This file is indexed.

/usr/lib/python2.7/dist-packages/theano/ifelse.py is in python-theano 0.8.2-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
"""
IfElse introduces lazy evaluation in Theano (coupled with the CVM/VM
linkers). It resembles the if clause of any programming language, that
has a `then` and `else` branch, and executes either one or the other
according to the condition provided.

This op differs from the already existent `switch` op, that evaluates both
branches of the clause and afterwards picks (according to the condition)
which value to report. Note also that `switch` is an elemwise operation (so
it picks each entry of a matrix according to the condition) while `ifelse`
is a global operation with a scalar condition.
"""
from __future__ import print_function
from copy import deepcopy
from theano.compat import izip
import logging

import numpy

import theano.tensor
from theano.tensor import TensorType
from theano import gof
from theano.gof import PureOp, Apply

from six import iteritems
from six.moves import xrange
from theano.compile import optdb
from theano.tensor import opt
from theano.scan_module.scan_utils import find_up
from theano.scan_module.scan_utils import clone


__docformat__ = 'restructedtext en'
__authors__ = ("Razvan Pascanu "
               "James Bergstra "
               "Dumitru Erhan "
               "David Warde-Farley")
__copyright__ = "(c) 2010, Universite de Montreal"
__contact__ = "Razvan Pascanu <r.pascanu@gmail>"

_logger = logging.getLogger('theano.ifelse')


class IfElse(PureOp):
    """
    Op that provides conditional graph evaluation if used with the CVM/VM
    linkers. Note that there exist a helpful function `ifelse` that should
    be used to instantiate the op!

    According to a scalar condition `condition` the op evaluates and then
    returns all the tensors provided on the `then` branch, otherwise it
    evaluates and returns the tensors provided on the `else` branch. The op
    supports multiple tensors on each branch, with the condition that the same
    number of tensors are on the `then` as on the `else` and there is a one
    to one correspondence between them (shape and dtype wise).

    The `then` branch is defined as the first N tensors (after the
    condition), while the `else` branch is defined as the last N tensors.

    Example usage:

        ``rval = ifelse(condition, rval_if_true1, .., rval_if_trueN,
                        rval_if_false1, rval_if_false2, .., rval_if_falseN)``

    :note:
        Other Linkers then CVM and VM are INCOMPATIBLE with this Op, and
        will ignore its lazy characteristic, computing both the True and
        False branch before picking one.

    """
    def __init__(self, n_outs, as_view=False, gpu=False, name=None):
        if as_view:
            # check destroyhandler and others to ensure that a view_map with
            # multiple inputs can work
            view_map = {}
            for idx in xrange(n_outs):
                view_map[idx] = [idx + 1]
            self.view_map = view_map
        self.as_view = as_view
        self.gpu = gpu
        self.n_outs = n_outs
        self.name = name

    def __eq__(self, other):
        if not type(self) == type(other):
            return False
        if not self.as_view == other.as_view:
            return False
        if not self.gpu == other.gpu:
            return False
        if not self.n_outs == other.n_outs:
            return False
        return True

    def __hash__(self):
        rval = (hash(type(self)) ^
                hash(self.as_view) ^
                hash(self.gpu) ^
                hash(self.n_outs))
        return rval

    def __str__(self):
        args = []
        if self.name is not None:
            args.append(self.name)
        if self.as_view:
            args.append('inplace')
        if self.gpu:
            args.append('gpu')
        return 'if{%s}' % ','.join(args)

    def infer_shape(self, node, inputs_shapes):
        # By construction, corresponding then/else pairs have the same number
        # of dimensions

        ts_shapes = inputs_shapes[1:][:self.n_outs]
        fs_shapes = inputs_shapes[1:][self.n_outs:]
        # All elements of all shape tuples for the true and false outputs are
        # unpacked into the inputs of a separate ifelse, and then the outputs
        # of that ifelse are packed back into shape tuples.
        new_ts_inputs = []
        for ts_shape in ts_shapes:
            if isinstance(ts_shape, (list, tuple)):
                new_ts_inputs += list(ts_shape)
            else:
                # It can be None for generic objects
                return [None] * self.n_outs

