This file is indexed.

/usr/share/yacas/scripts/sums.rep/code.ys is in yacas 1.3.6-2+b1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
/*  this is disabled because some functions seem to implicitly define Min / Max with a different number of args, and then Yacas is confused if it hasn't loaded all the Function() declarations beforehand.
FIXME
/// Min, Max with many arguments
*/
Retract("Min", 1);
Retract("Min", 2);
Retract("Min", 3);
Retract("Max", 1);
Retract("Max", 2);
Retract("Max", 3);
//Function() Min(list);
//Function() Max(list);

//Function() Min(l1, l2);
//Function() Max(l1, l2);
Function() Min(l1, l2, l3, ...);
Function() Max(l1, l2, l3, ...);

10 # Min(_l1, _l2, l3_IsList) <-- Min(Concat({l1, l2}, l3));
20 # Min(_l1, _l2, _l3) <-- Min({l1, l2, l3});

10 # Max(_l1, _l2, l3_IsList) <-- Max(Concat({l1, l2}, l3));
20 # Max(_l1, _l2, _l3) <-- Max({l1, l2, l3});
/**/
10 # Min(l1_IsList,l2_IsList) <-- Map("Min",{l1,l2});
10 # Max(l1_IsList,l2_IsList) <-- Map("Max",{l1,l2});

20 # Min(l1_IsRationalOrNumber,l2_IsRationalOrNumber) <-- If(l1<l2,l1,l2);
20 # Max(l1_IsRationalOrNumber,l2_IsRationalOrNumber) <-- If(l1>l2,l1,l2);

30 # Min(l1_IsConstant,l2_IsConstant) <-- If(N(Eval(l1-l2))<0,l1,l2);
30 # Max(l1_IsConstant,l2_IsConstant) <-- If(N(Eval(l1-l2))>0,l1,l2);

// Min and Max on empty lists
10 # Min({}) <-- Undefined;
10 # Max({}) <-- Undefined;

20 # Min(list_IsList) <--
[
  Local(result);
  result:= list[1];
  ForEach(item,Tail(list)) result:=Min(result,item);
  result;
];
20 # Max(list_IsList) <--
[
  Local(result);
  result:= list[1];
  ForEach(item,Tail(list)) result:=Max(result,item);
  result;
];

30 # Min(_x) <-- x;
30 # Max(_x) <-- x;

/* Factorials */

10 # 0! <-- 1;
10 # (Infinity)! <-- Infinity;
20 # ((n_IsPositiveInteger)!) <-- [
	Check(n <= 65535, "Factorial: Error: the argument " : ( ToString() Write(n) ) : " is too large, you may want to avoid exact calculation");
	MathFac(n);
];

25 # ((x_IsConstant)!)_(FloatIsInt(x) And x>0) <-- (Round(x)!);

30 # ((x_IsNumber)!)_InNumericMode() <-- Internal'GammaNum(x+1);

40 # (n_IsList)! <-- MapSingle("!",n);

/* formulae for half-integer factorials:

(+(2*z+1)/2)! = Sqrt(Pi)*(2*z+1)! / (2^(2*z+1)*z!) for z >= 0
(-(2*z+1)/2)! = Sqrt(Pi)*(-1)^z*z!*2^(2*z) / (2*z)! for z >= 0

Double factorials are more efficient:
	(2*n-1)!! := 1*3*...*(2*n-1) = (2*n)! / (2^n*n!)
	(2*n)!! := 2*4*...*(2*n) = 2^n*n!

*/
/* // old version - not using double factorials
HalfIntegerFactorial(n_IsOdd) _ (n>0) <--
	Sqrt(Pi) * ( n! / ( 2^n*((n-1)/2)! ) );
HalfIntegerFactorial(n_IsOdd) _ (n<0)  <--
	Sqrt(Pi) * ( (-1)^((-n-1)/2)*2^(-n-1)*((-n-1)/2)! / (-n-1)! );
*/
// new version using double factorials
HalfIntegerFactorial(n_IsOdd) _ (n>0) <--
	Sqrt(Pi) * ( n!! / 2^((n+1)/2) );
HalfIntegerFactorial(n_IsOdd) _ (n<0)  <--
	Sqrt(Pi) * ( (-1)^((-n-1)/2)*2^((-n-1)/2) / (-n-2)!! );
//HalfIntegerFactorial(n_IsOdd) _ (n= -1)  <-- Sqrt(Pi);

