This file is indexed.

/usr/lib/python2.7/dist-packages/theano/gradient.py is in python-theano 0.8.2-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
"""Driver for gradient calculations."""
from __future__ import print_function
import six.moves.builtins as builtins
import logging
import time
import traceback
import warnings

import numpy  # for numeric_grad
from six import itervalues
from six.moves import StringIO

import theano

from theano import gof
from theano.gof import Variable
from theano.compat import OrderedDict, izip
from six.moves import xrange, reduce
from theano.gof.null_type import NullType, null_type
from theano.gof.op import get_debug_values
from theano.compile import ViewOp

np = numpy
__authors__ = "James Bergstra, Razvan Pascanu, Arnaud Bergeron, Ian Goodfellow"
__copyright__ = "(c) 2011, Universite de Montreal"
__license__ = "3-clause BSD License"
__contact__ = "theano-dev <theano-dev@googlegroups.com>"

__docformat__ = "restructuredtext en"
_logger = logging.getLogger('theano.gradient')

# we can't do "import theano.tensor"
# tensor depends on theano.compile
# theano.compile depends on theano.gradient (this file)
# the reason theano.compile depends on theano.gradient
# is that theano.compile.builders contains the op from graph
# functionality and it uses theano.gradient to implement
# the new op's grad method
tensor = None

_msg_retType = 'op.grad(...) returned a non-list'

grad_time = 0


def format_as(use_list, use_tuple, outputs):
    """
    Formats the outputs according to the flags `use_list` and `use_tuple`.
    If `use_list` is True, `outputs` is returned as a list (if `outputs`
    is not a list or a tuple then it is converted in a one element list).
    If `use_tuple` is True, `outputs` is returned as a tuple (if `outputs`
    is not a list or a tuple then it is converted into a one element tuple).
    Otherwise (if both flags are false), `outputs` is returned.
    """
    assert not (use_list and use_tuple), \
        "Both flags cannot be simultaneously True"
    if (use_list or use_tuple) and not isinstance(outputs, (list, tuple)):
        if use_list:
            return [outputs]
        else:
            return (outputs,)
    elif not (use_list or use_tuple) and isinstance(outputs, (list, tuple)):
        assert len(outputs) == 1, \
            "Wrong arguments. Expected a one element list"
        return outputs[0]
    elif use_list or use_tuple:
        if use_list:
            return list(outputs)
        else:
            return tuple(outputs)
    else:
        return outputs


def grad_not_implemented(op, x_pos, x, comment=""):
    """
    Return an un-computable symbolic variable of type `x.type`.

    If any call to tensor.grad results in an expression containing this
    un-computable variable, an exception (NotImplementedError) will be
    raised indicating that the gradient on the
    `x_pos`'th input of `op` has not been implemented. Likewise if
    any call to theano.function involves this variable.

    Optionally adds a comment to the exception explaining why this
    gradient is not implemented.
    """

    return (NullType((
        "This variable is Null because the grad method for "
        "input %s (%s) of the %s op is not implemented. %s"
    ) % (x_pos, x, op, comment)))()


def grad_undefined(op, x_pos, x, comment=""):
    """
    Return an un-computable symbolic variable of type `x.type`.

    If any call to tensor.grad results in an expression containing this
    un-computable variable, an exception (GradUndefinedError) will be
    raised indicating that the gradient on the
    `x_pos`'th input of `op` is mathematically undefined. Likewise if
    any call to theano.function involves this variable.

    Optionally adds a comment to the exception explaining why this
    gradient is not defined.
    """

    return (NullType(
        (
            "This variable is Null because the grad method for "
            "input %s (%s) of the %s op is mathematically undefined. %s"
        ) % (x_pos, x, op, comment)))()


class DisconnectedType(theano.gof.type.Type):

    """ A type indicating that a variable is a result
        of taking the gradient of c with respect to x
        when c is not a function of x.
        A symbolic placeholder for 0, but to convey
        the extra information that this gradient is 0
        because it is disconnected.
    """

    def filter(self, data, strict=False, allow_downcast=None):
        raise AssertionError(
            (
                "If you're assigning to a DisconnectedType you're"
                " doing something wrong. It should only be used as"
                " a symbolic placeholder."
            ))

    def fiter_variable(self, other):
        raise AssertionError(
            (
                "If you're assigning to a DisconnectedType you're"
                " doing something wrong. It should only be used as"
                " a symbolic placeholder."
            ))

    def may_share_memory(a, b):
        return False

    def value_eq(a, b, force_same_dtype=True):
        raise AssertionError(
            (
                "If you're assigning to a DisconnectedType you're"
                " doing something wrong. It should only be used as"
                " a symbolic placeholder."
            ))

    def __str__(self):
        return 'DisconnectedType'
disconnected_type = DisconnectedType()


########################
# R Operator
########################


def Rop(f, wrt, eval_points):
    """
    Computes the R operation on `f` wrt to `wrt` evaluated at points given
    in `eval_points`. Mathematically this stands for the jacobian of `f` wrt
    to `wrt` right muliplied by the eval points.

    :type f: Variable or list of Variables
             `f` stands for the output of the computational graph to which you
             want to apply the R operator
    :type wrt: Variable or list of `Variables`s
               variables for which you compute the R operator of the expression
               described by `f`
    :type eval_points: Variable or list of Variables
                       evalutation points for each of the variables in `wrt`
    :rtype: Variable or list/tuple of Variables depending on type of f
    :return: symbolic expression such that
        R_op[i] = sum_j ( d f[i] / d wrt[j]) eval_point[j]
        where the indices in that expression are magic multidimensional
        indices that specify both the position within a list and all
        coordinates of the tensor element in the last.
        If `wrt` is a list/tuple, then return a list/tuple with the results.
    """
    from theano.tensor import as_tensor_variable
    using_list = isinstance(f, list)
    using_tuple = isinstance(f, tuple)
    if not isinstance(wrt, (list, tuple)):
        wrt = [wrt]

    if not isinstance(eval_points, (list, tuple)):
        eval_points = [eval_points]

    if not isinstance(f, (list, tuple)):
        f = [f]

    assert len(wrt) == len(eval_points)

    # Check that each element of wrt corresponds to an element
    # of eval_points with the same dimensionality.
    for pack in enumerate(zip(wrt, eval_points)):
        i = pack[0]
        wrt_elem, eval_point = pack[1]
        if not isinstance(wrt_elem, gof.Variable):
            wrt_elem = as_tensor_variable(wrt_elem)
        if not isinstance(eval_point, gof.Variable):
            eval_point = as_tensor_variable(eval_point)

        try:

            if wrt_elem.type.ndim != eval_point.type.ndim:
                raise ValueError('Element ' +
                                 str(i) +
                                 ' of wrt/eval_point have mismatched ' +
                                 'dimensionality: ' +
                                 str(wrt_elem.type.ndim) +
                                 ' versus ' +
                                 str(eval_point.type.ndim))
        except AttributeError:
            # wrt_elem and eval_point don't always have ndim like random type
            # Tensor, Sparse and CudaNdArray have the ndim attribute
            pass

    seen_nodes = OrderedDict()

    def _traverse(node):
        """ TODO: writeme """

        if node is None:
            return

        op = node.op
        inputs = node.inputs

        # Compute the evaluation points corresponding to each of the
        # inputs of the node
        local_eval_points = []
        for inp in inputs:
            if inp in wrt:
                local_eval_points.append(eval_points[wrt.index(inp)])
            elif inp.owner is None:
                try:
                    local_eval_points.append(inp.zeros_like())
                except:
                    # None should be used for non-differentiable
                    # arguments, like for example random states
                    local_eval_points.append(None)
            elif inp.owner in seen_nodes:

                local_eval_points.append(
                    seen_nodes[inp.owner][inp.owner.outputs.index(inp)])

            else:
                # We actually need to compute the R_op for this node

                _traverse(inp.owner)
                local_eval_points.append(
                    seen_nodes[inp.owner][inp.owner.outputs.index(inp)])
        same_type_eval_points = []
        for x, y in zip(inputs, local_eval_points):
            if y is not None:
                if not isinstance(x, gof.Variable):
                    x = as_tensor_variable(x)
                if not isinstance(y, gof.Variable):
                    y = as_tensor_variable(y)
                try:
                    y = x.type.filter_variable(y)
                except TypeError:
                    # This is a hack
                    # Originally both grad and Rop were written
                    # with the assumption that a variable and the
                    # gradient wrt that variable would have the same
                    # dtype. This was a bad assumption because the
                    # gradient wrt an integer can take on non-integer
                    # values.
                    # grad is now fixed, but Rop is not, so when grad
                    # does the right thing and violates this assumption
                    # we have to make it be wrong for Rop to keep working
                    # Rop should eventually be upgraded to handle integers
                    # correctly, the same as grad
                    y = theano.tensor.cast(y, x.type.dtype)
                    y = x.type.filter_variable(y)
                assert x.type == y.type
                same_type_eval_points.append(y)
            else:
                same_type_eval_points.append(y)

        seen_nodes[node] = op.R_op(node.inputs, same_type_eval_points)
    # end _traverse