        new_fs_inputs = []
        for fs_shape in fs_shapes:
            if isinstance(fs_shape, (list, tuple)):
                new_fs_inputs += list(fs_shape)
            else:
                # It can be None for generic objects
                return [None] * self.n_outs

        assert len(new_ts_inputs) == len(new_fs_inputs)
        if len(new_ts_inputs + new_fs_inputs) > 0:
            name_tokens = ['shape']
            if self.name is not None:
                name_tokens.append(self.name)

            new_ifelse = IfElse(
                n_outs=len(new_ts_inputs),
                as_view=False,
                gpu=False,
                name='_'.join(name_tokens))
            new_outs = new_ifelse(node.inputs[0],
                                  *(new_ts_inputs + new_fs_inputs),
                                  **dict(return_list=True))
        else:
            new_outs = []

        # generate pairs of shapes
        out_shapes = []
        for out in node.outputs:
            out_shapes.append(tuple(new_outs[:out.ndim]))
            new_outs = new_outs[out.ndim:]

        # new_outs should be an empty list after last iteration
        assert len(new_outs) == 0

        return out_shapes

    def make_node(self, c, *args):
        assert len(args) == 2 * self.n_outs, (
            "Wrong number of arguments to make_node: "
            "expected %d, got %d" % (2 * self.n_outs, len(args))
        )
        if not self.gpu:
            # When gpu is true, we are given only cuda ndarrays, and we want
            # to keep them be cuda ndarrays
            c = theano.tensor.as_tensor_variable(c)
            nw_args = []
            for x in args:
                if isinstance(x, theano.Variable):
                    nw_args.append(x)
                else:
                    nw_args.append(theano.tensor.as_tensor_variable(x))
            args = nw_args
        ts = args[:self.n_outs]
        fs = args[self.n_outs:]

        for t, f in izip(ts, fs):
            if t.type != f.type:
                raise TypeError(('IfElse requires same types for true and '
                                'false return values'), t, f, t.type, f.type)
        if c.ndim > 0:
            raise TypeError(('Condition given to the op has to be a scalar '
                             'with 0 standing for False, anything else '
                             'for True'))
        return Apply(self, [c] + list(args), [t.type() for t in ts])

    def R_op(self, inputs, eval_points):
        return self(inputs[0], *eval_points[1:], **dict(return_list=True))

    def grad(self, ins, grads):
        ts = ins[1:][:self.n_outs]
        fs = ins[1:][self.n_outs:]
        if self.name is not None:
            nw_name_t = self.name + '_grad_t'
            nw_name_f = self.name + '_grad_f'
        else:
            nw_name_t = None
            nw_name_f = None
        if_true_op = IfElse(n_outs=self.n_outs,
                            as_view=self.as_view,
                            gpu=self.gpu,
                            name=nw_name_t)

        if_false_op = IfElse(n_outs=self.n_outs,
                             as_view=self.as_view,
                             gpu=self.gpu,
                             name=nw_name_f)

        if_true = ([ins[0]] + grads + [theano.tensor.zeros_like(t)
                                       for t in ts])
        if_false = ([ins[0]] + [theano.tensor.zeros_like(f)
                                for f in fs] + grads)

        condition = ins[0]
        # condition does affect the elements of the output so it is connected.
        # For the sake of making the gradient convenient we assume that
        # condition + epsilon always triggers the same branch as condition
        condition_grad = condition.zeros_like().astype(theano.config.floatX)

        return ([condition_grad] +
                if_true_op(*if_true, **dict(return_list=True)) +
                if_false_op(*if_false, **dict(return_list=True)))

    def make_thunk(self, node, storage_map, compute_map, no_recycling):
        cond = node.inputs[0]
        ts = node.inputs[1:][:self.n_outs]
        fs = node.inputs[1:][self.n_outs:]
        outputs = node.outputs

