/usr/lib/python2.7/dist-packages/theano/gradient.py is in python-theano 0.8.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 | """Driver for gradient calculations."""
from __future__ import print_function
import six.moves.builtins as builtins
import logging
import time
import traceback
import warnings
import numpy # for numeric_grad
from six import itervalues
from six.moves import StringIO
import theano
from theano import gof
from theano.gof import Variable
from theano.compat import OrderedDict, izip
from six.moves import xrange, reduce
from theano.gof.null_type import NullType, null_type
from theano.gof.op import get_debug_values
from theano.compile import ViewOp
np = numpy
__authors__ = "James Bergstra, Razvan Pascanu, Arnaud Bergeron, Ian Goodfellow"
__copyright__ = "(c) 2011, Universite de Montreal"
__license__ = "3-clause BSD License"
__contact__ = "theano-dev <theano-dev@googlegroups.com>"
__docformat__ = "restructuredtext en"
_logger = logging.getLogger('theano.gradient')
# we can't do "import theano.tensor"
# tensor depends on theano.compile
# theano.compile depends on theano.gradient (this file)
# the reason theano.compile depends on theano.gradient
# is that theano.compile.builders contains the op from graph
# functionality and it uses theano.gradient to implement
# the new op's grad method
tensor = None
_msg_retType = 'op.grad(...) returned a non-list'
grad_time = 0
def format_as(use_list, use_tuple, outputs):
"""
Formats the outputs according to the flags `use_list` and `use_tuple`.
If `use_list` is True, `outputs` is returned as a list (if `outputs`
is not a list or a tuple then it is converted in a one element list).
If `use_tuple` is True, `outputs` is returned as a tuple (if `outputs`
is not a list or a tuple then it is converted into a one element tuple).
Otherwise (if both flags are false), `outputs` is returned.
"""
assert not (use_list and use_tuple), \
"Both flags cannot be simultaneously True"
if (use_list or use_tuple) and not isinstance(outputs, (list, tuple)):
if use_list:
return [outputs]
else:
return (outputs,)
elif not (use_list or use_tuple) and isinstance(outputs, (list, tuple)):
assert len(outputs) == 1, \
"Wrong arguments. Expected a one element list"
return outputs[0]
elif use_list or use_tuple:
if use_list:
return list(outputs)
else:
return tuple(outputs)
else:
return outputs
def grad_not_implemented(op, x_pos, x, comment=""):
"""
Return an un-computable symbolic variable of type `x.type`.
If any call to tensor.grad results in an expression containing this
un-computable variable, an exception (NotImplementedError) will be
raised indicating that the gradient on the
`x_pos`'th input of `op` has not been implemented. Likewise if
any call to theano.function involves this variable.
Optionally adds a comment to the exception explaining why this
gradient is not implemented.
"""
return (NullType((
"This variable is Null because the grad method for "
"input %s (%s) of the %s op is not implemented. %s"
) % (x_pos, x, op, comment)))()
def grad_undefined(op, x_pos, x, comment=""):
"""
Return an un-computable symbolic variable of type `x.type`.
If any call to tensor.grad results in an expression containing this
un-computable variable, an exception (GradUndefinedError) will be
raised indicating that the gradient on the
`x_pos`'th input of `op` is mathematically undefined. Likewise if
any call to theano.function involves this variable.
Optionally adds a comment to the exception explaining why this
gradient is not defined.
"""
return (NullType(
(
"This variable is Null because the grad method for "
"input %s (%s) of the %s op is mathematically undefined. %s"
) % (x_pos, x, op, comment)))()
class DisconnectedType(theano.gof.type.Type):
""" A type indicating that a variable is a result
of taking the gradient of c with respect to x
when c is not a function of x.
A symbolic placeholder for 0, but to convey
the extra information that this gradient is 0
because it is disconnected.
"""
def filter(self, data, strict=False, allow_downcast=None):
raise AssertionError(
(
"If you're assigning to a DisconnectedType you're"
" doing something wrong. It should only be used as"
" a symbolic placeholder."
))
def fiter_variable(self, other):
raise AssertionError(
(
"If you're assigning to a DisconnectedType you're"
" doing something wrong. It should only be used as"
" a symbolic placeholder."
))
def may_share_memory(a, b):
return False
def value_eq(a, b, force_same_dtype=True):
raise AssertionError(
(
"If you're assigning to a DisconnectedType you're"
" doing something wrong. It should only be used as"
" a symbolic placeholder."
))
def __str__(self):
return 'DisconnectedType'
disconnected_type = DisconnectedType()
########################
# R Operator
########################
def Rop(f, wrt, eval_points):
"""
Computes the R operation on `f` wrt to `wrt` evaluated at points given
in `eval_points`. Mathematically this stands for the jacobian of `f` wrt
to `wrt` right muliplied by the eval points.
:type f: Variable or list of Variables
`f` stands for the output of the computational graph to which you
want to apply the R operator
:type wrt: Variable or list of `Variables`s
variables for which you compute the R operator of the expression
described by `f`
:type eval_points: Variable or list of Variables
evalutation points for each of the variables in `wrt`
:rtype: Variable or list/tuple of Variables depending on type of f
:return: symbolic expression such that
R_op[i] = sum_j ( d f[i] / d wrt[j]) eval_point[j]
where the indices in that expression are magic multidimensional
indices that specify both the position within a list and all
coordinates of the tensor element in the last.
If `wrt` is a list/tuple, then return a list/tuple with the results.
"""
from theano.tensor import as_tensor_variable
using_list = isinstance(f, list)
using_tuple = isinstance(f, tuple)
if not isinstance(wrt, (list, tuple)):
wrt = [wrt]
if not isinstance(eval_points, (list, tuple)):
eval_points = [eval_points]
if not isinstance(f, (list, tuple)):
f = [f]
assert len(wrt) == len(eval_points)
# Check that each element of wrt corresponds to an element
# of eval_points with the same dimensionality.
for pack in enumerate(zip(wrt, eval_points)):
i = pack[0]
wrt_elem, eval_point = pack[1]
if not isinstance(wrt_elem, gof.Variable):
wrt_elem = as_tensor_variable(wrt_elem)
if not isinstance(eval_point, gof.Variable):
eval_point = as_tensor_variable(eval_point)
try:
if wrt_elem.type.ndim != eval_point.type.ndim:
raise ValueError('Element ' +
str(i) +
' of wrt/eval_point have mismatched ' +
'dimensionality: ' +
str(wrt_elem.type.ndim) +
' versus ' +
str(eval_point.type.ndim))
except AttributeError:
# wrt_elem and eval_point don't always have ndim like random type
# Tensor, Sparse and CudaNdArray have the ndim attribute
pass
seen_nodes = OrderedDict()
def _traverse(node):
""" TODO: writeme """
if node is None:
return
op = node.op
inputs = node.inputs
# Compute the evaluation points corresponding to each of the
# inputs of the node
local_eval_points = []
for inp in inputs:
if inp in wrt:
local_eval_points.append(eval_points[wrt.index(inp)])
elif inp.owner is None:
try:
local_eval_points.append(inp.zeros_like())
except:
# None should be used for non-differentiable
# arguments, like for example random states
local_eval_points.append(None)
elif inp.owner in seen_nodes:
local_eval_points.append(
seen_nodes[inp.owner][inp.owner.outputs.index(inp)])
else:
# We actually need to compute the R_op for this node
_traverse(inp.owner)
local_eval_points.append(
seen_nodes[inp.owner][inp.owner.outputs.index(inp)])
same_type_eval_points = []
for x, y in zip(inputs, local_eval_points):
if y is not None:
if not isinstance(x, gof.Variable):
x = as_tensor_variable(x)
if not isinstance(y, gof.Variable):
y = as_tensor_variable(y)
try:
y = x.type.filter_variable(y)
except TypeError:
# This is a hack
# Originally both grad and Rop were written
# with the assumption that a variable and the
# gradient wrt that variable would have the same
# dtype. This was a bad assumption because the
# gradient wrt an integer can take on non-integer
# values.
# grad is now fixed, but Rop is not, so when grad
# does the right thing and violates this assumption
# we have to make it be wrong for Rop to keep working
# Rop should eventually be upgraded to handle integers
# correctly, the same as grad
y = theano.tensor.cast(y, x.type.dtype)
y = x.type.filter_variable(y)
assert x.type == y.type
same_type_eval_points.append(y)
else:
same_type_eval_points.append(y)
seen_nodes[node] = op.R_op(node.inputs, same_type_eval_points)
# end _traverse
# Populate the dictionary
for out in f:
_traverse(out.owner)
rval = []
for out in f:
if out in wrt:
rval.append(eval_points[wrt.index(out)])
elif seen_nodes[out.owner][out.owner.outputs.index(out)] is None:
raise ValueError(('The function is not differentiable with '
'respect to the provided inputs !'))