    # Populate the dictionary
    for out in f:
        _traverse(out.owner)

    rval = []
    for out in f:
        if out in wrt:
            rval.append(eval_points[wrt.index(out)])
        elif seen_nodes[out.owner][out.owner.outputs.index(out)] is None:
            raise ValueError(('The function is not differentiable with '
                              'respect to the provided inputs !'))
        else:
            rval.append(seen_nodes[out.owner][out.owner.outputs.index(out)])

    return format_as(using_list, using_tuple, rval)


def Lop(f, wrt, eval_points, consider_constant=None,
        disconnected_inputs='raise'):
    """
    Computes the L operation on `f` wrt to `wrt` evaluated at points given
    in `eval_points`. Mathematically this stands for the jacobian of `f` wrt
    to `wrt` left muliplied by the eval points.

    :type f: Variable or list of Variables
        `f` stands for the output of the computational graph to which you
        want to apply the L operator
    :type wrt: Variable or list of `Variables`s
        variables for which you compute the L operator of the expression
        described by `f`
    :type eval_points: Variable or list of Variables
                        evalutation points for each of the variables in `f`

    :rtype: Variable or list/tuple of Variables depending on type of f
    :return: symbolic expression such that
        L_op[i] = sum_i ( d f[i] / d wrt[j]) eval_point[i]
        where the indices in that expression are magic multidimensional
        indices that specify both the position within a list and all
        coordinates of the tensor element in the last
        If `f` is a list/tuple, then return a list/tuple with the results.
    """
    if type(eval_points) not in (list, tuple):
        eval_points = [eval_points]

    using_list = isinstance(wrt, list)
    using_tuple = isinstance(wrt, tuple)

    if not isinstance(f, (list, tuple)):
        f = [f]

    # make copies of f and grads so we don't modify the client's copy
    f = list(f)
    grads = list(eval_points)

    if not isinstance(wrt, (list, tuple)):
        wrt = [wrt]

    assert len(f) == len(grads)
    known = dict(izip(f, grads))

    ret = grad(cost=None, known_grads=known,
               consider_constant=consider_constant, wrt=wrt,
               disconnected_inputs=disconnected_inputs)

    return format_as(using_list, using_tuple, ret)


#########################
# Gradient
#########################

def grad(cost, wrt, consider_constant=None,
         disconnected_inputs='raise', add_names=True,
         known_grads=None, return_disconnected='zero',
         null_gradients='raise'):
    """
    Return symbolic gradients for one or more variables with respect to some
    cost.

    For more information about how automatic differentiation works in Theano,
    see :mod:`gradient`. For information on how to implement the gradient of
    a certain Op, see :func:`grad`.

    Parameters
    ----------
    cost : scalar (0-dimensional) tensor variable or None
        Value with respect to which we are differentiating.  May be
        `None` if known_grads is provided.
    wrt : variable or list of variables
        term[s] for which we want gradients
    consider_constant : list of variables
        expressions not to backpropagate through
    disconnected_inputs : {'ignore', 'warn', 'raise'}
        Defines the behaviour if some of the variables in `wrt` are
        not part of the computational graph computing `cost` (or if
        all links are non-differentiable). The possible values are:

        - 'ignore': considers that the gradient on these parameters is zero.
        - 'warn': consider the gradient zero, and print a warning.
        - 'raise': raise DisconnectedInputError.
    add_names : bool
        If True, variables generated by grad will be named
        (d<cost.name>/d<wrt.name>) provided that both cost and wrt
        have names
    known_grads : dict, optional
        A dictionary mapping variables to their gradients. This is
        useful in the case where you know the gradient on some
        variables but do not know the original cost.
    return_disconnected : {'zero', 'None', 'Disconnected'}
        - 'zero' : If wrt[i] is disconnected, return value i will be
                   wrt[i].zeros_like()
        - 'None' : If wrt[i] is disconnected, return value i will be
                   None
        - 'Disconnected' : returns variables of type DisconnectedType
    null_gradients : {'raise', 'return'}
        Defines the behaviour if some of the variables in `wrt` have a
        null gradient. The possibles values are:

        - 'raise' : raise a NullTypeGradError exception
        - 'return' : return the null gradients

    Returns
    -------
    variable or list/tuple of variables (matches `wrt`)
        symbolic expression of gradient of `cost` with respect to each
        of the `wrt` terms.  If an element of `wrt` is not
        differentiable with respect to the output, then a zero
        variable is returned.

    """
    t0 = time.time()
    global tensor
    if tensor is None:
        from theano import tensor

    if cost is None:
        if known_grads is None:
            raise AssertionError("cost and known_grads can't both be None.")

    if cost is not None and isinstance(cost.type, NullType):
        raise ValueError("Can't differentiate a NaN cost."
                         "cost is NaN because " +
                         cost.type.why_null)

    if cost is not None and cost.ndim != 0:
        raise TypeError("cost must be a scalar.")

    if isinstance(wrt, set):
        raise TypeError("wrt must not be a set. sets have no defined "
                        "iteration order, so we can't return gradients in a"
                        "  matching order.")

    using_list = isinstance(wrt, list)
    using_tuple = isinstance(wrt, tuple)
    if not using_list and not using_tuple:
        wrt = [wrt]

    for elem in wrt:
        if not isinstance(elem, Variable):
            raise TypeError("Expected Variable, got " + str(elem) +
                            " of type " + str(type(elem)))

    outputs = []
    if cost is not None:
        outputs.append(cost)
    if known_grads is not None:
        outputs.extend(list(known_grads.keys()))

    var_to_app_to_idx = _populate_var_to_app_to_idx(
        outputs, wrt, consider_constant)

    # build a dict mapping var to the gradient of cost with respect to var
    grad_dict = OrderedDict()

    if known_grads is None:
        known_grads = OrderedDict()

    # The gradient of the cost is 1 unless specified otherwise by known_grads.
    if cost is not None:
        if cost in known_grads:
            g_cost = known_grads[cost]
        else:
            g_cost = _float_ones_like(cost)
        # g_cost may be Disconnected or NullType. A creative use of the
        # function, sure, but nonetheless one we can and should support.
        # So before we try to cast it make sure it even has a dtype
        if (hasattr(g_cost.type, 'dtype') and
                cost.type.dtype not in tensor.discrete_dtypes):
                # Here we enforce the constraint that floating point variables
                # have the same dtype as their gradient.
                g_cost = g_cost.astype(cost.type.dtype)
        # DO NOT enforce g_cost to be 0 if cost is an integer.
        # This is to be enforced by the Op.grad method for the
        # Op that outputs cost.
        if hasattr(g_cost.type, 'dtype'):
            assert g_cost.type.dtype not in tensor.discrete_dtypes

        grad_dict[cost] = g_cost

    for var in known_grads:
        g_var = known_grads[var]

        if not hasattr(g_var, 'type'):
            raise TypeError('output grads must be theano variables.'
                            'Ambiguous whether %s should be made into tensor'
                            ' or sparse theano variable' % str(type(g_var)))

        if (not isinstance(g_var.type, (NullType, DisconnectedType)) and
                'float' not in str(g_var.type.dtype)):
            raise TypeError("Gradients must always be NullType, "
                            "DisconnectedType, or continuous, but grad was "
                            "given a known_grad of type " + str(g_var.type))

        # DO NOT check that these gradients are equal to 0 if var is int
        # The gradient is allowed to be non-zero on var in that case
        # Ops outputing var should not backpropagate its gradient further
        # but that is enforced elsewhere (grep for only_connected_to_int)

        grad_dict[var] = g_var

    def handle_disconnected(var):
            message = ("grad method was asked to compute the gradient "
                       "with respect to a variable that is not part of "
                       "the computational graph of the cost, or is used "
                       "only by a non-differentiable operator: %s" % var)
            if disconnected_inputs == 'ignore':
                pass
            elif disconnected_inputs == 'warn':
                warnings.warn(message, stacklevel=2)
            elif disconnected_inputs == 'raise':
                # Add the var trace
                tr = getattr(var.tag, 'trace', [])
                if len(tr) > 0:
                    message += "\nBacktrace when the node is created:\n"

                    # Print separate message for each element in the list of batcktraces
                    sio = StringIO()
                    for subtr in tr:
                        traceback.print_list(subtr, sio)
                    message += str(sio.getvalue())

                raise DisconnectedInputError(message)
            else:
                raise ValueError("Invalid value for keyword "
                                 "'disconnected_inputs', valid values are "
                                 "'ignore', 'warn' and 'raise'.")