/* Want to also compute (2.5)! */
40 # (n_IsRationalOrNumber)! _(Denom(Rationalize(n))=2) <-- HalfIntegerFactorial(Numer(Rationalize(n)));

/// partial factorial
n1_IsRationalOrNumber *** n2_IsRationalOrNumber <--
[
	Check(n2-n1 <= 65535, "Partial factorial: Error: the range " : ( ToString() Write(n2-n1) ) : " is too large, you may want to avoid exact calculation");
	If(n2-n1<0,
		1,
		Factorial'partial(n1, n2)
	);
];

/// recursive routine to evaluate "partial factorial" a*(a+1)*...*b
// TODO lets document why the >>1 as used here is allowed (rounding down? What is the idea behind this algorithm?)
2# Factorial'partial(_a, _b) _ (b-a>=4) <-- Factorial'partial(a, a+((b-a)>>1)) * Factorial'partial(a+((b-a)>>1)+1, b);
3# Factorial'partial(_a, _b) _ (b-a>=3) <-- a*(a+1)*(a+2)*(a+3);
4# Factorial'partial(_a, _b) _ (b-a>=2) <-- a*(a+1)*(a+2);
5# Factorial'partial(_a, _b) _ (b-a>=1) <-- a*(a+1);
6# Factorial'partial(_a, _b) _ (b-a>=0) <-- a;


/* Binomials -- now using partial factorial for speed */
// Bin(n,m) = Bin(n, n-m)
10 # Bin(0,0) 		<-- 1;
10 # Bin(n_IsPositiveInteger,m_IsNonNegativeInteger)_(2*m <= n) <-- ((n-m+1) *** n) / m!;
15 # Bin(n_IsPositiveInteger,m_IsNonNegativeInteger)_(2*m > n And m <= n) <-- Bin(n, n-m);
20 # Bin(n_IsInteger,m_IsInteger) <-- 0;

/// even/odd double factorial: product of even or odd integers up to n
1# (n_IsPositiveInteger)!! _ (n<=3) <-- n;
2# (n_IsPositiveInteger)!! <--
[
	Check(n<=65535, "Double factorial: Error: the argument " : ( ToString() Write(n) ) : " is too large, you may want to avoid exact calculation");
	Factorial'double(2+Mod(n, 2), n);
];
// special cases
3# (_n)!! _ (n= -1 Or n=0)<-- 1;

// the purpose of this mess "Div(a+b,2)+1+Mod(Div(a+b,2)+1-a, 2)" is to obtain the smallest integer which is >= Div(a+b,2)+1 and is also odd or even when a is odd or even; we need to add at most 1 to (Div(a+b,2)+1)
2# Factorial'double(_a, _b) _ (b-a>=6) <-- Factorial'double(a, Div(a+b,2)) * Factorial'double(Div(a+b,2)+1+Mod(Div(a+b,2)+1-a, 2), b);
3# Factorial'double(_a, _b) _ (b-a>=4) <-- a*(a+2)*(a+4);
4# Factorial'double(_a, _b) _ (b-a>=2) <-- a*(a+2);
5# Factorial'double(_a, _b) <-- a;

/// double factorial for lists is threaded
30 # (n_IsList)!! <-- MapSingle("!!",n);



/* Sums */

RuleBase("Sum",{sumvar'arg,sumfrom'arg,sumto'arg,sumbody'arg}); 

5  # Sum(_sumvar,sumfrom_IsNumber,sumto_IsNumber,_sumbody)_(sumfrom>sumto) <-- 0;

10 # Sum(_sumvar,sumfrom_IsNumber,sumto_IsNumber,_sumbody)_(sumto<sumfrom) <--
     ApplyPure("Sum",{sumvar,sumto,sumfrom,sumbody});
20 # Sum(_sumvar,sumfrom_IsNumber,sumto_IsNumber,_sumbody) <--
LocalSymbols(sumi,sumsum)[
   Local(sumi,sumsum);
   sumsum:=0;
   For(sumi:=sumfrom,sumi<=sumto,sumi++)
       [
        MacroLocal(sumvar);
        MacroSet(sumvar,sumi);
        sumsum:=sumsum+Eval(sumbody);
       ];
   sumsum;
];

UnFence("Sum",4);
HoldArg("Sum",sumvar'arg);
HoldArg("Sum",sumbody'arg);

Function() Add(val, ...);