else:
rval.append(seen_nodes[out.owner][out.owner.outputs.index(out)])
return format_as(using_list, using_tuple, rval)
def Lop(f, wrt, eval_points, consider_constant=None,
disconnected_inputs='raise'):
"""
Computes the L operation on `f` wrt to `wrt` evaluated at points given
in `eval_points`. Mathematically this stands for the jacobian of `f` wrt
to `wrt` left muliplied by the eval points.
:type f: Variable or list of Variables
`f` stands for the output of the computational graph to which you
want to apply the L operator
:type wrt: Variable or list of `Variables`s
variables for which you compute the L operator of the expression
described by `f`
:type eval_points: Variable or list of Variables
evalutation points for each of the variables in `f`
:rtype: Variable or list/tuple of Variables depending on type of f
:return: symbolic expression such that
L_op[i] = sum_i ( d f[i] / d wrt[j]) eval_point[i]
where the indices in that expression are magic multidimensional
indices that specify both the position within a list and all
coordinates of the tensor element in the last
If `f` is a list/tuple, then return a list/tuple with the results.
"""
if type(eval_points) not in (list, tuple):
eval_points = [eval_points]
using_list = isinstance(wrt, list)
using_tuple = isinstance(wrt, tuple)
if not isinstance(f, (list, tuple)):
f = [f]
# make copies of f and grads so we don't modify the client's copy
f = list(f)
grads = list(eval_points)
if not isinstance(wrt, (list, tuple)):
wrt = [wrt]
assert len(f) == len(grads)
known = dict(izip(f, grads))
ret = grad(cost=None, known_grads=known,
consider_constant=consider_constant, wrt=wrt,
disconnected_inputs=disconnected_inputs)
return format_as(using_list, using_tuple, ret)
#########################
# Gradient
#########################
def grad(cost, wrt, consider_constant=None,
disconnected_inputs='raise', add_names=True,
known_grads=None, return_disconnected='zero',
null_gradients='raise'):
"""
Return symbolic gradients for one or more variables with respect to some
cost.
For more information about how automatic differentiation works in Theano,
see :mod:`gradient`. For information on how to implement the gradient of
a certain Op, see :func:`grad`.
Parameters
----------
cost : scalar (0-dimensional) tensor variable or None
Value with respect to which we are differentiating. May be
`None` if known_grads is provided.
wrt : variable or list of variables
term[s] for which we want gradients
consider_constant : list of variables
expressions not to backpropagate through
disconnected_inputs : {'ignore', 'warn', 'raise'}
Defines the behaviour if some of the variables in `wrt` are
not part of the computational graph computing `cost` (or if
all links are non-differentiable). The possible values are:
- 'ignore': considers that the gradient on these parameters is zero.
- 'warn': consider the gradient zero, and print a warning.
- 'raise': raise DisconnectedInputError.
add_names : bool
If True, variables generated by grad will be named
(d<cost.name>/d<wrt.name>) provided that both cost and wrt
have names
known_grads : dict, optional
A dictionary mapping variables to their gradients. This is
useful in the case where you know the gradient on some
variables but do not know the original cost.
return_disconnected : {'zero', 'None', 'Disconnected'}
- 'zero' : If wrt[i] is disconnected, return value i will be
wrt[i].zeros_like()
- 'None' : If wrt[i] is disconnected, return value i will be
None
- 'Disconnected' : returns variables of type DisconnectedType
null_gradients : {'raise', 'return'}
Defines the behaviour if some of the variables in `wrt` have a
null gradient. The possibles values are:
- 'raise' : raise a NullTypeGradError exception
- 'return' : return the null gradients
Returns
-------
variable or list/tuple of variables (matches `wrt`)
symbolic expression of gradient of `cost` with respect to each
of the `wrt` terms. If an element of `wrt` is not
differentiable with respect to the output, then a zero
variable is returned.
"""
t0 = time.time()
global tensor
if tensor is None:
from theano import tensor
if cost is None:
if known_grads is None:
raise AssertionError("cost and known_grads can't both be None.")
if cost is not None and isinstance(cost.type, NullType):
raise ValueError("Can't differentiate a NaN cost."
"cost is NaN because " +
cost.type.why_null)
if cost is not None and cost.ndim != 0:
raise TypeError("cost must be a scalar.")
if isinstance(wrt, set):
raise TypeError("wrt must not be a set. sets have no defined "
"iteration order, so we can't return gradients in a"
" matching order.")
using_list = isinstance(wrt, list)
using_tuple = isinstance(wrt, tuple)
if not using_list and not using_tuple:
wrt = [wrt]
for elem in wrt:
if not isinstance(elem, Variable):
raise TypeError("Expected Variable, got " + str(elem) +
" of type " + str(type(elem)))
outputs = []
if cost is not None:
outputs.append(cost)
if known_grads is not None:
outputs.extend(list(known_grads.keys()))
var_to_app_to_idx = _populate_var_to_app_to_idx(
outputs, wrt, consider_constant)
# build a dict mapping var to the gradient of cost with respect to var
grad_dict = OrderedDict()
if known_grads is None:
known_grads = OrderedDict()
# The gradient of the cost is 1 unless specified otherwise by known_grads.
if cost is not None:
if cost in known_grads:
g_cost = known_grads[cost]
else:
g_cost = _float_ones_like(cost)
# g_cost may be Disconnected or NullType. A creative use of the
# function, sure, but nonetheless one we can and should support.
# So before we try to cast it make sure it even has a dtype
if (hasattr(g_cost.type, 'dtype') and
cost.type.dtype not in tensor.discrete_dtypes):
# Here we enforce the constraint that floating point variables
# have the same dtype as their gradient.
g_cost = g_cost.astype(cost.type.dtype)
# DO NOT enforce g_cost to be 0 if cost is an integer.
# This is to be enforced by the Op.grad method for the
# Op that outputs cost.
if hasattr(g_cost.type, 'dtype'):
assert g_cost.type.dtype not in tensor.discrete_dtypes
grad_dict[cost] = g_cost
for var in known_grads:
g_var = known_grads[var]
if not hasattr(g_var, 'type'):
raise TypeError('output grads must be theano variables.'
'Ambiguous whether %s should be made into tensor'
' or sparse theano variable' % str(type(g_var)))
if (not isinstance(g_var.type, (NullType, DisconnectedType)) and
'float' not in str(g_var.type.dtype)):
raise TypeError("Gradients must always be NullType, "
"DisconnectedType, or continuous, but grad was "
"given a known_grad of type " + str(g_var.type))
# DO NOT check that these gradients are equal to 0 if var is int
# The gradient is allowed to be non-zero on var in that case
# Ops outputing var should not backpropagate its gradient further
# but that is enforced elsewhere (grep for only_connected_to_int)
grad_dict[var] = g_var
def handle_disconnected(var):
message = ("grad method was asked to compute the gradient "
"with respect to a variable that is not part of "
"the computational graph of the cost, or is used "
"only by a non-differentiable operator: %s" % var)
if disconnected_inputs == 'ignore':
pass
elif disconnected_inputs == 'warn':
warnings.warn(message, stacklevel=2)
elif disconnected_inputs == 'raise':
# Add the var trace
tr = getattr(var.tag, 'trace', [])
if len(tr) > 0:
message += "\nBacktrace when the node is created:\n"
# Print separate message for each element in the list of batcktraces
sio = StringIO()
for subtr in tr:
traceback.print_list(subtr, sio)
message += str(sio.getvalue())
raise DisconnectedInputError(message)
else:
raise ValueError("Invalid value for keyword "
"'disconnected_inputs', valid values are "
"'ignore', 'warn' and 'raise'.")