    # variables that do not influence the cost have zero gradient.
    # if wrt is such a variable, populate the grad_dict with this info
    # so that wrt not being in var_to_app_to_idx won't cause an error below
    # according to the flag, possibly raise an error if wrt is disconnected
    for elem in wrt:
        if elem not in var_to_app_to_idx and elem is not cost \
                and elem not in grad_dict:
            handle_disconnected(elem)
            grad_dict[elem] = disconnected_type()

    cost_name = None
    if add_names and cost is not None:
        cost_name = cost.name

    # Make sure we didn't initialize the grad_dict with any ints
    # The gradient may NEVER be an int, even if the variable is an int.
    # Read the Op contract and talk to Ian Goodfellow before changing this!
    for var in grad_dict:
        g = grad_dict[var]
        if hasattr(g.type, 'dtype'):
            assert g.type.dtype in tensor.float_dtypes

    rval = _populate_grad_dict(var_to_app_to_idx,
                               grad_dict, wrt, cost_name)

    for i in xrange(len(rval)):
        if isinstance(rval[i].type, NullType):
            if null_gradients == 'raise':
                raise NullTypeGradError("tensor.grad encountered a NaN. " +
                                        rval[i].type.why_null)
            else:
                assert null_gradients == 'return'
        if isinstance(rval[i].type, DisconnectedType):
            handle_disconnected(rval[i])
            if return_disconnected == 'zero':
                rval[i] = _float_zeros_like(wrt[i])
            elif return_disconnected == 'None':
                rval[i] = None
            else:
                assert return_disconnected == 'Disconnected'

    if using_tuple:
        rval = tuple(rval)
    elif not using_list:
        rval, = rval
    t1 = time.time()
    global grad_time
    grad_time += t1 - t0
    return rval


def subgraph_grad(wrt, end, start=None, cost=None, details=False):
    '''
    With respect to `wrt`, computes gradients of cost and/or from
    existing `start` gradients, up to the `end` variables of a
    symbolic digraph.  In other words, computes gradients for a
    subgraph of the symbolic theano function. Ignores all disconnected
    inputs.

    This can be useful when one needs to perform the gradient descent
    iteratively (e.g. one layer at a time in an MLP), or when a
    particular operation is not differentiable in theano
    (e.g. stochastic sampling from a multinomial). In the latter case,
    the gradient of the non-differentiable process could be
    approximated by user-defined formula, which could be calculated
    using the gradients of a cost with respect to samples (0s and
    1s). These gradients are obtained by performing a subgraph_grad
    from the `cost` or previously known gradients (`start`) up to the
    outputs of the stochastic process (`end`).  A dictionary mapping
    gradients obtained from the user-defined differentiation of the
    process, to variables, could then be fed into another
    subgraph_grad as `start` with any other `cost` (e.g. weight
    decay).

    In an MLP, we could use subgraph_grad to iteratively backpropagate:

    .. code-block:: python

        x, t = theano.tensor.fvector('x'), theano.tensor.fvector('t')
        w1 = theano.shared(np.random.randn(3,4))
        w2 = theano.shared(np.random.randn(4,2))
        a1 = theano.tensor.tanh(theano.tensor.dot(x,w1))
        a2 = theano.tensor.tanh(theano.tensor.dot(a1,w2))
        cost2 = theano.tensor.sqr(a2 - t).sum()
        cost2 += theano.tensor.sqr(w2.sum())
        cost1 = theano.tensor.sqr(w1.sum())

        params = [[w2],[w1]]
        costs = [cost2,cost1]
        grad_ends = [[a1], [x]]

        next_grad = None
        param_grads = []
        for i in xrange(2):
            param_grad, next_grad = theano.subgraph_grad(
                wrt=params[i], end=grad_ends[i],
                start=next_grad, cost=costs[i]
            )
            next_grad = dict(zip(grad_ends[i], next_grad))
            param_grads.extend(param_grad)

    :type wrt: list of variables
    :param wrt:
      Gradients are computed with respect to `wrt`.

    :type end: list of variables
    :param end:
      Theano variables at which to end gradient descent (they are
      considered constant in theano.grad).  For convenience, the
      gradients with respect to these variables are also returned.

    :type start: dictionary of variables
    :param start:
      If not None, a dictionary mapping variables to their
      gradients. This is useful when the gradient on some variables
      are known. These are used to compute the gradients backwards up
      to the variables in `end` (they are used as known_grad in
      theano.grad).

    :type cost: scalar (0-dimensional) variable
    :param cost:
      Additional costs for which to compute the gradients.  For
      example, these could be weight decay, an l1 constraint, MSE,
      NLL, etc. May optionally be None if start is provided.  Warning
      : If the gradients of `cost` with respect to any of the `start`
      variables is already part of the `start` dictionary, then it may
      be counted twice with respect to `wrt` and `end`.

      .. warning::

        If the gradients of `cost` with respect to any of the `start`
        variables is already part of the `start` dictionary, then it
        may be counted twice with respect to `wrt` and `end`.


    :type details: bool
    :param details:
      When True, additionally returns the list of gradients from
      `start` and of `cost`, respectively, with respect to `wrt` (not
      `end`).

    :rtype: Tuple of 2 or 4 Lists of Variables

    :return: Returns lists of gradients with respect to `wrt` and `end`,
            respectively.

    .. versionadded:: 0.7
    '''
    assert ((cost is not None) or (start is not None))
    assert isinstance(end, list)
    assert isinstance(wrt, list)
    if start is not None:
        assert isinstance(start, dict)

    params = list(set(wrt + end))

    start_grads = None
    cost_grads = None
    if start is not None:
        start_grads = list(
            theano.grad(
                cost=None, wrt=params, known_grads=start,
                consider_constant=end,
                disconnected_inputs='ignore'
            )
        )

    if cost is not None:
        cost_grads = list(
            theano.grad(
                cost=cost, wrt=params,
                consider_constant=end,
                disconnected_inputs='ignore'
            )
        )

    grads = None
    if start is None:
        grads = cost_grads
    else:
        grads = start_grads
        if cost_grads is not None:
            for i in range(len(grads)):
                grads[i] += cost_grads[i]

    pgrads = OrderedDict(izip(params, grads))
    # separate wrt from end grads:
    wrt_grads = list(pgrads[k] for k in wrt)
    end_grads = list(pgrads[k] for k in end)

    if details:
        return wrt_grads, end_grads, start_grads, cost_grads

    return wrt_grads, end_grads


def _node_to_pattern(node):
    """ given an apply node, obtain its connection pattern
     this is just a wrapper around Op.connection_pattern
     that does type checking and supplies the default value
     if the method is not implemented
    """

    if hasattr(node.op, 'connection_pattern'):
        connection_pattern = node.op.connection_pattern(node)

        if not isinstance(connection_pattern, list):
            raise TypeError(
                "Op.connection_pattern should return " +
                ("list of list of bool, but for Op=%s" % node.op) +
                "got %s with type %s." % (connection_pattern,
                                          type(connection_pattern)))
        if len(connection_pattern) != len(node.inputs):
            raise ValueError(
                '%s.connection_pattern should have %d' %
                (node.op, len(node.inputs)) + ' rows but has %d.' %
                len(connection_pattern))
        for ii, output_pattern in enumerate(connection_pattern):
            if not isinstance(output_pattern, list):
                raise TypeError(
                    '%s.connection_pattern should return' %
                    node.op + ' a list of lists, but element %d' % ii +
                    'is %s of type %s.' % (output_pattern,
                                           type(output_pattern)))
    else:
        connection_pattern = [[True for output in node.outputs]
                              for ipt in node.inputs]
    assert isinstance(connection_pattern, list)
    assert len(connection_pattern) == len(node.inputs)
    for ii in xrange(len(node.inputs)):
        assert isinstance(connection_pattern[ii], list)
        assert len(connection_pattern[ii]) == len(node.outputs)
    return connection_pattern


def _populate_var_to_app_to_idx(outputs, wrt, consider_constant):
    """
    Helper function for grad function.

    outputs: a list of variables we want to take gradients of

    wrt: a list of variables we want to take the gradient with
        respect to.

    consider_constant: a list of variables not to backpropagate
        through.

    returns:

     var_to_app_to_idx:

      A dictionary mapping a variable to a second dictionary.
      The second dictionary maps apply nodes acting on this
      variable to the variable's index in the apply node's
      input list.

