This file is indexed.

/usr/lib/python2.7/dist-packages/theano/configdefaults.py is in python-theano 0.8.2-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
import errno
import os
import sys
import logging
import numpy
import platform
import textwrap
import re
import socket
import struct
import warnings

from six import string_types

import theano
from theano.configparser import (AddConfigVar, BoolParam, ConfigParam, EnumStr,
                                 FloatParam, IntParam, StrParam,
                                 TheanoConfigParser, THEANO_FLAGS_DICT)
from theano.misc.cpucount import cpuCount
from theano.misc.windows import call_subprocess_Popen, output_subprocess_Popen


_logger = logging.getLogger('theano.configdefaults')

config = TheanoConfigParser()


def floatX_convert(s):
    if s == "32":
        return "float32"
    elif s == "64":
        return "float64"
    elif s == "16":
        return "float16"
    else:
        return s

AddConfigVar('floatX',
             "Default floating-point precision for python casts.\n"
             "\n"
             "Note: float16 support is experimental, use at your own risk.",
             EnumStr('float64', 'float32', 'float16',
                     convert=floatX_convert,),
             )

AddConfigVar('warn_float64',
             "Do an action when a tensor variable with float64 dtype is"
             " created. They can't be run on the GPU with the current(old)"
             " gpu back-end and are slow with gamer GPUs.",
             EnumStr('ignore', 'warn', 'raise', 'pdb'),
             in_c_key=False,
             )

AddConfigVar('cast_policy',
             'Rules for implicit type casting',
             EnumStr('custom', 'numpy+floatX',
                     # The 'numpy' policy was originally planned to provide a
                     # smooth transition from numpy. It was meant to behave the
                     # same as numpy+floatX, but keeping float64 when numpy
                     # would. However the current implementation of some cast
                     # mechanisms makes it a bit more complex to add than what
                     # was expected, so it is currently not available.
                     # numpy,
                     ),
             )

# python 2.* define int / int to return int and int // int to return int.
# python 3* define int / int to return float and int // int to return int.
# numpy 1.6.1 behaves as python 2.*. I think we should not change it faster
# than numpy. When we will do the transition, we should create an int_warn
# and floatX_warn option.
AddConfigVar('int_division',
             "What to do when one computes x / y, where both x and y are of "
             "integer types",
             EnumStr('int', 'raise', 'floatX'),
             in_c_key=False)

# gpu means let the driver select the gpu. Needed in case of gpu in
# exclusive mode.
# gpuX mean use the gpu number X.


class DeviceParam(ConfigParam):
    def __init__(self, default, *options, **kwargs):
        self.default = default

        def filter(val):
            if val == self.default or val.startswith('gpu') \
                    or val.startswith('opencl') or val.startswith('cuda'):
                return val
            else:
                raise ValueError(('Invalid value ("%s") for configuration '
                                  'variable "%s". Valid options start with '
                                  'one of "%s", "gpu", "opencl", "cuda"'
                                  % (self.default, val, self.fullname)))
        over = kwargs.get("allow_override", True)
        super(DeviceParam, self).__init__(default, filter, over)

    def __str__(self):
        return '%s (%s, gpu*, opencl*, cuda*) ' % (self.fullname, self.default)

AddConfigVar(
    'device',
    ("Default device for computations. If gpu*, change the default to try "
     "to move computation to it and to put shared variable of float32 "
     "on it. Do not use upper case letters, only lower case even if "
     "NVIDIA use capital letters."),
    DeviceParam('cpu', allow_override=False),
    in_c_key=False)

AddConfigVar(
    'init_gpu_device',
    ("Initialize the gpu device to use, works only if device=cpu. "
     "Unlike 'device', setting this option will NOT move computations, "
     "nor shared variables, to the specified GPU. "
     "It can be used to run GPU-specific tests on a particular GPU."),
    DeviceParam('', allow_override=False),
    in_c_key=False)

AddConfigVar(
    'force_device',
    "Raise an error if we can't use the specified device",
    BoolParam(False, allow_override=False),
    in_c_key=False)


class ContextsParam(ConfigParam):
    def __init__(self):
        def filter(val):
            if val == '':
                return val
            for v in val.split(';'):
                s = v.split('->')
                if len(s) != 2:
                    raise ValueError("Malformed context map: %s" % (v,))
                if (s[0] == 'cpu' or s[0].startswith('cuda') or
                        s[0].startswith('opencl')):
                    raise ValueError("Cannot use %s as context name" % (s[0],))
            return val
        ConfigParam.__init__(self, '', filter, False)

AddConfigVar(
    'contexts',
    """
    Context map for multi-gpu operation. Format is a
    semicolon-separated list of names and device names in the
    'name->dev_name' format. An example that would map name 'test' to
    device 'cuda0' and name 'test2' to device 'opencl0:0' follows:
    "test->cuda0;test2->opencl0:0".