# variables that do not influence the cost have zero gradient.
# if wrt is such a variable, populate the grad_dict with this info
# so that wrt not being in var_to_app_to_idx won't cause an error below
# according to the flag, possibly raise an error if wrt is disconnected
for elem in wrt:
if elem not in var_to_app_to_idx and elem is not cost \
and elem not in grad_dict:
handle_disconnected(elem)
grad_dict[elem] = disconnected_type()
cost_name = None
if add_names and cost is not None:
cost_name = cost.name
# Make sure we didn't initialize the grad_dict with any ints
# The gradient may NEVER be an int, even if the variable is an int.
# Read the Op contract and talk to Ian Goodfellow before changing this!
for var in grad_dict:
g = grad_dict[var]
if hasattr(g.type, 'dtype'):
assert g.type.dtype in tensor.float_dtypes
rval = _populate_grad_dict(var_to_app_to_idx,
grad_dict, wrt, cost_name)
for i in xrange(len(rval)):
if isinstance(rval[i].type, NullType):
if null_gradients == 'raise':
raise NullTypeGradError("tensor.grad encountered a NaN. " +
rval[i].type.why_null)
else:
assert null_gradients == 'return'
if isinstance(rval[i].type, DisconnectedType):
handle_disconnected(rval[i])
if return_disconnected == 'zero':
rval[i] = _float_zeros_like(wrt[i])
elif return_disconnected == 'None':
rval[i] = None
else:
assert return_disconnected == 'Disconnected'
if using_tuple:
rval = tuple(rval)
elif not using_list:
rval, = rval
t1 = time.time()
global grad_time
grad_time += t1 - t0
return rval
def subgraph_grad(wrt, end, start=None, cost=None, details=False):
'''
With respect to `wrt`, computes gradients of cost and/or from
existing `start` gradients, up to the `end` variables of a
symbolic digraph. In other words, computes gradients for a
subgraph of the symbolic theano function. Ignores all disconnected
inputs.
This can be useful when one needs to perform the gradient descent
iteratively (e.g. one layer at a time in an MLP), or when a
particular operation is not differentiable in theano
(e.g. stochastic sampling from a multinomial). In the latter case,
the gradient of the non-differentiable process could be
approximated by user-defined formula, which could be calculated
using the gradients of a cost with respect to samples (0s and
1s). These gradients are obtained by performing a subgraph_grad
from the `cost` or previously known gradients (`start`) up to the
outputs of the stochastic process (`end`). A dictionary mapping
gradients obtained from the user-defined differentiation of the
process, to variables, could then be fed into another
subgraph_grad as `start` with any other `cost` (e.g. weight
decay).
In an MLP, we could use subgraph_grad to iteratively backpropagate:
.. code-block:: python
x, t = theano.tensor.fvector('x'), theano.tensor.fvector('t')
w1 = theano.shared(np.random.randn(3,4))
w2 = theano.shared(np.random.randn(4,2))
a1 = theano.tensor.tanh(theano.tensor.dot(x,w1))
a2 = theano.tensor.tanh(theano.tensor.dot(a1,w2))
cost2 = theano.tensor.sqr(a2 - t).sum()
cost2 += theano.tensor.sqr(w2.sum())
cost1 = theano.tensor.sqr(w1.sum())
params = [[w2],[w1]]
costs = [cost2,cost1]
grad_ends = [[a1], [x]]
next_grad = None
param_grads = []
for i in xrange(2):
param_grad, next_grad = theano.subgraph_grad(
wrt=params[i], end=grad_ends[i],
start=next_grad, cost=costs[i]
)
next_grad = dict(zip(grad_ends[i], next_grad))
param_grads.extend(param_grad)
:type wrt: list of variables
:param wrt:
Gradients are computed with respect to `wrt`.
:type end: list of variables
:param end:
Theano variables at which to end gradient descent (they are
considered constant in theano.grad). For convenience, the
gradients with respect to these variables are also returned.
:type start: dictionary of variables
:param start:
If not None, a dictionary mapping variables to their
gradients. This is useful when the gradient on some variables
are known. These are used to compute the gradients backwards up
to the variables in `end` (they are used as known_grad in
theano.grad).
:type cost: scalar (0-dimensional) variable
:param cost:
Additional costs for which to compute the gradients. For
example, these could be weight decay, an l1 constraint, MSE,
NLL, etc. May optionally be None if start is provided. Warning
: If the gradients of `cost` with respect to any of the `start`
variables is already part of the `start` dictionary, then it may
be counted twice with respect to `wrt` and `end`.
.. warning::
If the gradients of `cost` with respect to any of the `start`
variables is already part of the `start` dictionary, then it
may be counted twice with respect to `wrt` and `end`.
:type details: bool
:param details:
When True, additionally returns the list of gradients from
`start` and of `cost`, respectively, with respect to `wrt` (not
`end`).
:rtype: Tuple of 2 or 4 Lists of Variables
:return: Returns lists of gradients with respect to `wrt` and `end`,
respectively.
.. versionadded:: 0.7
'''
assert ((cost is not None) or (start is not None))
assert isinstance(end, list)
assert isinstance(wrt, list)
if start is not None:
assert isinstance(start, dict)
params = list(set(wrt + end))
start_grads = None
cost_grads = None
if start is not None:
start_grads = list(
theano.grad(
cost=None, wrt=params, known_grads=start,
consider_constant=end,
disconnected_inputs='ignore'
)
)
if cost is not None:
cost_grads = list(
theano.grad(
cost=cost, wrt=params,
consider_constant=end,
disconnected_inputs='ignore'
)
)
grads = None
if start is None:
grads = cost_grads
else:
grads = start_grads
if cost_grads is not None:
for i in range(len(grads)):
grads[i] += cost_grads[i]
pgrads = OrderedDict(izip(params, grads))
# separate wrt from end grads:
wrt_grads = list(pgrads[k] for k in wrt)
end_grads = list(pgrads[k] for k in end)
if details:
return wrt_grads, end_grads, start_grads, cost_grads
return wrt_grads, end_grads
def _node_to_pattern(node):
""" given an apply node, obtain its connection pattern
this is just a wrapper around Op.connection_pattern
that does type checking and supplies the default value
if the method is not implemented
"""
if hasattr(node.op, 'connection_pattern'):
connection_pattern = node.op.connection_pattern(node)
if not isinstance(connection_pattern, list):
raise TypeError(
"Op.connection_pattern should return " +
("list of list of bool, but for Op=%s" % node.op) +
"got %s with type %s." % (connection_pattern,
type(connection_pattern)))
if len(connection_pattern) != len(node.inputs):
raise ValueError(
'%s.connection_pattern should have %d' %
(node.op, len(node.inputs)) + ' rows but has %d.' %
len(connection_pattern))
for ii, output_pattern in enumerate(connection_pattern):
if not isinstance(output_pattern, list):
raise TypeError(
'%s.connection_pattern should return' %
node.op + ' a list of lists, but element %d' % ii +
'is %s of type %s.' % (output_pattern,
type(output_pattern)))
else:
connection_pattern = [[True for output in node.outputs]
for ipt in node.inputs]
assert isinstance(connection_pattern, list)
assert len(connection_pattern) == len(node.inputs)
for ii in xrange(len(node.inputs)):
assert isinstance(connection_pattern[ii], list)
assert len(connection_pattern[ii]) == len(node.outputs)
return connection_pattern
def _populate_var_to_app_to_idx(outputs, wrt, consider_constant):
"""
Helper function for grad function.
outputs: a list of variables we want to take gradients of
wrt: a list of variables we want to take the gradient with
respect to.
consider_constant: a list of variables not to backpropagate
through.
returns:
var_to_app_to_idx:
A dictionary mapping a variable to a second dictionary.