      This dictionary will only contain variables that
      meet two criteria:

       1) The elements of at least one output are a
          function of the elements of the variable

       2) The elements of the variable are a function of the
          elements of at least one member of wrt.

      This set is exactly the set of variables that connect
      the variables in wrt to the cost being differentiated.

      (A variable in consider_constant is not a function of
      anything)

    """

    # Validate and format consider_constant
    if consider_constant is None:
        consider_constant = []
    else:
        # error checking on consider_constant: verify that it is a collection
        # of theano variables
        # this is important, if someone accidentally passes a nested data
        # structure with theano variables at the leaves, only the root will
        # be properly considered constant
        try:
            iter(consider_constant)
        except TypeError:
            raise TypeError('consider_constant must be an iterable collection,'
                            ' got ' + str(type(consider_constant)))
        for elem in consider_constant:
            if not isinstance(elem, gof.Variable):
                raise TypeError('Elements of consider_constant must be '
                                'variables, but got ' + str(type(elem)))

    # var_to_app_to_idx[var][node] = [i,j] means node has
    # var as input at positions i and j
    var_to_app_to_idx = OrderedDict()

    # Set of variables that have been added to their true parents
    # ('true' here means that the elements of the variable are a function
    #  of the elements of the parent, according to the op's
    #  connection_pattern)
    # Note: we need to revisit the apply nodes repeatedly, because
    #       different outputs of the apply node are connected to
    #       different subsets of the inputs.
    accounted_for = set([])

    def account_for(var):
        # Don't visit the same variable twice
        if var in accounted_for:
            return
        accounted_for.add(var)

        # Constants are not a function of anything
        if var in consider_constant:
            return

        # Recursively add the variables that this variable is
        # a function of.
        if var.owner is not None:
            app = var.owner

            connection_pattern = _node_to_pattern(app)

            var_idx = app.outputs.index(var)

            for i, ipt in enumerate(app.inputs):

                # don't process ipt if it is not a true
                # parent of var
                if not connection_pattern[i][var_idx]:
                    continue

                if ipt not in var_to_app_to_idx:
                    # This object here *must* be an OrderedDict, because
                    # we iterate over its keys when adding up the terms of the
                    # gradient on ipt. If it is a regular dict, the grad method
                    # will return something that is analytically correct, but
                    # whose order of doing additions depends on the memory
                    # location of the apply nodes.
                    var_to_app_to_idx[ipt] = OrderedDict()
                app_to_idx = var_to_app_to_idx[ipt]
                if app not in app_to_idx:
                    app_to_idx[app] = []
                idx = app_to_idx[app]
                if i not in idx:
                    idx.append(i)
                account_for(ipt)

    # add all variables that are true ancestors of the cost
    for output in outputs:
        account_for(output)

    # determine which variables have elements of wrt as a true
    # ancestor. Do this with an upward pass starting from wrt,
    # following only true connections
    visited = set([])

    def visit(var):
        if var in visited:
            return
        if var not in var_to_app_to_idx:
            return
        visited.add(var)
        nodes = var_to_app_to_idx[var]
        for node in nodes:
            connection_pattern = _node_to_pattern(node)
            for idx in nodes[node]:
                for ii, output in enumerate(node.outputs):
                    if connection_pattern[idx][ii]:
                        visit(output)

    for elem in wrt:
        visit(elem)

    # Remove variables that don't have wrt as a true ancestor
    orig_vars = list(var_to_app_to_idx.keys())
    for var in orig_vars:
        if var not in visited:
            del var_to_app_to_idx[var]

    return var_to_app_to_idx


class NullTypeGradError(TypeError):
    """
    Raised when grad encounters a NullType.
    """


class DisconnectedInputError(ValueError):
    """
    Raised when grad is asked to compute the gradient
    with respect to a disconnected input and
    disconnected_inputs='raise'.
    """


def _populate_grad_dict(var_to_app_to_idx,
                        grad_dict, wrt, cost_name=None):
    """
        Helper function for grad function.

        var_to_app_to_idx: a dictionary mapping a variable to
                a second dictionary.
                the second dictionary maps apply nodes acting on
                this variable to the variable's index in the apply
                node's input list

        grad_dict: A dictionary mapping variables to their gradients.
                   Should be populated by grad function, which should:
                       -Set the gradient with respect to the cost to 1
                       -Load all gradients from known_grads, possibly
                        overriding the cost
                       -Set the gradient for disconnected
                        inputs to a variable with type DisconnectedType()

        wrt: the minimal set of variables that must be included in grad_dict

        cost_name: The name of the cost being differentiated, optional.
                    used to name the grad with respect to x as
                    (d<cost_name>/dx)

        returns: a list of gradients corresponding to wrt

    """
    # build a dict mapping node to the terms node contributes to each of
    # its inputs' gradients
    term_dict = OrderedDict()

    def access_term_cache(node):
        """ Populates term_dict[node] and returns it """

        if node not in term_dict:

            inputs = node.inputs

            output_grads = [access_grad_cache(var) for var in node.outputs]

            # list of bools indicating if each output is connected to the cost
            outputs_connected = [not isinstance(g.type, DisconnectedType)
                                 for g in output_grads]

            connection_pattern = _node_to_pattern(node)

            # list of bools indicating if each input is connected to the cost
            inputs_connected = [
                (True in [input_to_output and output_to_cost for
                          input_to_output, output_to_cost in
                          zip(input_to_outputs, outputs_connected)]) for
                input_to_outputs in connection_pattern
            ]

            # List of bools indicating if each output is an integer dtype
            output_is_int = [hasattr(output.type, 'dtype') and
                             output.type.dtype in theano.tensor.discrete_dtypes
                             for output in node.outputs]

            # List of bools indicating if each output is NullType
            ograd_is_nan = [isinstance(output.type, NullType)
                            for output in output_grads]

            # List of bools indicating if each input only has NullType outputs
            only_connected_to_nan = [
                (True not in
                 [in_to_out and out_to_cost and not out_nan
                  for in_to_out, out_to_cost, out_nan in
                  zip(in_to_outs, outputs_connected, ograd_is_nan)])
                for in_to_outs in connection_pattern]

            if True not in inputs_connected:
                # All outputs of this op are disconnected so we can skip
                # Calling the op's grad method and report that the inputs
                # are disconnected
                # (The op's grad method could do this too, but this saves the
                # implementer the trouble of worrying about this case)
                input_grads = [disconnected_type() for ipt in inputs]
            elif False not in only_connected_to_nan:
                # All inputs are only connected to nan gradients, so we don't
                # need to bother calling the grad method. We know the gradient
                # with respect to all connected inputs is nan.
                input_grads = []
                for connected in inputs_connected:
                    if connected:
                        input_grads.append(null_type())
                    else:
                        input_grads.append(disconnected_type())
            else:
                # At least one input of this op is connected to the cost so and
                # not all output gradients are undefined so we must
                # call the op's grad method

                # Each Op's grad function requires inputs and output_grads
                # If the Op destroys any input, but the grad expression uses
                # it, then chances are the resulting graph will have a
                # dependency cycle. We avoid this cycle by passing (symbolic)
                # copies of each destroyed input.
                try:
                    dinputs = [node.inputs[x[0]] for x in
                               itervalues(node.op.destroy_map)]
                except AttributeError:
                    dinputs = []

                def try_to_copy_if_needed(var):
                    if var in dinputs and hasattr(var, 'copy'):
                        return var.copy()
                    return var

                inputs = [try_to_copy_if_needed(ipt) for ipt in inputs]

                # Build a list of output gradients with the same dtype as
                # the corresponding output variable.
                # If an output is of a float dtype, we want to cast the
                # output gradient into the same dtype, to avoid having a
                # gradient graph with double precision (taking more memory,
                # and more computation).
                # If an output is of an integer dtype, then we just leave it
                # alone.
                # DO NOT force integer variables to have zero grad. This causes
                # bugs where we fail to detect disconnected or undefined
                # gradients.
                # DO NOT force integer variables to have integer dtype.
                # This is a violation of the op contract.
                new_output_grads = []
                for o, og in zip(node.outputs, output_grads):
                    o_dt = getattr(o.type, 'dtype', None)
                    og_dt = getattr(og.type, 'dtype', None)
                    if (o_dt not in theano.tensor.discrete_dtypes and
                            og_dt and o_dt != og_dt):
                        new_output_grads.append(og.astype(o_dt))
                    else:
                        new_output_grads.append(og)