        def thunk():
            if not compute_map[cond][0]:
                return [0]
            else:
                truthval = storage_map[cond][0]
                if truthval != 0:
                    ls = [idx + 1 for idx in xrange(self.n_outs)
                          if not compute_map[ts[idx]][0]]
                    if len(ls) > 0:
                        return ls
                    else:
                        for out, t in izip(outputs, ts):
                            compute_map[out][0] = 1
                            val = storage_map[t][0]
                            if self.as_view:
                                storage_map[out][0] = val
                            # Work around broken numpy deepcopy
                            elif type(val) in (numpy.ndarray, numpy.memmap):
                                storage_map[out][0] = val.copy()
                            else:
                                storage_map[out][0] = deepcopy(val)
                        return []
                else:
                    ls = [1 + idx + self.n_outs for idx in xrange(self.n_outs)
                          if not compute_map[fs[idx]][0]]
                    if len(ls) > 0:
                        return ls
                    else:
                        for out, f in izip(outputs, fs):
                            compute_map[out][0] = 1
                            # can't view both outputs unless destroyhandler
                            # improves
                            # Work around broken numpy deepcopy
                            val = storage_map[f][0]
                            if type(val) in (numpy.ndarray, numpy.memmap):
                                storage_map[out][0] = val.copy()
                            else:
                                storage_map[out][0] = deepcopy(val)
                        return []

        thunk.lazy = True
        thunk.inputs = [storage_map[v] for v in node.inputs]
        thunk.outputs = [storage_map[v] for v in node.outputs]
        return thunk


def ifelse(condition, then_branch, else_branch, name=None):
    """
    This function corresponds to an if statement, returning (and evaluating)
    inputs in the ``then_branch`` if ``condition`` evaluates to True or
    inputs in the ``else_branch`` if ``condition`` evalutates to False.

    :type condition: scalar like
    :param condition:
        ``condition`` should be a tensor scalar representing the condition.
        If it evaluates to 0 it corresponds to False, anything else stands
        for True.

    :type then_branch: list of theano expressions/ theano expression
    :param then_branch:
        A single theano variable or a list of theano variables that the
        function should return as the output if ``condition`` evaluates to
        true. The number of variables should match those in the
        ``else_branch``, and there should be a one to one correspondance
        (type wise) with the tensors provided in the else branch

    :type else_branch: list of theano expressions/ theano expressions
    :param else_branch:
        A single theano variable or a list of theano variables that the
        function should return as the output if ``condition`` evaluates to
        false. The number of variables should match those in the then branch,
        and there should be a one to one correspondace (type wise) with the
        tensors provided in the then branch.

    :return:
        A list of theano variables or a single variable (depending on the
        nature of the ``then_branch`` and ``else_branch``). More exactly if
        ``then_branch`` and ``else_branch`` is a tensor, then
        the return variable will be just a single variable, otherwise a
        list. The value returns correspond either to the values in the
        ``then_branch`` or in the ``else_branch`` depending on the value of
        ``cond``.
    """

    rval_type = None
    if type(then_branch) is list:
        rval_type = list
    elif type(then_branch) is tuple:
        rval_type = tuple

    if type(then_branch) not in (list, tuple):
        then_branch = [then_branch]
    if type(else_branch) not in (list, tuple):
        else_branch = [else_branch]

    # Some of the elements might be converted into another type,
    # we will store them in these new_... lists.
    new_then_branch = []
    new_else_branch = []
    for then_branch_elem, else_branch_elem in izip(then_branch, else_branch):
        if not isinstance(then_branch_elem, theano.Variable):
            then_branch_elem = theano.tensor.as_tensor_variable(
                then_branch_elem)
        if not isinstance(else_branch_elem, theano.Variable):
            else_branch_elem = theano.tensor.as_tensor_variable(
                else_branch_elem)