The second dictionary maps apply nodes acting on this
variable to the variable's index in the apply node's
input list.
This dictionary will only contain variables that
meet two criteria:
1) The elements of at least one output are a
function of the elements of the variable
2) The elements of the variable are a function of the
elements of at least one member of wrt.
This set is exactly the set of variables that connect
the variables in wrt to the cost being differentiated.
(A variable in consider_constant is not a function of
anything)
"""
# Validate and format consider_constant
if consider_constant is None:
consider_constant = []
else:
# error checking on consider_constant: verify that it is a collection
# of theano variables
# this is important, if someone accidentally passes a nested data
# structure with theano variables at the leaves, only the root will
# be properly considered constant
try:
iter(consider_constant)
except TypeError:
raise TypeError('consider_constant must be an iterable collection,'
' got ' + str(type(consider_constant)))
for elem in consider_constant:
if not isinstance(elem, gof.Variable):
raise TypeError('Elements of consider_constant must be '
'variables, but got ' + str(type(elem)))
# var_to_app_to_idx[var][node] = [i,j] means node has
# var as input at positions i and j
var_to_app_to_idx = OrderedDict()
# Set of variables that have been added to their true parents
# ('true' here means that the elements of the variable are a function
# of the elements of the parent, according to the op's
# connection_pattern)
# Note: we need to revisit the apply nodes repeatedly, because
# different outputs of the apply node are connected to
# different subsets of the inputs.
accounted_for = set([])
def account_for(var):
# Don't visit the same variable twice
if var in accounted_for:
return
accounted_for.add(var)
# Constants are not a function of anything
if var in consider_constant:
return
# Recursively add the variables that this variable is
# a function of.
if var.owner is not None:
app = var.owner
connection_pattern = _node_to_pattern(app)
var_idx = app.outputs.index(var)
for i, ipt in enumerate(app.inputs):
# don't process ipt if it is not a true
# parent of var
if not connection_pattern[i][var_idx]:
continue
if ipt not in var_to_app_to_idx:
# This object here *must* be an OrderedDict, because
# we iterate over its keys when adding up the terms of the
# gradient on ipt. If it is a regular dict, the grad method
# will return something that is analytically correct, but
# whose order of doing additions depends on the memory
# location of the apply nodes.
var_to_app_to_idx[ipt] = OrderedDict()
app_to_idx = var_to_app_to_idx[ipt]
if app not in app_to_idx:
app_to_idx[app] = []
idx = app_to_idx[app]
if i not in idx:
idx.append(i)
account_for(ipt)
# add all variables that are true ancestors of the cost
for output in outputs:
account_for(output)
# determine which variables have elements of wrt as a true
# ancestor. Do this with an upward pass starting from wrt,
# following only true connections
visited = set([])
def visit(var):
if var in visited:
return
if var not in var_to_app_to_idx:
return
visited.add(var)
nodes = var_to_app_to_idx[var]
for node in nodes:
connection_pattern = _node_to_pattern(node)
for idx in nodes[node]:
for ii, output in enumerate(node.outputs):
if connection_pattern[idx][ii]:
visit(output)
for elem in wrt:
visit(elem)
# Remove variables that don't have wrt as a true ancestor
orig_vars = list(var_to_app_to_idx.keys())
for var in orig_vars:
if var not in visited:
del var_to_app_to_idx[var]
return var_to_app_to_idx
class NullTypeGradError(TypeError):
"""
Raised when grad encounters a NullType.
"""
class DisconnectedInputError(ValueError):
"""
Raised when grad is asked to compute the gradient
with respect to a disconnected input and
disconnected_inputs='raise'.
"""
def _populate_grad_dict(var_to_app_to_idx,
grad_dict, wrt, cost_name=None):
"""
Helper function for grad function.
var_to_app_to_idx: a dictionary mapping a variable to
a second dictionary.
the second dictionary maps apply nodes acting on
this variable to the variable's index in the apply
node's input list
grad_dict: A dictionary mapping variables to their gradients.
Should be populated by grad function, which should:
-Set the gradient with respect to the cost to 1
-Load all gradients from known_grads, possibly
overriding the cost
-Set the gradient for disconnected
inputs to a variable with type DisconnectedType()
wrt: the minimal set of variables that must be included in grad_dict
cost_name: The name of the cost being differentiated, optional.
used to name the grad with respect to x as
(d<cost_name>/dx)
returns: a list of gradients corresponding to wrt
"""
# build a dict mapping node to the terms node contributes to each of
# its inputs' gradients
term_dict = OrderedDict()
def access_term_cache(node):
""" Populates term_dict[node] and returns it """
if node not in term_dict:
inputs = node.inputs
output_grads = [access_grad_cache(var) for var in node.outputs]
# list of bools indicating if each output is connected to the cost
outputs_connected = [not isinstance(g.type, DisconnectedType)
for g in output_grads]
connection_pattern = _node_to_pattern(node)
# list of bools indicating if each input is connected to the cost
inputs_connected = [
(True in [input_to_output and output_to_cost for
input_to_output, output_to_cost in
zip(input_to_outputs, outputs_connected)]) for
input_to_outputs in connection_pattern
]
# List of bools indicating if each output is an integer dtype
output_is_int = [hasattr(output.type, 'dtype') and
output.type.dtype in theano.tensor.discrete_dtypes
for output in node.outputs]
# List of bools indicating if each output is NullType
ograd_is_nan = [isinstance(output.type, NullType)
for output in output_grads]
# List of bools indicating if each input only has NullType outputs
only_connected_to_nan = [
(True not in
[in_to_out and out_to_cost and not out_nan
for in_to_out, out_to_cost, out_nan in
zip(in_to_outs, outputs_connected, ograd_is_nan)])
for in_to_outs in connection_pattern]
if True not in inputs_connected:
# All outputs of this op are disconnected so we can skip
# Calling the op's grad method and report that the inputs
# are disconnected
# (The op's grad method could do this too, but this saves the
# implementer the trouble of worrying about this case)
input_grads = [disconnected_type() for ipt in inputs]
elif False not in only_connected_to_nan:
# All inputs are only connected to nan gradients, so we don't
# need to bother calling the grad method. We know the gradient
# with respect to all connected inputs is nan.
input_grads = []
for connected in inputs_connected:
if connected:
input_grads.append(null_type())
else:
input_grads.append(disconnected_type())
else:
# At least one input of this op is connected to the cost so and
# not all output gradients are undefined so we must
# call the op's grad method
# Each Op's grad function requires inputs and output_grads
# If the Op destroys any input, but the grad expression uses
# it, then chances are the resulting graph will have a
# dependency cycle. We avoid this cycle by passing (symbolic)
# copies of each destroyed input.
try:
dinputs = [node.inputs[x[0]] for x in
itervalues(node.op.destroy_map)]
except AttributeError:
dinputs = []
def try_to_copy_if_needed(var):
if var in dinputs and hasattr(var, 'copy'):
return var.copy()
return var
inputs = [try_to_copy_if_needed(ipt) for ipt in inputs]