                # Make sure that, if new_output_grads[i] has a floating point
                # dtype, it is the same dtype as outputs[i]
                for o, ng in zip(node.outputs, new_output_grads):
                    o_dt = getattr(o.type, 'dtype', None)
                    ng_dt = getattr(ng.type, 'dtype', None)
                    if (ng_dt is not None and
                            o_dt not in theano.tensor.discrete_dtypes):
                        assert ng_dt == o_dt

                # Someone who had obviously not read the Op contract tried
                # to modify this part of the function.
                # If you ever think it is a good idea to make an integer
                # valued gradient, please
                # 1) Read the Op contract again
                # 2) Talk to Ian Goodfellow
                # (Both of these sources will tell you not to do it)
                for ng in new_output_grads:
                    assert (getattr(ng.type, 'dtype', None)
                            not in theano.tensor.discrete_dtypes)

                # If config.compute_test_value is turned on, check that the
                # gradients on the outputs of this node have the right shape.
                # We also check the gradient on the inputs later--both checks
                # are needed, because some gradients are only ever specified
                # by the user, not computed by Op.grad, and some gradients are
                # only computed and returned, but never passed as another
                # node's output grads.
                for idx, packed in enumerate(izip(node.outputs,
                                             new_output_grads)):
                    orig_output, new_output_grad = packed
                    if not hasattr(orig_output, 'shape'):
                        continue
                    if isinstance(new_output_grad.type, DisconnectedType):
                        continue
                    for orig_output_v, new_output_grad_v in get_debug_values(
                            *packed):
                        o_shape = orig_output_v.shape
                        g_shape = new_output_grad_v.shape
                        if o_shape != g_shape:
                            raise ValueError(
                                "Got a gradient of shape " +
                                str(o_shape) + " on an output of shape " +
                                str(g_shape))

                input_grads = node.op.grad(inputs, new_output_grads)

                if input_grads is None:
                    raise TypeError("%s.grad returned NoneType, "
                                    "expected iterable." % str(node.op))

                if len(input_grads) != len(inputs):
                    raise ValueError(("%s returned the wrong number of" +
                                      " gradient terms.") % str(node.op))
# We can not enforce this, as AdvancedSubtensor1 has an option to
# return the sparse grad for optimization reason.

                    #            for ig, i in zip(input_grads, inputs):
#                if (not isinstance(ig.type, (DisconnectedType, NullType)) and
#                    type(ig.type) != type(i.type)):
#                    raise ValueError(
#                        "%s returned the wrong type for gradient terms."
#                        " Sparse inputs must have sparse grads and dense"
#                        " inputs must have dense grad. Got %s, expected %s" %(
#                            str(node.op), ig.type, i.type))

            # must convert to list in case the op returns a tuple
            # we won't be able to post-process out the Nones if it does that
            input_grads = list(input_grads)

            # Need to propagate the NullType gradients; if an input grad is
            # not disconnected and the corresponding input is connected
            # to at least one output whose gradient is NullType then the input
            # grad should be NullType.
            for inp_idx in range(len(input_grads)):
                for out_idx in range(len(ograd_is_nan)):
                    if (ograd_is_nan[out_idx] and
                            connection_pattern[inp_idx][out_idx] and
                            not isinstance(input_grads[inp_idx].type,
                                           DisconnectedType)):
                        input_grads[inp_idx] = output_grads[out_idx]

            # Do type checking on the result

            # List of bools indicating if each input only has integer outputs
            only_connected_to_int = [
                (True not in
                 [in_to_out and out_to_cost and not out_int
                  for in_to_out, out_to_cost, out_int in
                  zip(in_to_outs, outputs_connected, output_is_int)])
                for in_to_outs in connection_pattern]

            for i, term in enumerate(input_grads):

                # Disallow Nones
                if term is None:
                    # We don't know what None means. in the past it has been
                    # used to mean undefined, zero, or disconnected.
                    # We therefore don't allow it because its usage has become
                    # so muddied.
                    raise TypeError(
                        ('%s.grad returned None for' +
                         ' a gradient term, '
                         'this is prohibited. Instead of None,'
                         'return zeros_like(input), disconnected_type(),'
                         ' or a NullType variable such as those made with '
                         'the grad_undefined or grad_unimplemented helper '
                         'functions.') % node.op)

                # Check that the gradient term for this input
                # has the right shape
                if hasattr(term, 'shape'):
                    orig_ipt = inputs[i]
                    for orig_ipt_v, term_v in get_debug_values(orig_ipt, term):
                        i_shape = orig_ipt_v.shape
                        t_shape = term_v.shape
                        if i_shape != t_shape:
                            raise ValueError(
                                "%s.grad returned object of "
                                "shape %s as gradient term on input %d "
                                "of shape %s" % (node.op, t_shape, i, i_shape))

                if not isinstance(term.type,
                                  (NullType, DisconnectedType)):
                    if term.type.dtype not in theano.tensor.float_dtypes:
                        raise TypeError(str(node.op) + '.grad illegally '
                                        ' returned an integer-valued variable.'
                                        ' (Input index %d, dtype %s)' % (
                                            i, term.type.dtype))

                    if only_connected_to_nan[i]:
                        assert isinstance(term.type, NullType)

                    if only_connected_to_int[i]:
                        # This term has only integer outputs and we know
                        # it's not undefined or disconnected
                        # The only other valid thing it can be is 0

                        is_zero = _is_zero(term)
                        assert is_zero in ['yes', 'no', 'maybe']
                        if is_zero == 'maybe':
                            msg = "%s.grad returned %s of type %s for input"
                            msg += " %d. This input's only connections to "
                            msg += "the cost through this op are via "
                            msg += "integer-valued outputs so it should be "
                            msg += "NullType, DisconnectedType, or some form "
                            msg += "of zeros. It is not NullType or "
                            msg += "DisconnectedType and theano can't "
                            msg += "simplify it to a constant, so it's not "
                            msg += "verifiably zeros."

                            msg = msg % (str(node.op), str(term),
                                         str(type(term)), i)

                        if is_zero == 'no':
                            msg = "%s.grad returned %s of type %s for input"
                            msg += " %d. Since this input is only connected "
                            msg += "to integer-valued outputs, it should "
                            msg += "evaluate to zeros, but it evaluates to"
                            msg += "%s."

                            msg % (node.op, term, type(term), i,
                                   theano.get_scalar_constant_value(term))

                            raise ValueError(msg)

            # Check that op.connection_pattern matches the connectivity
            # logic driving the op.grad method
            for i, packed in enumerate(zip(inputs, input_grads,
                                           inputs_connected)):
                ipt, ig, connected = packed
                actually_connected = \
                    not isinstance(ig.type, DisconnectedType)

                if actually_connected and not connected:
                    msg = "%s.grad returned %s of type %s for input %d."
                    msg += " Expected DisconnectedType instance based on "
                    msg += " the output of the op's connection_pattern "
                    msg += "method."
                    msg = msg % (str(node.op), str(ig), str(ig.type), i)
                    raise TypeError(msg)

                if connected and not actually_connected:
                    msg = "%s.grad returned DisconnectedType for input"
                    msg += " %d."
                    msg = msg % (str(node.op), i)
                    if hasattr(node.op, 'connection_pattern'):
                        msg += ' Its connection_pattern method does not'
                        msg += ' allow this.'
                        raise TypeError(msg)
                    else:
                        msg += ' You may want to implement a '
                        msg += 'connection_pattern method for it.'
                        warnings.warn(msg)

            # cache the result
            term_dict[node] = input_grads

        return term_dict[node]

    # populate grad_dict[var] and return it
    def access_grad_cache(var):
        if var not in grad_dict:
            # If var is not in grad_dict already, we must compute it
            if var in var_to_app_to_idx:
                null_terms = []
                terms = []
                node_to_idx = var_to_app_to_idx[var]
                for node in node_to_idx:
                    for idx in node_to_idx[node]:

                        term = access_term_cache(node)[idx]

                        if not isinstance(term, gof.Variable):
                            raise TypeError(
                                "%s.grad returned %s, expected"
                                " Variable instance." % (str(node.op),
                                                         type(term)))

                        if isinstance(term.type, NullType):
                            null_terms.append(term)
                            continue

                        # Don't try to sum up DisconnectedType placeholders
                        if isinstance(term.type, DisconnectedType):
                            continue

