This file is indexed.

/usr/share/yacas/scripts/univar.rep/Cyclotomic.ys is in yacas 1.3.6-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
//  Cyclotomic(n,x):
//  Returns the cyclotomic polinomial in the variable x
//  (which is the minimal polynomial of the n-th primitive
//  roots of the unit). 
//  Autor: Pablo De Napoli

Use("univar.rep/code.ys");

// Auxiliar function for Cyclotomic: returns the internal representation of
// x^q+a as an univarate polinomial (like MakeUni(x^q+a) but more efficient)

Function ("UniVariateBinomial",{x,q,a}) 
[ 
Local(L,i);
L := {a};
For (i:=1,i<q,i++)
 DestructiveAppend(L,0);
DestructiveAppend(L,1);
UniVariate(x,0,L); 
];

// Auxiliar function for Cyclotomic: substitute in the univariate
// polinomial p the variable x by -x^k. The implementations assumes that 
// the polinomial p starts with x^0 

Function("SubstituteInUniVar",{p,k})
[
 Local(c,i,d,j,NL);
 L  := p[3];  // The coefficients list  
 NL := {};    // The new coefficients list
 d  := Degree(p);
 i  :=d;
 ForEach(c,L) [
  // c is the coefficient of x^i in p
  // We append k-1 zeros
  If (i<d, For (j:=1,j<k,j++) DestructiveAppend(NL,0));
  // We append (-1)^i*c as the coefficient of x^(k*i) 
  DestructiveAppend(NL,If(IsEven(i),c,-c));  
  i--; 
 ];
 UniVariate(Head(p),0,NL);
];


// Adapted from ExpandUniVariate
// Auxiliar function for Cyclotomic: substitute in the univariate
// polinomial p the variable x by -x^k, but returns the result in
// expanded form 

Function("SubstituteAndExpandInUniVar",{p,k})
[
  Local(result,i,var,first,coefs,c,nc,exponent);
  result:=0;
  var := p[1];
  first:= p[2];
  coefs:= p[3];
  For(i:=Length(coefs),i>0,i--)
  [
    Local(term);
    exponent := first+i-1;
    c:= coefs[i];
    nc := If(IsEven(exponent),c,-c);
    term:=NormalForm(nc*var^(exponent*k));
    result:=result+term;
  ];
  result;
];

// Returns a list of elements of the form {d1,d2,m}
// where 
// 1) d1,d2 runs through the square free divisors of n 
// 2) d1 divides d2 and d2/d1 is a prime factor of n
// 3) m=Moebius(d1) 
// Addapted form: MoebiusDivisorsList 

CyclotomicDivisorsList(n_IsPositiveInteger) <--
[
 Local(nFactors,f,result,oldresult,x);
 nFactors:= Factors(n);
 result := {{1,nFactors[1][1],1}};
 nFactors := Tail(nFactors);
 ForEach (f,nFactors)   
    [ 
      oldresult := result;
        ForEach (x,oldresult) 
	  result:=Append(result,{x[1]*f[1],x[2]*f[1],-x[3]});
    ]; 
  result;
];

// CyclotomicFactor(x,a,b): Auxiliary function that constructs the term list of 
// the polynomial
// Div(x^a-1,x^b-1) =
// x^(b*(p-1)) + x^(b^*(p-2)) + ... + x^(b) + 1 
// p= a/b, b should divide a 


CyclotomicFactor(_a,_b) <--
[
 Local(coef,p,i,j,result); p := a/b; result:= {{b*(p-1),1}}; For (i:=
 p-2,i>=0,i--)
   DestructiveAppend(result,{b*i,1});
 result; 	
];


// OldInternalCyclotomic(n,x,WantNormalForm) is the internal implementation
// WantNormalForm is a boolean parameter. If it is true, returns the normal
// form, if it is false returns the UniVariate representation.

// This (old) implementation makes use of the internal representations of univariate
// polynomials as UniVariate(var,begining,coefficients).
// There is also a version UniVariateCyclotomic(n,x) that returns the 
// cyclotomic polynomial in the UniVariate representation.