        if then_branch_elem.type != else_branch_elem.type:
            # If one of them is a TensorType, and the other one can be
            # converted into one, then we try to do that.
            # This case happens when one of the elements has a GPU type,
            # for instance a shared variable that was silently moved to GPU.
            if (isinstance(then_branch_elem.type, TensorType) and not
                    isinstance(else_branch_elem.type, TensorType)):
                else_branch_elem = then_branch_elem.type.filter_variable(
                    else_branch_elem)

            elif (isinstance(else_branch_elem.type, TensorType) and not
                    isinstance(then_branch_elem.type, TensorType)):
                then_branch_elem = else_branch_elem.type.filter_variable(
                    then_branch_elem)

            if then_branch_elem.type != else_branch_elem.type:
                # If the types still don't match, there is a problem.
                raise TypeError(
                    'The two branches should have identical types, but '
                    'they are %s and %s respectively. This error could be '
                    'raised if for example you provided a one element '
                    'list on the `then` branch but a tensor on the `else` '
                    'branch.' %
                    (then_branch_elem.type, else_branch_elem.type))

        new_then_branch.append(then_branch_elem)
        new_else_branch.append(else_branch_elem)

    if len(then_branch) != len(else_branch):
        raise ValueError(('The number of values on the `then` branch'
                          ' should have the same number of variables as '
                          'the `else` branch : (variables on `then` '
                          '%d' % len(then_branch) + ', variables on `else` '
                          '%d' % len(else_branch) + ')'))

    new_ifelse = IfElse(n_outs=len(then_branch),
                        as_view=False,
                        gpu=False,
                        name=name)

    ins = [condition] + list(new_then_branch) + list(new_else_branch)
    rval = new_ifelse(*ins, **dict(return_list=True))

    if rval_type is None:
        return rval[0]
    elif rval_type is list:
        return list(rval)
    else:
        return tuple(rval)


@gof.local_optimizer([IfElse])
def cond_make_inplace(node):
    op = node.op
    if (isinstance(op, IfElse) and
        not op.as_view and
        # For big graph, do not make inplace scalar to speed up
        # optimization.
        (len(node.fgraph.apply_nodes) < 500 or
         not all([getattr(o.type, 'ndim', -1) == 0
                  for o in node.outputs]))):
        return IfElse(n_outs=op.n_outs,
                      as_view=True,
                      gpu=op.gpu,
                      name=op.name)(*node.inputs, **dict(return_list=True))
    return False


optdb.register('cond_make_inplace', opt.in2out(cond_make_inplace,
               ignore_newtrees=True), 95, 'fast_run', 'inplace')

# XXX: Optimizations commented pending further debugging (certain optimizations
# make computation less lazy than it should be currently).
#
# ifelse_equilibrium = gof.EquilibriumDB()
# ifelse_seqopt = gof.SequenceDB()
# ifelse_equilibrium.register('seq_ifelse', ifelse_seqopt, 'fast_run',
#                             'ifelse')
''' Comments:
I've wrote this comments to explain how the optimization of ifelse function
(for future developers that need to parse this part of code. Please try to
keep this comments in sync with whatever changes you add to the code.

ifelse optimization are registered before canonicalize !

The optimizations are called in sequence as follows:
    * equilibrium shell (runs until no change):
        * ifelse_lift
        * ifelse_merge_ifs
        * ifelse_merge_nodes
        * ifelse_remove_identical_inside
        * ifelse_sameCondTrue_inside
        * ifelse_sameCondFalse_inside
    * merge_nodes_1
    * ifelse_sameCondTrue
    * ifelse_sameCondFalse
    * ifelse_removeIdentical

where, each of the optimization do the following things:
    `ifelse_lift` (def cond_lift_single_if):

'''
# optdb.register('ifelse_equilibriumOpt', ifelse_equilibrium, .5, 'fast_run',
#                'ifelse')

acceptable_ops = (theano.tensor.basic.Dot,
                  theano.tensor.basic.Reshape,
                  theano.tensor.basic.Shape,
                  theano.tensor.SpecifyShape,
                  theano.tensor.basic.MaxAndArgmax,
                  theano.tensor.Subtensor,
                  theano.tensor.IncSubtensor,
                  theano.tensor.basic.Rebroadcast,
                  theano.tensor.basic.Alloc,
                  theano.tensor.elemwise.Elemwise,
                  theano.tensor.elemwise.DimShuffle)