                        if hasattr(var, 'ndim') and term.ndim != var.ndim:
                            raise ValueError(
                                ("%s.grad returned a term with"
                                 " %d dimensions, but %d are required.") % (
                                     str(node.op), term.ndim, var.ndim))

                        terms.append(term)

                # Add up the terms to get the total gradient on this variable
                if len(null_terms) > 0:
                    # At least one term is a NullType : the total gradient
                    # will also be a NullType
                    grad_dict[var] = null_terms[0]
                elif len(terms) > 0:
                    # the next line is like sum(terms) but doesn't add an
                    # extraneous TensorConstant(0)
                    grad_dict[var] = reduce(lambda x, y: x + y, terms)
                else:
                    grad_dict[var] = disconnected_type()

                if cost_name is not None and var.name is not None:
                    grad_dict[var].name = '(d%s/d%s)' % (cost_name, var.name)
            else:
                # this variable isn't connected to the cost in the
                # computational graph
                grad_dict[var] = disconnected_type()
        # end if cache miss
        return grad_dict[var]

    rval = [access_grad_cache(elem) for elem in wrt]

    return rval


def _float_zeros_like(x):
    """ Like zeros_like, but forces the object to have a
    a floating point dtype """

    rval = x.zeros_like()

    if rval.type.dtype.find('float') != -1:
        return rval

    return rval.astype(theano.config.floatX)


def _float_ones_like(x):
    """ Like ones_like, but forces the object to have a
    floating point dtype """

    rval = tensor.ones_like(x)

    if rval.type.dtype.find('float') != -1:
        return rval

    return rval.astype(theano.config.floatX)


class numeric_grad(object):
    """
    Compute the numeric derivative of a scalar-valued function at a particular
    point.
    """

    # Note on step sizes and tolerances:
    #
    # There is a relationship between the step size and the function value and
    # the measurement error that is incurred due to rounding.  The finite
    # difference we measure is
    # delta = f(x0) - f(x0+eps)
    #
    # For maximum precision, f should be close to zero.
    # For every power of 2 that f departs from zero, we lose a bit of precision
    # in delta.
    #
    # Even in this case of maximum accuracy, there is a tradeoff between
    # stepsize and measurement error.
    # Taking small steps allows us to measure large derivatives accuractly,
    # but longer steps are required to measure small derivatives accurately.
    # However longer steps introduce bias into our measurement in general
    # for non-linear functions.
    #
    # It would be interesting to have a version of numeric grad that used an
    # adaptive stepsize.
    #
    # For now, we use a heuristic that catches very bad gradients, but is not
    # perfectly accurate.
    type_eps = {'float64': 1e-7,
                'float32': 3e-4,
                numpy.dtype('float64'): 1e-7,
                numpy.dtype('float32'): 3e-4}

    def __init__(self, f, pt, eps=None, out_type=None):
        """Return the gradient of f at pt.

        :param f: a differentiable function such that f(*pt) is a scalar
        :param pt: an ndarray, a list of ndarrays or tuple of ndarrays
        :param out_type: dtype of output, if complex (i.e. 'complex32' or
        'complex64')
        This function computes the gradient by a one-sided finite
        differences of a fixed step size (eps).

        It is assumed that f(...) will return a scalar.
        It is assumed that all f's inputs are numpy.ndarray objects.

        :param eps: the stepsize for the finite differencing.  None means
          input dtype-dependent. See `type_eps`.
        """

        def prod(inputs):
            rval = 1
            for i in inputs:
                rval *= i
            return rval

        packed_pt = False
        if not isinstance(pt, (list, tuple)):
            pt = [pt]
            packed_pt = True

        apt = [numpy.array(p) for p in pt]

        shapes = [p.shape for p in apt]
        dtypes = [str(p.dtype) for p in apt]

        # TODO: remove this eventually (why was this here in the first place ?)
        # In the case of CSM, the arguments are a mixture of floats and
        # integers...
        # if not dtypes == [dtypes[0]] * len(apt):
        #      raise TypeError('All function arguments must have same dtype')

        total_size = builtins.sum(prod(sh) for sh in shapes)

        working_dtype = builtins.min(
            (self.type_eps[dt], dt) for dt in dtypes)[1]

        # create un-initialized memory
        x = numpy.ndarray((total_size,), dtype=working_dtype)
        # (not out_type is None) --> (out_type is not None) ???
        if (out_type is not None) and (out_type.startswith('complex')):
            gx = numpy.ndarray((total_size,), dtype=out_type)
        else:
            gx = numpy.ndarray((total_size,), dtype=working_dtype)

        if eps is None:
            eps = builtins.max(self.type_eps[dt] for dt in dtypes)

        # set up aliases so that apt[i] is backed by memory in x
        # and self.gf is backed by memory in gx
        cur_pos = 0
        self.gf = []
        for i, p in enumerate(apt):
            p_size = prod(p.shape)
            # set up alias
            apt[i] = x[cur_pos: cur_pos + p_size].reshape(p.shape)
            self.gf.append(gx[cur_pos: cur_pos + p_size].reshape(p.shape))
            # initialize with p's value
            apt[i][...] = p
            cur_pos += p_size

        f_x = f(*[p.copy() for p in apt])

        # now iterate over the elements of x, and call f on apt.
        x_copy = x.copy()
        for i in xrange(total_size):
            x[:] = x_copy

            x[i] += eps
            f_eps = f(*apt)

            # TODO: remove this when it is clear that the next
            # replacemement does not pose problems of its own.  It was replaced
            # for its inability to handle complex variables.
            # gx[i] = numpy.asarray((f_eps - f_x) / eps)

            gx[i] = ((f_eps - f_x) / eps)

        if packed_pt:
            self.gf = self.gf[0]

    @staticmethod
    def abs_rel_err(a, b):
        """Return absolute and relative error between a and b.

        The relative error is a small number when a and b are close, relative
        to how big they are.

        Formulas used:
            abs_err = abs(a - b)
            rel_err = abs_err / max(abs(a) + abs(b), 1e-8)

        The denominator is clipped at 1e-8 to avoid dividing by 0 when a and b
        are both close to 0.

        The tuple (abs_err, rel_err) is returned
        """
        abs_err = abs(a - b)
        rel_err = abs_err / numpy.maximum(abs(a) + abs(b), 1e-8)
        # The numpy.asarray are needed as if a or b is a sparse matrix
        # this would result in a numpy.matrix and not a numpy.ndarray
        # and the behave differently causing problem later.
        # In particular a_npy_matrix.flatten().shape == (1, n_element)
        abs_err = numpy.asarray(abs_err)
        rel_err = numpy.asarray(rel_err)
        return (abs_err, rel_err)

    def abs_rel_errors(self, g_pt):
        """Return the abs and rel error of gradient estimate `g_pt`

        `g_pt` must be a list of ndarrays of the same length as self.gf,
        otherwise a ValueError is raised.

        Corresponding ndarrays in `g_pt` and `self.gf` must have the same
        shape or ValueError is raised.

        """
        if len(g_pt) != len(self.gf):
            raise ValueError('argument has wrong number of elements',
                             len(g_pt))
        errs = []
        for i, (a, b) in enumerate(zip(g_pt, self.gf)):
            if a.shape != b.shape:
                raise ValueError('argument element %i has wrong shape %s' % (
                    i, str((a.shape, b.shape))))
            errs.append(numeric_grad.abs_rel_err(a, b))
        return errs

    def max_err(self, g_pt, abs_tol, rel_tol):
        """Find the biggest error between g_pt and self.gf.

        What is measured is the violation of relative and absolute errors,
        wrt the provided tolerances (abs_tol, rel_tol).
        A value > 1 means both tolerances are exceeded.

        Return the argmax of min(abs_err / abs_tol, rel_err / rel_tol) over
        g_pt, as well as abs_err and rel_err at this point.
        """
        pos = []
        errs = []
        abs_errs = []
        rel_errs = []

        abs_rel_errs = self.abs_rel_errors(g_pt)
        for abs_err, rel_err in abs_rel_errs:
            if not numpy.all(numpy.isfinite(abs_err)):
                raise ValueError('abs_err not finite', repr(abs_err))
            if not numpy.all(numpy.isfinite(rel_err)):
                raise ValueError('rel_err not finite', repr(rel_err))
            scaled_err = numpy.minimum(abs_err / abs_tol, rel_err / rel_tol)
            max_i = scaled_err.argmax()

            pos.append(max_i)
            errs.append(scaled_err.flatten()[max_i])
            abs_errs.append(abs_err.flatten()[max_i])
            rel_errs.append(rel_err.flatten()[max_i])

        # max over the arrays in g_pt
        max_arg = numpy.argmax(errs)
        max_pos = pos[max_arg]
        return (max_arg, max_pos, abs_errs[max_arg], rel_errs[max_arg])


def verify_grad(fun, pt, n_tests=2, rng=None, eps=None,
                out_type=None, abs_tol=None,
                rel_tol=None, mode=None, cast_to_output_type=False):
    """Test a gradient by Finite Difference Method. Raise error on failure.