10 # OldInternalCyclotomic(n_IsEven,_x,WantNormalForm_IsBoolean) <--
     [
      Local(k,m,p); 
       k := 1;
       m := n;
	While(IsEven(m))
       [
	k := k*2;
        m := m/2;
       ];
       k := k/2 ;
       If(m>1, [
	         p := OldInternalCyclotomic(m,x,False);
                 If (WantNormalForm, SubstituteAndExpandInUniVar(p,k),SubstituteInUniVar(p,k)); 
               ],
	         If (WantNormalForm, x^k+1, UniVariateBinomial(x,k,1))
        );
     ]; 

20 # OldInternalCyclotomic(n_IsOdd,_x,WantNormalForm_IsBoolean)_(n>1) <--
[
 Local(divisors,poly1,poly2,q,d,f,result);
 divisors := MoebiusDivisorsList(n); 
 poly1 :=1 ;
 poly2 := 1;
 ForEach (d,divisors)
 [ 
   q:=n/d[1];
   f:=UniVariateBinomial(x,q,-1);
   If (d[2]=1,poly1:=poly1*f,poly2:=poly2*f);
 ];
 result := Div(poly1,poly2);
 If(WantNormalForm,NormalForm(result),result);
];

10  # OldCyclotomic(1,_x) <-- _x-1;
20  # OldCyclotomic(n_IsInteger,_x) <-- OldInternalCyclotomic(n,x,True);

// This new implementation makes use of the internal representations of univariate
// polynomials as SparseUniVar(var,termlist).


//  For n even, we write n= m*k, where k is a Power of 2 
//  and m is odd, and redce it to the case m even since:
//
//   Cyclotomic(n,x) = Cyclotomic(m,-x^{k/2}) 
//
// If m=1, n is a power of 2, and Cyclotomic(n,x)= x^k+1 */


10 # InternalCyclotomic(n_IsEven,_x) <--
     [
      Local(k,m,result,p,t); 
       k := 1;
       m := n;
	While(IsEven(m))
       [
	k := k*2;
        m := m/2;
       ];
       k := k/2 ;
       If(m>1, [
	         p:= InternalCyclotomic(m,x)[2];
                 // Substitute x by -x^k
                 result:={};
                 ForEach(t,p)
                    DestructiveAppend(result, {t[1]*k,If(IsEven(t[1]),t[2],-t[2])}); 
               ],
	         result := {{k,1},{0,1}} // x^k+1
        );
	SparseUniVar(x,result);
     ]; 


//  For n odd, the algoritm is based on the formula
//
//     Cyclotomic(n,x) := Prod (x^(n/d)-1)^Moebius(d) 
// 
// where d runs through the divisors of n.

// We compute in poly1 the product
// of (x^(n/d)-1) with Moebius(d)=1 , and in poly2 the product of these polynomials
// with  Moebius(d)=-1. Finally we compute the quotient poly1/poly2 

// In order to compute this in a efficient way, we use the functions
// CyclotomicDivisorsList and  CyclotomicFactors (in order to avoid
// unnecesary polynomial divisions) 


20 # InternalCyclotomic(n_IsOdd,_x)_(n>1) <--
[
 Local(divisors,poly1,poly2,q,d,f,coef,i,j,result);
 divisors := CyclotomicDivisorsList(n); 
 poly1 := {{0,1}};
 poly2 := {{0,1}};
 ForEach (d,divisors)
 [ 
   If(InVerboseMode(),Echo("d=",d));
   f:= CyclotomicFactor(n/d[1],n/d[2]);
   If (d[3]=1,poly1:=MultiplyTerms(poly1,f),poly2:=MultiplyTerms(poly2,f));
   If(InVerboseMode(), 
     [ 
       Echo("poly1=",poly1);
       Echo("poly2=",poly2);
     ]);
 ];
 If(InVerboseMode(),Echo("End ForEach"));
 result := If(poly2={{0,1}},poly1,DivTermList(poly1,poly2));
 SparseUniVar(x,result); 
];


10  # Cyclotomic(1,_x) <-- x-1;
20  # Cyclotomic(n_IsInteger,_x) <-- ExpandSparseUniVar(InternalCyclotomic(n,x));


// This function returns the Cyclotomic polynomial, but in the univariate
// representation

10  # UniVariateCyclotomic(1,_x) <-- UniVariate(x,0,{-1,1});
20  # UniVariateCyclotomic(n_IsInteger,_x) <-- OldInternalCyclotomic(n,x,False);