# Build a list of output gradients with the same dtype as
# the corresponding output variable.
# If an output is of a float dtype, we want to cast the
# output gradient into the same dtype, to avoid having a
# gradient graph with double precision (taking more memory,
# and more computation).
# If an output is of an integer dtype, then we just leave it
# alone.
# DO NOT force integer variables to have zero grad. This causes
# bugs where we fail to detect disconnected or undefined
# gradients.
# DO NOT force integer variables to have integer dtype.
# This is a violation of the op contract.
new_output_grads = []
for o, og in zip(node.outputs, output_grads):
o_dt = getattr(o.type, 'dtype', None)
og_dt = getattr(og.type, 'dtype', None)
if (o_dt not in theano.tensor.discrete_dtypes and
og_dt and o_dt != og_dt):
new_output_grads.append(og.astype(o_dt))
else:
new_output_grads.append(og)
# Make sure that, if new_output_grads[i] has a floating point
# dtype, it is the same dtype as outputs[i]
for o, ng in zip(node.outputs, new_output_grads):
o_dt = getattr(o.type, 'dtype', None)
ng_dt = getattr(ng.type, 'dtype', None)
if (ng_dt is not None and
o_dt not in theano.tensor.discrete_dtypes):
assert ng_dt == o_dt
# Someone who had obviously not read the Op contract tried
# to modify this part of the function.
# If you ever think it is a good idea to make an integer
# valued gradient, please
# 1) Read the Op contract again
# 2) Talk to Ian Goodfellow
# (Both of these sources will tell you not to do it)
for ng in new_output_grads:
assert (getattr(ng.type, 'dtype', None)
not in theano.tensor.discrete_dtypes)
# If config.compute_test_value is turned on, check that the
# gradients on the outputs of this node have the right shape.
# We also check the gradient on the inputs later--both checks
# are needed, because some gradients are only ever specified
# by the user, not computed by Op.grad, and some gradients are
# only computed and returned, but never passed as another
# node's output grads.
for idx, packed in enumerate(izip(node.outputs,
new_output_grads)):
orig_output, new_output_grad = packed
if not hasattr(orig_output, 'shape'):
continue
if isinstance(new_output_grad.type, DisconnectedType):
continue
for orig_output_v, new_output_grad_v in get_debug_values(
*packed):
o_shape = orig_output_v.shape
g_shape = new_output_grad_v.shape
if o_shape != g_shape:
raise ValueError(
"Got a gradient of shape " +
str(o_shape) + " on an output of shape " +
str(g_shape))
input_grads = node.op.grad(inputs, new_output_grads)
if input_grads is None:
raise TypeError("%s.grad returned NoneType, "
"expected iterable." % str(node.op))
if len(input_grads) != len(inputs):
raise ValueError(("%s returned the wrong number of" +
" gradient terms.") % str(node.op))
# We can not enforce this, as AdvancedSubtensor1 has an option to
# return the sparse grad for optimization reason.
# for ig, i in zip(input_grads, inputs):
# if (not isinstance(ig.type, (DisconnectedType, NullType)) and
# type(ig.type) != type(i.type)):
# raise ValueError(
# "%s returned the wrong type for gradient terms."
# " Sparse inputs must have sparse grads and dense"
# " inputs must have dense grad. Got %s, expected %s" %(
# str(node.op), ig.type, i.type))
# must convert to list in case the op returns a tuple
# we won't be able to post-process out the Nones if it does that
input_grads = list(input_grads)
# Need to propagate the NullType gradients; if an input grad is
# not disconnected and the corresponding input is connected
# to at least one output whose gradient is NullType then the input
# grad should be NullType.
for inp_idx in range(len(input_grads)):
for out_idx in range(len(ograd_is_nan)):
if (ograd_is_nan[out_idx] and
connection_pattern[inp_idx][out_idx] and
not isinstance(input_grads[inp_idx].type,
DisconnectedType)):
input_grads[inp_idx] = output_grads[out_idx]
# Do type checking on the result
# List of bools indicating if each input only has integer outputs
only_connected_to_int = [
(True not in
[in_to_out and out_to_cost and not out_int
for in_to_out, out_to_cost, out_int in
zip(in_to_outs, outputs_connected, output_is_int)])
for in_to_outs in connection_pattern]
for i, term in enumerate(input_grads):
# Disallow Nones
if term is None:
# We don't know what None means. in the past it has been
# used to mean undefined, zero, or disconnected.
# We therefore don't allow it because its usage has become
# so muddied.
raise TypeError(
('%s.grad returned None for' +
' a gradient term, '
'this is prohibited. Instead of None,'
'return zeros_like(input), disconnected_type(),'
' or a NullType variable such as those made with '
'the grad_undefined or grad_unimplemented helper '
'functions.') % node.op)
# Check that the gradient term for this input
# has the right shape
if hasattr(term, 'shape'):
orig_ipt = inputs[i]
for orig_ipt_v, term_v in get_debug_values(orig_ipt, term):
i_shape = orig_ipt_v.shape
t_shape = term_v.shape
if i_shape != t_shape:
raise ValueError(
"%s.grad returned object of "
"shape %s as gradient term on input %d "
"of shape %s" % (node.op, t_shape, i, i_shape))
if not isinstance(term.type,
(NullType, DisconnectedType)):
if term.type.dtype not in theano.tensor.float_dtypes:
raise TypeError(str(node.op) + '.grad illegally '
' returned an integer-valued variable.'
' (Input index %d, dtype %s)' % (
i, term.type.dtype))
if only_connected_to_nan[i]:
assert isinstance(term.type, NullType)
if only_connected_to_int[i]:
# This term has only integer outputs and we know
# it's not undefined or disconnected
# The only other valid thing it can be is 0
is_zero = _is_zero(term)
assert is_zero in ['yes', 'no', 'maybe']
if is_zero == 'maybe':
msg = "%s.grad returned %s of type %s for input"
msg += " %d. This input's only connections to "
msg += "the cost through this op are via "
msg += "integer-valued outputs so it should be "
msg += "NullType, DisconnectedType, or some form "
msg += "of zeros. It is not NullType or "
msg += "DisconnectedType and theano can't "
msg += "simplify it to a constant, so it's not "
msg += "verifiably zeros."
msg = msg % (str(node.op), str(term),
str(type(term)), i)
if is_zero == 'no':
msg = "%s.grad returned %s of type %s for input"
msg += " %d. Since this input is only connected "
msg += "to integer-valued outputs, it should "
msg += "evaluate to zeros, but it evaluates to"
msg += "%s."
msg % (node.op, term, type(term), i,
theano.get_scalar_constant_value(term))
raise ValueError(msg)
# Check that op.connection_pattern matches the connectivity
# logic driving the op.grad method
for i, packed in enumerate(zip(inputs, input_grads,
inputs_connected)):
ipt, ig, connected = packed
actually_connected = \
not isinstance(ig.type, DisconnectedType)
if actually_connected and not connected:
msg = "%s.grad returned %s of type %s for input %d."
msg += " Expected DisconnectedType instance based on "
msg += " the output of the op's connection_pattern "
msg += "method."
msg = msg % (str(node.op), str(ig), str(ig.type), i)
raise TypeError(msg)
if connected and not actually_connected:
msg = "%s.grad returned DisconnectedType for input"
msg += " %d."
msg = msg % (str(node.op), i)
if hasattr(node.op, 'connection_pattern'):
msg += ' Its connection_pattern method does not'
msg += ' allow this.'
raise TypeError(msg)
else:
msg += ' You may want to implement a '
msg += 'connection_pattern method for it.'