    Example:
        >>> verify_grad(theano.tensor.tanh,
        ...             (numpy.asarray([[2,3,4], [-1, 3.3, 9.9]]),),
        ...             rng=numpy.random)

    Raises an Exception if the difference between the analytic gradient and
    numerical gradient (computed through the Finite Difference Method) of a
    random projection of the fun's output to a scalar exceeds the given
    tolerance.

    :param fun: a Python function that takes Theano variables as inputs,
        and returns a Theano variable. For instance, an Op instance with
        a single output.
    :param pt: the list of numpy.ndarrays to use as input values.
        These arrays must be either float32 or float64 arrays.
    :param n_tests: number of times to run the test
    :param rng: random number generator used to sample u, we test gradient
        of sum(u * fun) at pt
    :param eps: stepsize used in the Finite Difference Method (Default
        None is type-dependent)
        Raising the value of eps can raise or lower the absolute and
        relative errors of the verification depending on the
        Op. Raising eps does not lower the verification quality
        for linear operations. It
        is better to raise eps than raising abs_tol or rel_tol.
    :param out_type: dtype of output, if complex (i.e. 'complex32' or
        'complex64')
    :param abs_tol: absolute tolerance used as threshold for gradient
        comparison
    :param rel_tol: relative tolerance used as threshold for gradient
        comparison
    :param cast_to_output_type: if the output is float32 and
        cast_to_output_type is True, cast the random projection to
        float32. Otherwise it is float64.

    :note: WARNING to unit-test writers: if `op` is a function that builds
        a graph, try to make it a SMALL graph.  Often verify grad is run
        in debug mode, which can be very slow if it has to verify a lot of
        intermediate computations.

    :note: This function does not support multiple outputs. In
        tests/test_scan.py there is an experimental verify_grad that
        covers that case as well by using random projections.

    """
    # The import is here to prevent circular import.
    from theano import compile, shared
    import theano.tensor
    from theano.tensor import as_tensor_variable, TensorType
    assert isinstance(pt, (list, tuple))
    pt = [numpy.array(p) for p in pt]

    for i, p in enumerate(pt):
        if p.dtype not in ('float32', 'float64'):
            raise TypeError(
                ('verify_grad can work only with floating point '
                 'inputs, but input %i has dtype "%s".') % (i, p.dtype))

    _type_tol = dict(  # relative error tolerances for different types
        float32=1e-2,
        float64=1e-4)

    if abs_tol is None:
        abs_tol = builtins.max(_type_tol[str(p.dtype)] for p in pt)
    if rel_tol is None:
        rel_tol = builtins.max(_type_tol[str(p.dtype)] for p in pt)

    if rng is None:
        raise TypeError(('rng should be a valid instance of '
                        'numpy.random.RandomState. You may '
                         'want to use theano.tests.unittest'
                         '_tools.verify_grad instead of '
                         'theano.gradient.verify_grad.'))

    # We allow input downcast in function, because numeric_grad works in the
    # most precise dtype used among the inputs, so we may need to cast some.
    def function(inputs, output, name):
        f = compile.function(inputs, output, accept_inplace=True,
                             allow_input_downcast=True, mode=mode,
                             on_unused_input='ignore', name=name)
        return f

    tensor_pt = [
        TensorType(
            as_tensor_variable(p).dtype,
            as_tensor_variable(p).broadcastable)(name='input %i' % i)
        for i, p in enumerate(pt)]

    # fun can be either a function or an actual Op instance
    o_output = fun(*tensor_pt)

    if isinstance(o_output, list):
        raise NotImplementedError(('cant (yet) autotest gradient of fun '
                                   'with multiple outputs'))
        # we could make loop over outputs making random projections R for each,
        # but this doesn't handle the case where not all the outputs are
        # differentiable... so I leave this as TODO for now -JB.

    o_fn = function(tensor_pt, o_output, name='gradient.py fwd')
    o_fn_out = o_fn(*[p.copy() for p in pt])

    if isinstance(o_fn_out, tuple) or isinstance(o_fn_out, list):
        raise TypeError(
            'It seems like you are trying to use verify_grad '
            'on an op or a function which outputs a list: there should'
            ' be a single (array-like) output instead')

    # random_projection should not have elements too small,
    # otherwise too much precision is lost in numerical gradient
    def random_projection():
        plain = rng.rand(*o_fn_out.shape) + 0.5
        if cast_to_output_type and o_output.dtype == "float32":
            return numpy.array(plain, o_output.dtype)
        return plain

    t_r = shared(random_projection())
    t_r.name = 'random_projection'

    # random projection of o onto t_r
    # This sum() is defined above, it's not the builtin sum.
    cost = theano.tensor.sum(t_r * o_output)

    cost_fn = function(tensor_pt, cost, name='gradient.py cost')

    symbolic_grad = grad(cost, tensor_pt,
                         disconnected_inputs='ignore')

    grad_fn = function(tensor_pt, symbolic_grad,
                       name='gradient.py symbolic grad')

    for test_num in xrange(n_tests):
        try:
            num_grad = numeric_grad(cost_fn, [p.copy() for p in pt],
                                    eps, out_type)

            analytic_grad = grad_fn(*[p.copy() for p in pt])

            # Since `tensor_pt` is a list, `analytic_grad` should be one too.
            assert isinstance(analytic_grad, list)

            max_arg, max_err_pos, max_abs_err, max_rel_err = num_grad.max_err(
                analytic_grad, abs_tol, rel_tol)

            if max_abs_err > abs_tol and max_rel_err > rel_tol:

                raise verify_grad.E_grad(max_arg, max_err_pos,
                                         max_abs_err, max_rel_err,
                                         abs_tol, rel_tol)

            # get new random projection for next test
            if test_num < n_tests - 1:
                t_r.set_value(random_projection(), borrow=True)
        except Exception as e:
            e.args += ("\nThe error happened with the following inputs:", pt,
                       "\nThe value of eps is:", eps,
                       "\nThe out_type is:", out_type)
            raise


class GradientError(Exception):
    """This error is raised when a gradient is calculated, but incorrect."""
    def __init__(self, arg, err_pos, abs_err, rel_err, abs_tol, rel_tol):
        Exception.__init__(self)  # to be compatible with python2.4
        self.arg = arg
        self.err_pos = err_pos
        self.abs_err = abs_err
        self.rel_err = rel_err
        self.abs_tol = abs_tol
        self.rel_tol = rel_tol

    def __str__(self):
        # args may have been inserted by e.g. makeTester
        args_msg = ", ".join(str(a) for a in self.args)
        return """\
GradientError: numeric gradient and analytic gradient exceed tolerance:
        At position %i of argument %i,
            abs. error = %f,  abs. tolerance = %f
            rel. error = %f,  rel. tolerance = %f
Exception args: %s""" % (self.err_pos, self.arg,
                         self.abs_err, self.abs_tol,
                         self.rel_err, self.rel_tol,
                         args_msg)

verify_grad.E_grad = GradientError


def jacobian(expression, wrt, consider_constant=None,
             disconnected_inputs='raise'):
    """
    :type expression: Vector (1-dimensional) Variable
    :type wrt: Variable or list of Variables

    :param consider_constant: a list of expressions not to backpropagate
        through

    :type disconnected_inputs: string
    :param disconnected_inputs: Defines the behaviour if some of the variables
        in ``wrt`` are not part of the computational graph computing ``cost``
        (or if all links are non-differentiable). The possible values are:
        - 'ignore': considers that the gradient on these parameters is zero.
        - 'warn': consider the gradient zero, and print a warning.
        - 'raise': raise an exception.