    Invalid context names are 'cpu', 'cuda*' and 'opencl*'
    """, ContextsParam(), in_c_key=False)

AddConfigVar(
    'print_active_device',
    "Print active device at when the GPU device is initialized.",
    BoolParam(True, allow_override=False),
    in_c_key=False)


AddConfigVar(
    'enable_initial_driver_test',
    "Tests the nvidia driver when a GPU device is initialized.",
    BoolParam(True, allow_override=False),
    in_c_key=False)


def default_cuda_root():
    v = os.getenv('CUDA_ROOT', "")
    if v:
        return v
    s = os.getenv("PATH")
    if not s:
        return ''
    for dir in s.split(os.path.pathsep):
        if os.path.exists(os.path.join(dir, "nvcc")):
            return os.path.dirname(os.path.abspath(dir))
    return ''

AddConfigVar(
    'cuda.root',
    """directory with bin/, lib/, include/ for cuda utilities.
       This directory is included via -L and -rpath when linking
       dynamically compiled modules.  If AUTO and nvcc is in the
       path, it will use one of nvcc parent directory.  Otherwise
       /usr/local/cuda will be used.  Leave empty to prevent extra
       linker directives.  Default: environment variable "CUDA_ROOT"
       or else "AUTO".
       """,
    StrParam(default_cuda_root),
    in_c_key=False)


def filter_nvcc_flags(s):
    assert isinstance(s, str)
    flags = [flag for flag in s.split(' ') if flag]
    if any([f for f in flags if not f.startswith("-")]):
        raise ValueError(
            "Theano nvcc.flags support only parameter/value pairs without"
            " space between them. e.g.: '--machine 64' is not supported,"
            " but '--machine=64' is supported. Please add the '=' symbol."
            " nvcc.flags value is '%s'" % s)
    return ' '.join(flags)

AddConfigVar('nvcc.flags',
             "Extra compiler flags for nvcc",
             ConfigParam("", filter_nvcc_flags),
             # Not needed in c key as it is already added.
             # We remove it as we don't make the md5 of config to change
             # if theano.sandbox.cuda is loaded or not.
             in_c_key=False)

AddConfigVar('nvcc.compiler_bindir',
             "If defined, nvcc compiler driver will seek g++ and gcc"
             " in this directory",
             StrParam(""),
             in_c_key=False)

AddConfigVar('nvcc.fastmath',
             "",
             BoolParam(False),
             # Not needed in c key as it is already added.
             # We remove it as we don't make the md5 of config to change
             # if theano.sandbox.cuda is loaded or not.
             in_c_key=False)

AddConfigVar('gpuarray.sync',
             """If True, every op will make sure its work is done before
                returning.  Setting this to True will slow down execution,
                but give much more accurate results in profiling.""",
             BoolParam(False),
             in_c_key=True)

AddConfigVar('gpuarray.preallocate',
             """If 0 it doesn't do anything.  If between 0 and 1 it
             will preallocate that fraction of the total GPU memory.
             If 1 or greater it will preallocate that amount of memory
             (in megabytes).""",
             FloatParam(0, lambda i: i >= 0),
             in_c_key=False)


def safe_no_dnn_workmem(workmem):
    """
    Make sure the user is not attempting to use dnn.conv.workmem`.
    """
    if workmem:
        raise RuntimeError(
            'The option `dnn.conv.workmem` has been removed and should '
            'not be used anymore. Please use the option '
            '`dnn.conv.algo_fwd` instead.')
    return True

AddConfigVar('dnn.conv.workmem',
             "This flag is deprecated; use dnn.conv.algo_fwd.",
             ConfigParam('', allow_override=False, filter=safe_no_dnn_workmem),
             in_c_key=False)


def safe_no_dnn_workmem_bwd(workmem):
    """
    Make sure the user is not attempting to use dnn.conv.workmem_bwd`.
    """
    if workmem:
        raise RuntimeError(
            'The option `dnn.conv.workmem_bwd` has been removed and '
            'should not be used anymore. Please use the options '
            '`dnn.conv.algo_bwd_filter` and `dnn.conv.algo_bwd_data` instead.')
    return True