warnings.warn(msg)
# cache the result
term_dict[node] = input_grads
return term_dict[node]
# populate grad_dict[var] and return it
def access_grad_cache(var):
if var not in grad_dict:
# If var is not in grad_dict already, we must compute it
if var in var_to_app_to_idx:
null_terms = []
terms = []
node_to_idx = var_to_app_to_idx[var]
for node in node_to_idx:
for idx in node_to_idx[node]:
term = access_term_cache(node)[idx]
if not isinstance(term, gof.Variable):
raise TypeError(
"%s.grad returned %s, expected"
" Variable instance." % (str(node.op),
type(term)))
if isinstance(term.type, NullType):
null_terms.append(term)
continue
# Don't try to sum up DisconnectedType placeholders
if isinstance(term.type, DisconnectedType):
continue
if hasattr(var, 'ndim') and term.ndim != var.ndim:
raise ValueError(
("%s.grad returned a term with"
" %d dimensions, but %d are required.") % (
str(node.op), term.ndim, var.ndim))
terms.append(term)
# Add up the terms to get the total gradient on this variable
if len(null_terms) > 0:
# At least one term is a NullType : the total gradient
# will also be a NullType
grad_dict[var] = null_terms[0]
elif len(terms) > 0:
# the next line is like sum(terms) but doesn't add an
# extraneous TensorConstant(0)
grad_dict[var] = reduce(lambda x, y: x + y, terms)
else:
grad_dict[var] = disconnected_type()
if cost_name is not None and var.name is not None:
grad_dict[var].name = '(d%s/d%s)' % (cost_name, var.name)
else:
# this variable isn't connected to the cost in the
# computational graph
grad_dict[var] = disconnected_type()
# end if cache miss
return grad_dict[var]
rval = [access_grad_cache(elem) for elem in wrt]
return rval
def _float_zeros_like(x):
""" Like zeros_like, but forces the object to have a
a floating point dtype """
rval = x.zeros_like()
if rval.type.dtype.find('float') != -1:
return rval
return rval.astype(theano.config.floatX)
def _float_ones_like(x):
""" Like ones_like, but forces the object to have a
floating point dtype """
rval = tensor.ones_like(x)
if rval.type.dtype.find('float') != -1:
return rval
return rval.astype(theano.config.floatX)
class numeric_grad(object):
"""
Compute the numeric derivative of a scalar-valued function at a particular
point.
"""
# Note on step sizes and tolerances:
#
# There is a relationship between the step size and the function value and
# the measurement error that is incurred due to rounding. The finite
# difference we measure is
# delta = f(x0) - f(x0+eps)
#
# For maximum precision, f should be close to zero.
# For every power of 2 that f departs from zero, we lose a bit of precision
# in delta.
#
# Even in this case of maximum accuracy, there is a tradeoff between
# stepsize and measurement error.
# Taking small steps allows us to measure large derivatives accuractly,
# but longer steps are required to measure small derivatives accurately.
# However longer steps introduce bias into our measurement in general
# for non-linear functions.
#
# It would be interesting to have a version of numeric grad that used an
# adaptive stepsize.
#
# For now, we use a heuristic that catches very bad gradients, but is not
# perfectly accurate.
type_eps = {'float64': 1e-7,
'float32': 3e-4,
numpy.dtype('float64'): 1e-7,
numpy.dtype('float32'): 3e-4}
def __init__(self, f, pt, eps=None, out_type=None):
"""Return the gradient of f at pt.
:param f: a differentiable function such that f(*pt) is a scalar
:param pt: an ndarray, a list of ndarrays or tuple of ndarrays
:param out_type: dtype of output, if complex (i.e. 'complex32' or
'complex64')
This function computes the gradient by a one-sided finite
differences of a fixed step size (eps).
It is assumed that f(...) will return a scalar.
It is assumed that all f's inputs are numpy.ndarray objects.
:param eps: the stepsize for the finite differencing. None means
input dtype-dependent. See `type_eps`.
"""
def prod(inputs):
rval = 1
for i in inputs:
rval *= i
return rval
packed_pt = False
if not isinstance(pt, (list, tuple)):
pt = [pt]
packed_pt = True
apt = [numpy.array(p) for p in pt]
shapes = [p.shape for p in apt]
dtypes = [str(p.dtype) for p in apt]
# TODO: remove this eventually (why was this here in the first place ?)
# In the case of CSM, the arguments are a mixture of floats and
# integers...
# if not dtypes == [dtypes[0]] * len(apt):
# raise TypeError('All function arguments must have same dtype')
total_size = builtins.sum(prod(sh) for sh in shapes)
working_dtype = builtins.min(
(self.type_eps[dt], dt) for dt in dtypes)[1]
# create un-initialized memory
x = numpy.ndarray((total_size,), dtype=working_dtype)
# (not out_type is None) --> (out_type is not None) ???
if (out_type is not None) and (out_type.startswith('complex')):
gx = numpy.ndarray((total_size,), dtype=out_type)
else:
gx = numpy.ndarray((total_size,), dtype=working_dtype)
if eps is None:
eps = builtins.max(self.type_eps[dt] for dt in dtypes)
# set up aliases so that apt[i] is backed by memory in x
# and self.gf is backed by memory in gx
cur_pos = 0
self.gf = []
for i, p in enumerate(apt):
p_size = prod(p.shape)
# set up alias
apt[i] = x[cur_pos: cur_pos + p_size].reshape(p.shape)
self.gf.append(gx[cur_pos: cur_pos + p_size].reshape(p.shape))
# initialize with p's value
apt[i][...] = p
cur_pos += p_size
f_x = f(*[p.copy() for p in apt])
# now iterate over the elements of x, and call f on apt.
x_copy = x.copy()
for i in xrange(total_size):
x[:] = x_copy
x[i] += eps
f_eps = f(*apt)
# TODO: remove this when it is clear that the next
# replacemement does not pose problems of its own. It was replaced
# for its inability to handle complex variables.
# gx[i] = numpy.asarray((f_eps - f_x) / eps)
gx[i] = ((f_eps - f_x) / eps)
if packed_pt:
self.gf = self.gf[0]
@staticmethod
def abs_rel_err(a, b):
"""Return absolute and relative error between a and b.
The relative error is a small number when a and b are close, relative
to how big they are.
Formulas used:
abs_err = abs(a - b)
rel_err = abs_err / max(abs(a) + abs(b), 1e-8)
The denominator is clipped at 1e-8 to avoid dividing by 0 when a and b
are both close to 0.
The tuple (abs_err, rel_err) is returned
"""
abs_err = abs(a - b)
rel_err = abs_err / numpy.maximum(abs(a) + abs(b), 1e-8)
# The numpy.asarray are needed as if a or b is a sparse matrix
# this would result in a numpy.matrix and not a numpy.ndarray
# and the behave differently causing problem later.
# In particular a_npy_matrix.flatten().shape == (1, n_element)
abs_err = numpy.asarray(abs_err)
rel_err = numpy.asarray(rel_err)
return (abs_err, rel_err)
def abs_rel_errors(self, g_pt):
"""Return the abs and rel error of gradient estimate `g_pt`
`g_pt` must be a list of ndarrays of the same length as self.gf,
otherwise a ValueError is raised.
Corresponding ndarrays in `g_pt` and `self.gf` must have the same
shape or ValueError is raised.
"""
if len(g_pt) != len(self.gf):
raise ValueError('argument has wrong number of elements',
len(g_pt))
errs = []
for i, (a, b) in enumerate(zip(g_pt, self.gf)):
if a.shape != b.shape:
raise ValueError('argument element %i has wrong shape %s' % (
i, str((a.shape, b.shape))))
errs.append(numeric_grad.abs_rel_err(a, b))
return errs
def max_err(self, g_pt, abs_tol, rel_tol):
"""Find the biggest error between g_pt and self.gf.
What is measured is the violation of relative and absolute errors,
wrt the provided tolerances (abs_tol, rel_tol).
A value > 1 means both tolerances are exceeded.
Return the argmax of min(abs_err / abs_tol, rel_err / rel_tol) over
g_pt, as well as abs_err and rel_err at this point.
"""
pos = []
errs = []
abs_errs = []
rel_errs = []
abs_rel_errs = self.abs_rel_errors(g_pt)
for abs_err, rel_err in abs_rel_errs:
if not numpy.all(numpy.isfinite(abs_err)):
raise ValueError('abs_err not finite', repr(abs_err))
if not numpy.all(numpy.isfinite(rel_err)):
raise ValueError('rel_err not finite', repr(rel_err))
scaled_err = numpy.minimum(abs_err / abs_tol, rel_err / rel_tol)
max_i = scaled_err.argmax()
pos.append(max_i)
errs.append(scaled_err.flatten()[max_i])
abs_errs.append(abs_err.flatten()[max_i])
rel_errs.append(rel_err.flatten()[max_i])
# max over the arrays in g_pt
max_arg = numpy.argmax(errs)
max_pos = pos[max_arg]
return (max_arg, max_pos, abs_errs[max_arg], rel_errs[max_arg])
def verify_grad(fun, pt, n_tests=2, rng=None, eps=None,
out_type=None, abs_tol=None,
rel_tol=None, mode=None, cast_to_output_type=False):
"""Test a gradient by Finite Difference Method. Raise error on failure.
