else:
o1i = 1./other.toOrder(other.order-1)
return DerivVar(_toFloat(self.value)/other.value,
_mapderiv(lambda a,b: a-b,
map(lambda x,f=o1i: x*f, self.deriv),
map(lambda x,f=s1*pow(o1i, 2): f*x,
other.deriv)),
max(self.order, other.order))
def __rdiv__(self, other):
return other/self
def __pow__(self, other, z=None):
if z is not None:
raise TypeError('DerivVar does not support ternary pow()')
if len(other.deriv) > 0:
return Numeric.exp(Numeric.log(self)*other)
else:
if self.order < 2:
ps1 = other.value*pow(self.value, other.value-1)
else:
ps1 = other.value*pow(self.toOrder(self.order-1), other.value-1)
return DerivVar(pow(self.value, other.value),
map(lambda x,f=ps1: f*x, self.deriv),
max(self.order, other.order))
def __rpow__(self, other):
return pow(other, self)
def _mathfunc(self, f, d):
if self.order < 2:
fd = d(self.value)
else:
fd = d(self.toOrder(self.order-1))
return DerivVar(f(self.value), map(lambda x, f=fd: f*x, self.deriv),
self.order)
def exp(self):
return self._mathfunc(Numeric.exp, Numeric.exp)
def log(self):
return self._mathfunc(Numeric.log, lambda x: 1./x)
def log10(self):
return self._mathfunc(Numeric.log10, lambda x: 1./(x*Numeric.log(10)))
def sqrt(self):
return self._mathfunc(Numeric.sqrt, lambda x: 0.5/Numeric.sqrt(x))
def sign(self):
if self.value == 0:
raise ValueError("can't differentiate sign() at zero")
return self._mathfunc(Numeric.sign, lambda x: 0)
def sin(self):
return self._mathfunc(Numeric.sin, Numeric.cos)
def cos(self):
return self._mathfunc(Numeric.cos, lambda x: -Numeric.sin(x))
def tan(self):
return self._mathfunc(Numeric.tan, lambda x: 1.+pow(Numeric.tan(x),2))
def sinh(self):
return self._mathfunc(Numeric.sinh, Numeric.cosh)
def cosh(self):
return self._mathfunc(Numeric.cosh, Numeric.sinh)
def tanh(self):
return self._mathfunc(Numeric.tanh, lambda x:
1./pow(Numeric.cosh(x),2))
def arcsin(self):
return self._mathfunc(Numeric.arcsin, lambda x:
1./Numeric.sqrt(1.-pow(x,2)))
def arccos(self):
return self._mathfunc(Numeric.arccos, lambda x:
-1./Numeric.sqrt(1.-pow(x,2)))
def arctan(self):
return self._mathfunc(Numeric.arctan, lambda x:
1./(1+pow(x,2)))
def arctan2(self, other):
if self.order < 2:
s1 = self.value
else:
s1 = self.toOrder(self.order-1)
if other.order < 2:
o1 = other.value
else:
o1 = other.toOrder(other.order-1)
den = s1*s1+o1*o1
s1 = s1/den
o1 = o1/den
return DerivVar(Numeric.arctan2(self.value, other.value),
_mapderiv(lambda a,b: a-b,
map(lambda x,f=o1: x*f, self.deriv),
map(lambda x,f=s1: x*f, other.deriv)),
max(self.order, other.order))
# Type check
def isDerivVar(x):
"""
@param x: an arbitrary object
@return: True if x is a DerivVar object, False otherwise
@rtype: C{bool}
"""
return hasattr(x,'value') and hasattr(x,'deriv') and hasattr(x,'order')
# Map a binary function on two first derivative lists
def _mapderiv(func, a, b):
nvars = max(len(a), len(b))
a = a + (nvars-len(a))*[0]
b = b + (nvars-len(b))*[0]
return map(func, a, b)
# Convert argument to float if it is integer
def _toFloat(x):
if isinstance(x, int):
return float(x)
return x
# Subscript for DerivVar or ordinary number
def _indexDeriv(d, i):
if isDerivVar(d):
return d[i]
if i != 0:
raise ValueError('Internal error')
return d
# Define vector of DerivVars
def DerivVector(x, y, z, index=0, order = 1):
"""
@param x: x component of the vector
@type x: number
@param y: y component of the vector
@type y: number
@param z: z component of the vector
@type z: number
@param index: the DerivVar index for the x component. The y and z
components receive consecutive indices.
@type index: C{int}
@param order: the derivative order
@type order: C{int}
@return: a vector whose components are DerivVar objects
@rtype: L{Scientific.Geometry.Vector}
"""
from Scientific.Geometry.VectorModule import Vector
if isDerivVar(x) and isDerivVar(y) and isDerivVar(z):
return Vector(x, y, z)
else:
return Vector(DerivVar(x, index, order),
DerivVar(y, index+1, order),
DerivVar(z, index+2, order))
|