@gof.local_optimizer(acceptable_ops)
def ifelse_lift_single_if_through_acceptable_ops(main_node):
    """This optimization lifts up certain ifelse instances.

        op(ifelse(c, x, y)) -> ifelse(c, op(x), op(y))

    if `op` is in the `acceptable_ops` list, and there is no other if as
    input to that specific `op`, and the if has no other clients !?
    """
    if not (isinstance(main_node.op, acceptable_ops)):
        return False
    all_inp_nodes = set()
    for inp in main_node.inputs:
        all_inp_nodes.add(inp.owner)
    ifnodes = [x for x in list(all_inp_nodes)
               if x and isinstance(x.op, IfElse)]
    # if we have multiple ifs as inputs .. it all becomes quite complicated
    # :)
    if len(ifnodes) != 1:
        return False
    node = ifnodes[0]
    op = node.op

    ts = node.inputs[1:][:op.n_outs]
    fs = node.inputs[1:][op.n_outs:]

    # outs = main_node.outputs
    mop = main_node.op
    true_ins = []
    false_ins = []

    for x in main_node.inputs:
        if x in node.outputs:
            idx = node.outputs.index(x)
            true_ins.append(ts[idx])
            false_ins.append(fs[idx])
        else:
            true_ins.append(x)
            false_ins.append(x)
    true_eval = mop(*true_ins, **dict(return_list=True))
    false_eval = mop(*false_ins, **dict(return_list=True))
    # true_eval  = clone(outs, replace = dict(zip(node.outputs, ts)))
    # false_eval = clone(outs, replace = dict(zip(node.outputs, fs)))

    nw_outs = ifelse(node.inputs[0], true_eval, false_eval, return_list=True)
    return nw_outs


@gof.local_optimizer([IfElse])
def cond_merge_ifs_true(node):
    op = node.op
    if not isinstance(op, IfElse):
        return False
    t_ins = node.inputs[1:][:op.n_outs]

    replace = {}
    for idx, tval in enumerate(t_ins):
        if (tval.owner and isinstance(tval.owner.op, IfElse) and
                tval.owner.inputs[0] == node.inputs[0]):
                ins_op = tval.owner.op
                ins_t = tval.owner.inputs[1:][:ins_op.n_outs]
                replace[idx + 1] = ins_t[tval.owner.outputs.index(tval)]

    if len(replace) == 0:
        return False

    old_ins = list(node.inputs)
    for pos, var in iteritems(replace):
        old_ins[pos] = var
    return op(*old_ins, **dict(return_list=True))


@gof.local_optimizer([IfElse])
def cond_merge_ifs_false(node):
    op = node.op
    if not isinstance(op, IfElse):
        return False
    f_ins = node.inputs[1:][op.n_outs:]

    replace = {}
    for idx, fval in enumerate(f_ins):
        if (fval.owner and isinstance(fval.owner.op, IfElse) and
                fval.owner.inputs[0] == node.inputs[0]):
                ins_op = fval.owner.op
                ins_t = fval.owner.inputs[1:][ins_op.n_outs:]
                replace[idx + 1 + op.n_outs] = \
                    ins_t[fval.owner.outputs.index(fval)]

    if len(replace) == 0:
        return False

    old_ins = list(node.inputs)
    for pos, var in iteritems(replace):
        old_ins[pos] = var
    return op(*old_ins, **dict(return_list=True))


class CondMerge(gof.Optimizer):
    """ Graph Optimizer that merges different cond ops """
    def add_requirements(self, fgraph):
        fgraph.add_feature(gof.toolbox.ReplaceValidate())