Example:
>>> verify_grad(theano.tensor.tanh,
... (numpy.asarray([[2,3,4], [-1, 3.3, 9.9]]),),
... rng=numpy.random)
Raises an Exception if the difference between the analytic gradient and
numerical gradient (computed through the Finite Difference Method) of a
random projection of the fun's output to a scalar exceeds the given
tolerance.
:param fun: a Python function that takes Theano variables as inputs,
and returns a Theano variable. For instance, an Op instance with
a single output.
:param pt: the list of numpy.ndarrays to use as input values.
These arrays must be either float32 or float64 arrays.
:param n_tests: number of times to run the test
:param rng: random number generator used to sample u, we test gradient
of sum(u * fun) at pt
:param eps: stepsize used in the Finite Difference Method (Default
None is type-dependent)
Raising the value of eps can raise or lower the absolute and
relative errors of the verification depending on the
Op. Raising eps does not lower the verification quality
for linear operations. It
is better to raise eps than raising abs_tol or rel_tol.
:param out_type: dtype of output, if complex (i.e. 'complex32' or
'complex64')
:param abs_tol: absolute tolerance used as threshold for gradient
comparison
:param rel_tol: relative tolerance used as threshold for gradient
comparison
:param cast_to_output_type: if the output is float32 and
cast_to_output_type is True, cast the random projection to
float32. Otherwise it is float64.
:note: WARNING to unit-test writers: if `op` is a function that builds
a graph, try to make it a SMALL graph. Often verify grad is run
in debug mode, which can be very slow if it has to verify a lot of
intermediate computations.
:note: This function does not support multiple outputs. In
tests/test_scan.py there is an experimental verify_grad that
covers that case as well by using random projections.
"""
# The import is here to prevent circular import.
from theano import compile, shared
import theano.tensor
from theano.tensor import as_tensor_variable, TensorType
assert isinstance(pt, (list, tuple))
pt = [numpy.array(p) for p in pt]
for i, p in enumerate(pt):
if p.dtype not in ('float32', 'float64'):
raise TypeError(
('verify_grad can work only with floating point '
'inputs, but input %i has dtype "%s".') % (i, p.dtype))
_type_tol = dict( # relative error tolerances for different types
float32=1e-2,
float64=1e-4)
if abs_tol is None:
abs_tol = builtins.max(_type_tol[str(p.dtype)] for p in pt)
if rel_tol is None:
rel_tol = builtins.max(_type_tol[str(p.dtype)] for p in pt)
if rng is None:
raise TypeError(('rng should be a valid instance of '
'numpy.random.RandomState. You may '
'want to use theano.tests.unittest'
'_tools.verify_grad instead of '
'theano.gradient.verify_grad.'))
# We allow input downcast in function, because numeric_grad works in the
# most precise dtype used among the inputs, so we may need to cast some.
def function(inputs, output, name):
f = compile.function(inputs, output, accept_inplace=True,
allow_input_downcast=True, mode=mode,
on_unused_input='ignore', name=name)
return f
tensor_pt = [
TensorType(
as_tensor_variable(p).dtype,
as_tensor_variable(p).broadcastable)(name='input %i' % i)
for i, p in enumerate(pt)]
# fun can be either a function or an actual Op instance
o_output = fun(*tensor_pt)
if isinstance(o_output, list):
raise NotImplementedError(('cant (yet) autotest gradient of fun '
'with multiple outputs'))
# we could make loop over outputs making random projections R for each,
# but this doesn't handle the case where not all the outputs are
# differentiable... so I leave this as TODO for now -JB.
o_fn = function(tensor_pt, o_output, name='gradient.py fwd')
o_fn_out = o_fn(*[p.copy() for p in pt])
if isinstance(o_fn_out, tuple) or isinstance(o_fn_out, list):
raise TypeError(
'It seems like you are trying to use verify_grad '
'on an op or a function which outputs a list: there should'
' be a single (array-like) output instead')
# random_projection should not have elements too small,
# otherwise too much precision is lost in numerical gradient
def random_projection():
plain = rng.rand(*o_fn_out.shape) + 0.5
if cast_to_output_type and o_output.dtype == "float32":
return numpy.array(plain, o_output.dtype)
return plain
t_r = shared(random_projection())
t_r.name = 'random_projection'
# random projection of o onto t_r
# This sum() is defined above, it's not the builtin sum.
cost = theano.tensor.sum(t_r * o_output)
cost_fn = function(tensor_pt, cost, name='gradient.py cost')
symbolic_grad = grad(cost, tensor_pt,
disconnected_inputs='ignore')
grad_fn = function(tensor_pt, symbolic_grad,
name='gradient.py symbolic grad')
for test_num in xrange(n_tests):
try:
num_grad = numeric_grad(cost_fn, [p.copy() for p in pt],
eps, out_type)
analytic_grad = grad_fn(*[p.copy() for p in pt])
# Since `tensor_pt` is a list, `analytic_grad` should be one too.
assert isinstance(analytic_grad, list)
max_arg, max_err_pos, max_abs_err, max_rel_err = num_grad.max_err(
analytic_grad, abs_tol, rel_tol)
if max_abs_err > abs_tol and max_rel_err > rel_tol:
raise verify_grad.E_grad(max_arg, max_err_pos,
max_abs_err, max_rel_err,
abs_tol, rel_tol)
# get new random projection for next test
if test_num < n_tests - 1:
t_r.set_value(random_projection(), borrow=True)
except Exception as e:
e.args += ("\nThe error happened with the following inputs:", pt,
"\nThe value of eps is:", eps,
"\nThe out_type is:", out_type)
raise
class GradientError(Exception):
"""This error is raised when a gradient is calculated, but incorrect."""
def __init__(self, arg, err_pos, abs_err, rel_err, abs_tol, rel_tol):
Exception.__init__(self) # to be compatible with python2.4
self.arg = arg
self.err_pos = err_pos
self.abs_err = abs_err
self.rel_err = rel_err
self.abs_tol = abs_tol
self.rel_tol = rel_tol
def __str__(self):
# args may have been inserted by e.g. makeTester
args_msg = ", ".join(str(a) for a in self.args)
return """\
GradientError: numeric gradient and analytic gradient exceed tolerance:
At position %i of argument %i,
abs. error = %f, abs. tolerance = %f
rel. error = %f, rel. tolerance = %f
Exception args: %s""" % (self.err_pos, self.arg,
self.abs_err, self.abs_tol,
self.rel_err, self.rel_tol,
args_msg)
verify_grad.E_grad = GradientError
def jacobian(expression, wrt, consider_constant=None,
disconnected_inputs='raise'):
"""
:type expression: Vector (1-dimensional) Variable
:type wrt: Variable or list of Variables
:param consider_constant: a list of expressions not to backpropagate
through
:type disconnected_inputs: string
:param disconnected_inputs: Defines the behaviour if some of the variables
in ``wrt`` are not part of the computational graph computing ``cost``
(or if all links are non-differentiable). The possible values are:
- 'ignore': considers that the gradient on these parameters is zero.
- 'warn': consider the gradient zero, and print a warning.
- 'raise': raise an exception.
:return: either a instance of Variable or list/tuple of Variables
(depending upon `wrt`) repesenting the jacobian of `expression`
with respect to (elements of) `wrt`. If an element of `wrt` is not
differentiable with respect to the output, then a zero
variable is returned. The return value is of same type
as `wrt`: a list/tuple or TensorVariable in all cases.