10 # Add({}) <-- 0;
20 # Add(values_IsList) <--
[
   Local(i, sum);
   sum:=0;
   ForEach(i, values) [ sum := sum + i; ];
   sum;
];

// Add(1) should return 1
30 # Add(_value) <-- value;


Function("Factorize",{sumvar,sumfrom,sumto,sumbody})
[
   Local(sumi,sumsum);
   sumsum:=1;
   For(sumi:=sumfrom,sumi<=sumto And sumsum!=0,sumi++)
       [
        MacroLocal(sumvar);
        MacroSet(sumvar,sumi);
        sumsum:=sumsum*Eval(sumbody);
       ];
   sumsum;
];
UnFence("Factorize",4);
HoldArg("Factorize",sumvar);
HoldArg("Factorize",sumbody);

Factorize(sumlist_IsList) <--
[
   Local(sumi,sumsum);
   sumsum:=1;
   ForEach(sumi,sumlist)
   [
     sumsum:=sumsum*sumi;
   ];
   sumsum;
];


/*COMMENT FROM AYAL: Jitse, I added some code to make Taylor2 work in the most general case too I believe.
  Could you check to see if you agree with my changes? If that is correct, perhaps we can start calling Taylor2
  by default in stead of Taylor1.
 */
Function("Taylor",{taylorvariable,taylorat,taylororder,taylorfunction})
  Taylor1(taylorvariable,taylorat,taylororder)(taylorfunction);

/*COMMENT FROM AYAL: this is the old slow but working version of Taylor series expansion. Jitse wrote a
 * faster version which resides in taylor.ys, and uses lazy power series. This slow but correct version is still
 * useful for tests (the old and the new routine should yield identical results).
 */
Function("Taylor1",{taylorvariable,taylorat,taylororder,taylorfunction})
[
  Local(n,result,dif,polf);
  [
    MacroLocal(taylorvariable);
    [
      MacroLocal(taylorvariable);
      MacroSet(taylorvariable, taylorat);
      result:=Eval(taylorfunction);
    ];
    If(result=Undefined,
    [
      result:=Apply("Limit",{taylorvariable,taylorat,taylorfunction});
    ]);
/*
    MacroSet(taylorvariable,taylorat);
    result:=Eval(taylorfunction);
*/
  ];
  dif:=taylorfunction;
  polf:=(taylorvariable-taylorat);
  For(n:=1,result != Undefined And n<=taylororder,n++)
  [
    dif:= Deriv(taylorvariable) dif;
    Local(term);
    MacroLocal(taylorvariable);
    [
      MacroLocal(taylorvariable);
      MacroSet(taylorvariable, taylorat);
      term:=Eval(dif);
    ];
    If(term=Undefined,
    [
      term:=Apply("Limit",{taylorvariable,taylorat,dif});
    ]);
      
    result:=result+(term/(n!))*(polf^n);
/*    result:=result+Apply("Limit",{taylorvariable,taylorat,(dif/(n!))})*(polf^n); */
/*
    MacroSet(taylorvariable,taylorat);
    result:=result+(Eval(dif)/(n!))*(polf^n);
*/    
  ];
  result;
];


Function("Subfactorial",{n}) 
[
	n! * Sum(k,0,n,(-1)^(k)/k!);
];

30 # Subfactorial(n_IsList) <-- MapSingle("Subfactorial",n);

// Attempt to Sum series 

LocalSymbols(c,d,expr,from,to,summand,sum,predicate,k,n,r,var,x) [

Function() SumFunc(k,from,to,summand, sum, predicate );
Function() SumFunc(k,from,to,summand, sum);
HoldArg(SumFunc,predicate);
HoldArg(SumFunc,sum);
HoldArg(SumFunc,summand);

// Difference code does not work
SumFunc(_sumvar,sumfrom_IsInteger,_sumto,_sumbody,_sum) <--
[
	// Take the given answer and create 2 rules, one for an exact match
	// for sumfrom, and one which will catch sums starting at a different
	// index and subtract off the difference

	`(40 # Sum(@sumvar,@sumfrom,@sumto,@sumbody )	<-- Eval(@sum) );
	`(41 # Sum(@sumvar,p_IsInteger,@sumto,@sumbody)_(p > @sumfrom) 
	     <-- 
	     [
	          Local(sub);
		  (sub := Eval(UnList({Sum,sumvar'arg,@sumfrom,p-1,sumbody'arg})));
		  Simplify(Eval(@sum) - sub );
             ]);
];