    def apply(self, fgraph):
        nodelist = list(fgraph.toposort())
        cond_nodes = [s for s in nodelist if isinstance(s.op, IfElse)]
        if len(cond_nodes) < 2:
            return False
        merging_node = cond_nodes[0]
        for proposal in cond_nodes[1:]:
            if (proposal.inputs[0] == merging_node.inputs[0] and
                    not find_up(proposal, merging_node)):
                # Create a list of replacements for proposal
                mn_ts = merging_node.inputs[1:][:merging_node.op.n_outs]
                mn_fs = merging_node.inputs[1:][merging_node.op.n_outs:]
                pl_ts = proposal.inputs[1:][:proposal.op.n_outs]
                pl_fs = proposal.inputs[1:][proposal.op.n_outs:]
                new_ins = ([merging_node.inputs[0]] +
                           mn_ts + pl_ts + mn_fs + pl_fs)
                mn_name = '?'
                if merging_node.op.name:
                    mn_name = merging_node.op.name
                pl_name = '?'
                # mn_n_ts = len(mn_ts)
                # mn_n_fs = len(mn_fs)
                if proposal.op.name:
                    pl_name = proposal.op.name
                new_ifelse = IfElse(
                    n_outs=len(mn_ts + pl_ts),
                    as_view=False,
                    gpu=False,
                    name=mn_name + '&' + pl_name)
                print('here')
                new_outs = new_ifelse(*new_ins, **dict(return_list=True))
                new_outs = [clone(x) for x in new_outs]
                old_outs = []
                if type(merging_node.outputs) not in (list, tuple):
                    old_outs += [merging_node.outputs]
                else:
                    old_outs += merging_node.outputs
                if type(proposal.outputs) not in (list, tuple):
                    old_outs += [proposal.outputs]
                else:
                    old_outs += proposal.outputs
                pairs = list(zip(old_outs, new_outs))
                fgraph.replace_all_validate(pairs, reason='cond_merge')


@gof.local_optimizer([IfElse])
def cond_remove_identical(node):
    op = node.op

    if not isinstance(op, IfElse):
        return False
    ts = node.inputs[1:][:op.n_outs]
    fs = node.inputs[1:][op.n_outs:]

    # sync outs
    out_map = {}
    for idx in xrange(len(node.outputs)):
        if idx not in out_map:
            for jdx in xrange(idx + 1, len(node.outputs)):
                if (ts[idx] == ts[jdx] and
                        fs[idx] == fs[jdx] and
                        jdx not in out_map):
                    out_map[jdx] = idx

    if len(out_map) == 0:
        return False

    nw_ts = []
    nw_fs = []
    inv_map = {}
    pos = 0
    for idx in xrange(len(node.outputs)):
        if idx not in out_map:
            inv_map[idx] = pos
            pos = pos + 1
            nw_ts.append(ts[idx])
            nw_fs.append(fs[idx])

    new_ifelse = IfElse(n_outs=len(nw_ts),
                        as_view=op.as_view,
                        gpu=op.gpu,
                        name=op.name)

    new_ins = [node.inputs[0]] + nw_ts + nw_fs
    new_outs = new_ifelse(*new_ins, **dict(return_list=True))

    rval = []
    for idx in xrange(len(node.outputs)):
        if idx in out_map:
            rval += [new_outs[inv_map[out_map[idx]]]]
        else:
            rval += [new_outs[inv_map[idx]]]

    return rval


@gof.local_optimizer([IfElse])
def cond_merge_random_op(main_node):
    if isinstance(main_node.op, IfElse):
        return False

    all_inp_nodes = set()
    for inp in main_node.inputs:
        all_inp_nodes.add(inp.owner)
    cond_nodes = [x for x in list(all_inp_nodes)
                  if x and isinstance(x.op, IfElse)]