"""
from theano.tensor import arange
# Check inputs have the right format
assert isinstance(expression, Variable), \
"tensor.jacobian expects a Variable as `expression`"
assert expression.ndim < 2, \
("tensor.jacobian expects a 1 dimensional variable as "
"`expression`. If not use flatten to make it a vector")
using_list = isinstance(wrt, list)
using_tuple = isinstance(wrt, tuple)
if isinstance(wrt, (list, tuple)):
wrt = list(wrt)
else:
wrt = [wrt]
if expression.ndim == 0:
# expression is just a scalar, use grad
return format_as(using_list, using_tuple,
grad(expression,
wrt,
consider_constant=consider_constant,
disconnected_inputs=disconnected_inputs))
def inner_function(*args):
idx = args[0]
expr = args[1]
rvals = []
for inp in args[2:]:
rval = grad(expr[idx],
inp,
consider_constant=consider_constant,
disconnected_inputs=disconnected_inputs)
rvals.append(rval)
return rvals
# Computing the gradients does not affect the random seeds on any random
# generator used n expression (because during computing gradients we are
# just backtracking over old values. (rp Jan 2012 - if anyone has a
# counter example please show me)
jacobs, updates = theano.scan(inner_function,
sequences=arange(expression.shape[0]),
non_sequences=[expression] + wrt)
assert not updates, \
("Scan has returned a list of updates. This should not "
"happen! Report this to theano-users (also include the "
"script that generated the error)")
return format_as(using_list, using_tuple, jacobs)
def hessian(cost, wrt, consider_constant=None,
disconnected_inputs='raise'):
"""
:type cost: Scalar (0-dimensional) Variable.
:type wrt: Vector (1-dimensional tensor) 'Variable' or list of
vectors (1-dimensional tensors) Variables
:param consider_constant: a list of expressions not to backpropagate
through
:type disconnected_inputs: string
:param disconnected_inputs: Defines the behaviour if some of the variables
in ``wrt`` are not part of the computational graph computing ``cost``
(or if all links are non-differentiable). The possible values are:
- 'ignore': considers that the gradient on these parameters is zero.
- 'warn': consider the gradient zero, and print a warning.
- 'raise': raise an exception.
:return: either a instance of Variable or list/tuple of Variables
(depending upon `wrt`) repressenting the Hessian of the `cost`
with respect to (elements of) `wrt`. If an element of `wrt` is not
differentiable with respect to the output, then a zero
variable is returned. The return value is of same type
as `wrt`: a list/tuple or TensorVariable in all cases.
"""
from theano.tensor import arange
# Check inputs have the right format
assert isinstance(cost, Variable), \
"tensor.hessian expects a Variable as `cost`"
assert cost.ndim == 0, \
"tensor.hessian expects a 0 dimensional variable as `cost`"
using_list = isinstance(wrt, list)
using_tuple = isinstance(wrt, tuple)
if isinstance(wrt, (list, tuple)):
wrt = list(wrt)
else:
wrt = [wrt]
hessians = []
for input in wrt:
assert isinstance(input, Variable), \
"tensor.hessian expects a (list of) Variable as `wrt`"
assert input.ndim == 1, \
"tensor.hessian expects a (list of) 1 dimensional variable "\
"as `wrt`"
expr = grad(cost, input, consider_constant=consider_constant,
disconnected_inputs=disconnected_inputs)
# It is possible that the inputs are disconnected from expr,
# even if they are connected to cost.
# This should not be an error.
hess, updates = theano.scan(lambda i, y, x: grad(
y[i],
x,
consider_constant=consider_constant,
disconnected_inputs='ignore'),
sequences=arange(expr.shape[0]),
non_sequences=[expr, input])
assert not updates, \
("Scan has returned a list of updates. This should not "
"happen! Report this to theano-users (also include the "
"script that generated the error)")
hessians.append(hess)
return format_as(using_list, using_tuple, hessians)
def _is_zero(x):
"""
Returns 'yes', 'no', or 'maybe' indicating whether x
is always 0.
'maybe' means that x is an expression that is complicated enough
that we can't tell that it simplifies to 0.
"""
if not hasattr(x, 'type'):
return np.all(x == 0.)
if isinstance(x.type, NullType):
return 'no'
if isinstance(x.type, DisconnectedType):
return 'yes'
no_constant_value = True
try:
constant_value = theano.get_scalar_constant_value(x)
no_constant_value = False
except theano.tensor.basic.NotScalarConstantError:
pass
if no_constant_value:
return 'maybe'
if constant_value != 0.:
return 'no'
return 'yes'
class ConsiderConstant(ViewOp):
def grad(self, args, g_outs):
return [g_out.zeros_like(g_out) for g_out in g_outs]
consider_constant_ = ConsiderConstant()
# I create a function only to have the doc show well.
def consider_constant(x):
"""
DEPRECATED: use zero_grad() or disconnected_grad() instead.
Consider an expression constant when computing gradients.
The expression itself is unaffected, but when its gradient is
computed, or the gradient of another expression that this
expression is a subexpression of, it will not be backpropagated
through. In other words, the gradient of the expression is
truncated to 0.
:param x: A Theano expression whose gradient should be truncated.
:return: The expression is returned unmodified, but its gradient
is now truncated to 0.
.. versionadded:: 0.7
"""
warnings.warn((
"consider_constant() is deprecated, use zero_grad() or "
"disconnected_grad() instead."), stacklevel=3)
return consider_constant_(x)
class ZeroGrad(ViewOp):
def grad(self, args, g_outs):
return [g_out.zeros_like(g_out) for g_out in g_outs]
zero_grad_ = ZeroGrad()
def zero_grad(x):
"""
Consider an expression constant when computing gradients.
The expression itself is unaffected, but when its gradient is
computed, or the gradient of another expression that this
expression is a subexpression of, it will be backpropagated
through with a value of zero. In other words, the gradient of
the expression is truncated to 0.
:param x: A Theano expression whose gradient should be truncated.
:return: The expression is returned unmodified, but its gradient
is now truncated to 0.
"""
return zero_grad_(x)
class DisconnectedGrad(ViewOp):
def grad(self, args, g_outs):
return [disconnected_type() for g_out in g_outs]
def connection_pattern(self, node):
return [[False]]
disconnected_grad_ = DisconnectedGrad()
def disconnected_grad(x):
"""
Consider an expression constant when computing gradients,
while effectively not backpropagating through it.
The expression itself is unaffected, but when its gradient is
computed, or the gradient of another expression that this
expression is a subexpression of, it will not be backpropagated
through. This is effectively equivalent to truncating the gradient
expression to 0, but is executed faster than zero_grad(), which stilll
has to go through the underlying computational graph related to the
expression.
:param x: A Theano expression whose gradient should not be
backpropagated through.
:return: The expression is returned unmodified, but its gradient
is now effectively truncated to 0.
"""
return disconnected_grad_(x)
class GradClip(ViewOp):
# See doc in user fct grad_clip
__props__ = ()
def __init__(self, clip_lower_bound, clip_upper_bound):
# We do not put those member in __eq__ or __hash__
# as they do not influence the perform of this op.
self.clip_lower_bound = clip_lower_bound
self.clip_upper_bound = clip_upper_bound
assert(self.clip_upper_bound >= self.clip_lower_bound)
def grad(self, args, g_outs):
return [theano.tensor.clip(g_out, self.clip_lower_bound,
self.clip_upper_bound)
for g_out in g_outs]
def grad_clip(x, lower_bound, upper_bound):
"""
This op do a view in the forward, but clip the gradient.
This is an elemwise operation.
:param x: the variable we want its gradient inputs clipped
:param lower_bound: The lower bound of the gradient value
:param upper_bound: The upper bound of the gradient value.
:examples:
x = theano.tensor.scalar()
z = theano.tensor.grad(grad_clip(x, -1, 1)**2, x)
z2 = theano.tensor.grad(x**2, x)
f = theano.function([x], outputs = [z, z2])
print(f(2.0)) # output (1.0, 4.0)
:note: We register an opt in tensor/opt.py that remove the GradClip.
So it have 0 cost in the forward and only do work in the grad.
"""
return GradClip(lower_bound, upper_bound)(x)
|