    :return: either a instance of Variable or list/tuple of Variables
            (depending upon `wrt`) repesenting the jacobian of `expression`
            with respect to (elements of) `wrt`. If an element of `wrt` is not
            differentiable with respect to the output, then a zero
            variable is returned. The return value is of same type
            as `wrt`: a list/tuple or TensorVariable in all cases.
    """
    from theano.tensor import arange
    # Check inputs have the right format
    assert isinstance(expression, Variable), \
        "tensor.jacobian expects a Variable as `expression`"
    assert expression.ndim < 2, \
        ("tensor.jacobian expects a 1 dimensional variable as "
         "`expression`. If not use flatten to make it a vector")

    using_list = isinstance(wrt, list)
    using_tuple = isinstance(wrt, tuple)

    if isinstance(wrt, (list, tuple)):
        wrt = list(wrt)
    else:
        wrt = [wrt]

    if expression.ndim == 0:
        # expression is just a scalar, use grad
        return format_as(using_list, using_tuple,
                         grad(expression,
                              wrt,
                              consider_constant=consider_constant,
                              disconnected_inputs=disconnected_inputs))

    def inner_function(*args):
        idx = args[0]
        expr = args[1]
        rvals = []
        for inp in args[2:]:
            rval = grad(expr[idx],
                        inp,
                        consider_constant=consider_constant,
                        disconnected_inputs=disconnected_inputs)
            rvals.append(rval)
        return rvals
    # Computing the gradients does not affect the random seeds on any random
    # generator used n expression (because during computing gradients we are
    # just backtracking over old values. (rp Jan 2012 - if anyone has a
    # counter example please show me)
    jacobs, updates = theano.scan(inner_function,
                                  sequences=arange(expression.shape[0]),
                                  non_sequences=[expression] + wrt)
    assert not updates, \
        ("Scan has returned a list of updates. This should not "
         "happen! Report this to theano-users (also include the "
         "script that generated the error)")
    return format_as(using_list, using_tuple, jacobs)


def hessian(cost, wrt, consider_constant=None,
            disconnected_inputs='raise'):
    """
    :type cost: Scalar (0-dimensional) Variable.
    :type wrt: Vector (1-dimensional tensor) 'Variable' or list of
               vectors (1-dimensional tensors) Variables

    :param consider_constant: a list of expressions not to backpropagate
        through

    :type disconnected_inputs: string
    :param disconnected_inputs: Defines the behaviour if some of the variables
        in ``wrt`` are not part of the computational graph computing ``cost``
        (or if all links are non-differentiable). The possible values are:
        - 'ignore': considers that the gradient on these parameters is zero.
        - 'warn': consider the gradient zero, and print a warning.
        - 'raise': raise an exception.

    :return: either a instance of Variable or list/tuple of Variables
            (depending upon `wrt`) repressenting the Hessian of the `cost`
            with respect to (elements of) `wrt`. If an element of `wrt` is not
            differentiable with respect to the output, then a zero
            variable is returned. The return value is of same type
            as `wrt`: a list/tuple or TensorVariable in all cases.
    """
    from theano.tensor import arange
    # Check inputs have the right format
    assert isinstance(cost, Variable), \
        "tensor.hessian expects a Variable as `cost`"
    assert cost.ndim == 0, \
        "tensor.hessian expects a 0 dimensional variable as `cost`"

    using_list = isinstance(wrt, list)
    using_tuple = isinstance(wrt, tuple)

    if isinstance(wrt, (list, tuple)):
        wrt = list(wrt)
    else:
        wrt = [wrt]

    hessians = []
    for input in wrt:
        assert isinstance(input, Variable), \
            "tensor.hessian expects a (list of) Variable as `wrt`"
        assert input.ndim == 1, \
            "tensor.hessian expects a (list of) 1 dimensional variable "\
            "as `wrt`"
        expr = grad(cost, input, consider_constant=consider_constant,
                    disconnected_inputs=disconnected_inputs)

        # It is possible that the inputs are disconnected from expr,
        # even if they are connected to cost.
        # This should not be an error.
        hess, updates = theano.scan(lambda i, y, x: grad(
            y[i],
            x,
            consider_constant=consider_constant,
            disconnected_inputs='ignore'),
            sequences=arange(expr.shape[0]),
            non_sequences=[expr, input])
        assert not updates, \
            ("Scan has returned a list of updates. This should not "
             "happen! Report this to theano-users (also include the "
             "script that generated the error)")
        hessians.append(hess)
    return format_as(using_list, using_tuple, hessians)


def _is_zero(x):
    """
    Returns 'yes', 'no', or 'maybe' indicating whether x
    is always 0.
    'maybe' means that x is an expression that is complicated enough
    that we can't tell that it simplifies to 0.
    """
    if not hasattr(x, 'type'):
        return np.all(x == 0.)
    if isinstance(x.type, NullType):
        return 'no'
    if isinstance(x.type, DisconnectedType):
        return 'yes'

    no_constant_value = True
    try:
        constant_value = theano.get_scalar_constant_value(x)
        no_constant_value = False
    except theano.tensor.basic.NotScalarConstantError:
        pass

    if no_constant_value:
        return 'maybe'

    if constant_value != 0.:
        return 'no'

    return 'yes'


class ConsiderConstant(ViewOp):
    def grad(self, args, g_outs):
        return [g_out.zeros_like(g_out) for g_out in g_outs]


consider_constant_ = ConsiderConstant()


# I create a function only to have the doc show well.
def consider_constant(x):
    """
    DEPRECATED: use zero_grad() or disconnected_grad() instead.

    Consider an expression constant when computing gradients.

    The expression itself is unaffected, but when its gradient is
    computed, or the gradient of another expression that this
    expression is a subexpression of, it will not be backpropagated
    through. In other words, the gradient of the expression is
    truncated to 0.

    :param x: A Theano expression whose gradient should be truncated.

    :return: The expression is returned unmodified, but its gradient
        is now truncated to 0.

    .. versionadded:: 0.7
    """
    warnings.warn((
        "consider_constant() is deprecated, use zero_grad() or "
        "disconnected_grad() instead."), stacklevel=3)

    return consider_constant_(x)


class ZeroGrad(ViewOp):
    def grad(self, args, g_outs):
        return [g_out.zeros_like(g_out) for g_out in g_outs]


zero_grad_ = ZeroGrad()


def zero_grad(x):
    """
    Consider an expression constant when computing gradients.

    The expression itself is unaffected, but when its gradient is
    computed, or the gradient of another expression that this
    expression is a subexpression of, it will be backpropagated
    through with a value of zero. In other words, the gradient of
    the expression is truncated to 0.

    :param x: A Theano expression whose gradient should be truncated.

    :return: The expression is returned unmodified, but its gradient
        is now truncated to 0.
    """
    return zero_grad_(x)


class DisconnectedGrad(ViewOp):
    def grad(self, args, g_outs):
        return [disconnected_type() for g_out in g_outs]

    def connection_pattern(self, node):
        return [[False]]

disconnected_grad_ = DisconnectedGrad()


def disconnected_grad(x):
    """
    Consider an expression constant when computing gradients,
    while effectively not backpropagating through it.

    The expression itself is unaffected, but when its gradient is
    computed, or the gradient of another expression that this
    expression is a subexpression of, it will not be backpropagated
    through. This is effectively equivalent to truncating the gradient
    expression to 0, but is executed faster than zero_grad(), which stilll
    has to go through the underlying computational graph related to the
    expression.

    :param x: A Theano expression whose gradient should not be
              backpropagated through.

    :return: The expression is returned unmodified, but its gradient
        is now effectively truncated to 0.
    """
    return disconnected_grad_(x)


class GradClip(ViewOp):
    # See doc in user fct grad_clip
    __props__ = ()

    def __init__(self, clip_lower_bound, clip_upper_bound):
        # We do not put those member in __eq__ or __hash__
        # as they do not influence the perform of this op.
        self.clip_lower_bound = clip_lower_bound
        self.clip_upper_bound = clip_upper_bound
        assert(self.clip_upper_bound >= self.clip_lower_bound)

    def grad(self, args, g_outs):
        return [theano.tensor.clip(g_out, self.clip_lower_bound,
                                   self.clip_upper_bound)
                for g_out in g_outs]


def grad_clip(x, lower_bound, upper_bound):
    """
    This op do a view in the forward, but clip the gradient.

    This is an elemwise operation.

    :param x: the variable we want its gradient inputs clipped
    :param lower_bound: The lower bound of the gradient value
    :param upper_bound: The upper bound of the gradient value.

    :examples:

        x = theano.tensor.scalar()

        z = theano.tensor.grad(grad_clip(x, -1, 1)**2, x)
        z2 = theano.tensor.grad(x**2, x)

        f = theano.function([x], outputs = [z, z2])

        print(f(2.0))  # output (1.0, 4.0)

    :note: We register an opt in tensor/opt.py that remove the GradClip.
       So it have 0 cost in the forward and only do work in the grad.

    """
    return GradClip(lower_bound, upper_bound)(x)