    if len(cond_nodes) < 2:
        return False

    merging_node = cond_nodes[0]
    for proposal in cond_nodes[1:]:
        if (proposal.inputs[0] == merging_node.inputs[0] and
                not find_up(proposal, merging_node) and
                not find_up(merging_node, proposal)):
            # Create a list of replacements for proposal
            mn_ts = merging_node.inputs[1:][:merging_node.op.n_outs]
            mn_fs = merging_node.inputs[1:][merging_node.op.n_outs:]
            pl_ts = proposal.inputs[1:][:proposal.op.n_outs]
            pl_fs = proposal.inputs[1:][proposal.op.n_outs:]
            new_ins = ([merging_node.inputs[0]] +
                       mn_ts + pl_ts + mn_fs + pl_fs)
            mn_name = '?'
            if merging_node.op.name:
                mn_name = merging_node.op.name
            pl_name = '?'
            # mn_n_ts = len(mn_ts)
            # mn_n_fs = len(mn_fs)
            if proposal.op.name:
                pl_name = proposal.op.name
            new_ifelse = IfElse(
                n_outs=len(mn_ts + pl_ts),
                as_view=False,
                gpu=False,
                name=mn_name + '&' + pl_name)
            new_outs = new_ifelse(*new_ins, **dict(return_list=True))
            old_outs = []
            if type(merging_node.outputs) not in (list, tuple):
                old_outs += [merging_node.outputs]
            else:
                old_outs += merging_node.outputs
            if type(proposal.outputs) not in (list, tuple):
                old_outs += [proposal.outputs]
            else:
                old_outs += proposal.outputs
            pairs = list(zip(old_outs, new_outs))
            main_outs = clone(main_node.outputs, replace=pairs)
            return main_outs


# XXX: Optimizations commented pending further debugging (certain optimizations
# make computation less lazy than it should be currently).
#
# pushout_equilibrium = gof.EquilibriumDB()
#
# XXX: This optimization doesn't seem to exist anymore?
# pushout_equilibrium.register("cond_lift_single_if",
#                              opt.in2out(cond_lift_single_if,
#                                         ignore_newtrees=True),
#                              'fast_run', 'ifelse')
#
# pushout_equilibrium.register("cond_merge_random_op",
#                              opt.in2out(cond_merge_random_op,
#                                         ignore_newtrees=True),
#                              'fast_run', 'ifelse')
#
#
# pushout_equilibrium.register("ifelse_merge",
#                              gof.MergeOptimizer(skip_const_merge=False),
#                              'fast_run', 'ifelse')
#
# pushout_equilibrium.register("ifelse_remove_identical_inside",
#                              opt.in2out(cond_remove_identical,
#                                         ignore_newtrees=True),
#                              'fast_run', 'ifelse')
#
# pushout_equilibrium.register('ifelse_sameCondTrue_inside',
#                              opt.in2out(cond_merge_ifs_true,
#                                         ignore_newtrees=True),
#                              'fast_run', 'ifelse')
#
# pushout_equilibrium.register('ifelse_sameCondFalse_inside',
#                              opt.in2out(cond_merge_ifs_false,
#                                         ignore_newtrees=True),
#                              'fast_run', 'ifelse')
#
# ifelse_seqopt.register('ifelse_condPushOut_equilibrium',
#                        pushout_equilibrium,
#                        1, 'fast_run', 'ifelse')
#
# ifelse_seqopt.register('merge_nodes_1',
#                        gof.MergeOptimizer(skip_const_merge=False),
#                        2, 'fast_run', 'ifelse')
#
#
# ifelse_seqopt.register('ifelse_sameCondTrue',
#                        opt.in2out(cond_merge_ifs_true,
#                                   ignore_newtrees=True),
#                        3, 'fast_run', 'ifelse')
#
#
# ifelse_seqopt.register('ifelse_sameCondFalse',
#                        opt.in2out(cond_merge_ifs_false,
#                                   ignore_newtrees=True),
#                        4, 'fast_run', 'ifelse')
#
#
# ifelse_seqopt.register('ifelse_removeIdenetical',
#                        opt.in2out(cond_remove_identical,
#                                   ignore_newtrees=True),
#                        7, 'fast_run', 'ifelse')