SumFunc(_sumvar,sumfrom_IsInteger,_sumto,_sumbody,_sum,_condition) <--
[

	`(40 # Sum(@sumvar,@sumfrom,@sumto,@sumbody)_(@condition)    <-- Eval(@sum) );
	`(41 # Sum(@sumvar,p_IsInteger,@sumto,@sumbody )_(@condition And p > @sumfrom) 
	     <-- 
	     [
	          Local(sub);
		  `(sub := Eval(UnList({Sum,sumvar'arg,@sumfrom,p-1,sumbody'arg})));
		  Simplify(Eval(@sum) - sub );
             ]);
];

// Some type of canonical form is needed so that these match when
// given in a different order, like x^k/k! vs. (1/k!)*x^k 
// works !
SumFunc(_k,1,_n,_c + _d,
  Eval(UnList({Sum,sumvar'arg,1,n,c})) + 
  Eval(UnList({Sum,sumvar'arg,1,n,d})) 
);
SumFunc(_k,1,_n,_c*_expr,Eval(c*UnList({Sum,sumvar'arg,1,n,expr})), IsFreeOf(k,c) );
SumFunc(_k,1,_n,_expr/_c,Eval(UnList({Sum,sumvar'arg,1,n,expr})/c), IsFreeOf(k,c) );

// this only works when the index=1
// If the limit of the general term is not zero, then the series diverges
// We need something like IsUndefined(term), because this croaks when limit return Undefined
//SumFunc(_k,1,Infinity,_expr,Infinity,Eval(Abs(UnList({Limit,sumvar'arg,Infinity,expr})) > 0));
SumFunc(_k,1,Infinity,1/_k,Infinity);

SumFunc(_k,1,_n,_c,c*n,IsFreeOf(k,c) );
SumFunc(_k,1,_n,_k, n*(n+1)/2 );
//SumFunc(_k,1,_n,_k^2, n*(n+1)*(2*n+1)/6 );
//SumFunc(_k,1,_n,_k^3, (n*(n+1))^2 / 4 );
SumFunc(_k,1,_n,_k^_p,(Bernoulli(p+1,n+1) - Bernoulli(p+1))/(p+1), IsInteger(p) );
SumFunc(_k,1,_n,2*_k-1, n^2 );
SumFunc(_k,1,_n,HarmonicNumber(_k),(n+1)*HarmonicNumber(n) - n );

// Geometric series! The simplest of them all ;-)
SumFunc(_k,0,_n,(r_IsFreeOf(k))^(_k), (1-r^(n+1))/(1-r) );

// Infinite Series
// this allows Zeta a complex argument, which is not supported yet
SumFunc(_k,1,Infinity,1/(_k^_d), Zeta(d), IsFreeOf(k,d) );
SumFunc(_k,1,Infinity,_k^(-_d), Zeta(d), IsFreeOf(k,d) );

SumFunc(_k,0,Infinity,_x^(2*_k+1)/(2*_k+1)!,Sinh(x) );
SumFunc(_k,0,Infinity,(-1)^k*_x^(2*_k+1)/(2*_k+1)!,Sin(x) );
SumFunc(_k,0,Infinity,_x^(2*_k)/(2*_k)!,Cosh(x) );
SumFunc(_k,0,Infinity,(-1)^k*_x^(2*_k)/(2*_k)!,Cos(x) );
SumFunc(_k,0,Infinity,_x^(2*_k+1)/(2*_k+1),ArcTanh(x) );
SumFunc(_k,0,Infinity,1/(_k)!,Exp(1) );
SumFunc(_k,0,Infinity,_x^_k/(_k)!,Exp(x) );
40 # Sum(_var,_from,Infinity,_expr)_( `(Limit(@var,Infinity)(@expr)) = Infinity) <-- Infinity;

SumFunc(_k,1,Infinity,1/Bin(2*_k,_k), (2*Pi*Sqrt(3)+9)/27 );
SumFunc(_k,1,Infinity,1/(_k*Bin(2*_k,_k)), (Pi*Sqrt(3))/9 );
SumFunc(_k,1,Infinity,1/(_k^2*Bin(2*_k,_k)), Zeta(2)/3 );
SumFunc(_k,1,Infinity,1/(_k^3*Bin(2*_k,_k)), 17*Zeta(4)/36 );
SumFunc(_k,1,Infinity,(-1)^(_k-1)/_k, Ln(2) );

];