AddConfigVar('dnn.conv.workmem_bwd',
             "This flag is deprecated; use dnn.conv.algo_bwd.",
             ConfigParam('', allow_override=False,
                         filter=safe_no_dnn_workmem_bwd),
             in_c_key=False)


def safe_no_dnn_algo_bwd(algo):
    """
    Make sure the user is not attempting to use dnn.conv.algo_bwd`.
    """
    if algo:
        raise RuntimeError(
            'The option `dnn.conv.algo_bwd` has been removed and '
            'should not be used anymore. Please use the options '
            '`dnn.conv.algo_bwd_filter` and `dnn.conv.algo_bwd_data` instead.')
    return True

# Those are the supported algorithm by Theano,
# The tests will reference those lists.
SUPPORTED_DNN_CONV_ALGO_FWD = ('small', 'none', 'large', 'fft', 'fft_tiling',
                               'winograd', 'guess_once', 'guess_on_shape_change',
                               'time_once', 'time_on_shape_change')

SUPPORTED_DNN_CONV_ALGO_BWD_DATA = ('none', 'deterministic', 'fft', 'fft_tiling',
                                    'winograd', 'guess_once', 'guess_on_shape_change',
                                    'time_once', 'time_on_shape_change')

SUPPORTED_DNN_CONV_ALGO_BWD_FILTER = ('none', 'deterministic', 'fft', 'small',
                                      'guess_once', 'guess_on_shape_change',
                                      'time_once', 'time_on_shape_change')

AddConfigVar('dnn.conv.algo_bwd',
             "This flag is deprecated; use dnn.conv.algo_bwd_data and "
             "dnn.conv.algo_bwd_filter.",
             ConfigParam('', allow_override=False,
                         filter=safe_no_dnn_algo_bwd),
             in_c_key=False)

AddConfigVar('dnn.conv.algo_fwd',
             "Default implementation to use for cuDNN forward convolution.",
             EnumStr(*SUPPORTED_DNN_CONV_ALGO_FWD),
             in_c_key=False)

AddConfigVar('dnn.conv.algo_bwd_data',
             "Default implementation to use for cuDNN backward convolution to "
             "get the gradients of the convolution with regard to the inputs.",
             EnumStr(*SUPPORTED_DNN_CONV_ALGO_BWD_DATA),
             in_c_key=False)

AddConfigVar('dnn.conv.algo_bwd_filter',
             "Default implementation to use for cuDNN backward convolution to "
             "get the gradients of the convolution with regard to the "
             "filters.",
             EnumStr(*SUPPORTED_DNN_CONV_ALGO_BWD_FILTER),
             in_c_key=False)

AddConfigVar('dnn.conv.precision',
             "Default data precision to use for the computation in cuDNN "
             "convolutions (defaults to the same dtype as the inputs of the "
             "convolutions).",
             EnumStr('as_input', 'float16', 'float32', 'float64'),
             in_c_key=False)


def default_dnn_path(suffix):
    def f(suffix=suffix):
        if theano.config.cuda.root == '':
            return ''
        return os.path.join(theano.config.cuda.root, suffix)
    return f

AddConfigVar('dnn.include_path',
             "Location of the cudnn header (defaults to the cuda root)",
             StrParam(default_dnn_path('include')))

AddConfigVar('dnn.library_path',
             "Location of the cudnn header (defaults to the cuda root)",
             StrParam(default_dnn_path('lib' if sys.platform == 'darwin' else 'lib64')))

AddConfigVar('dnn.enabled',
             "'auto', use cuDNN if available, but silently fall back"
             " to not using it if not present."
             " If True and cuDNN can not be used, raise an error."
             " If False, disable cudnn",
             StrParam("auto", "True", "False"),
             in_c_key=False)

# This flag determines whether or not to raise error/warning message if
# there is a CPU Op in the computational graph.
AddConfigVar(
    'assert_no_cpu_op',
    "Raise an error/warning if there is a CPU op in the computational graph.",
    EnumStr('ignore', 'warn', 'raise', 'pdb', allow_override=True),
    in_c_key=False)


# Do not add FAST_RUN_NOGC to this list (nor any other ALL CAPS shortcut).
# The way to get FAST_RUN_NOGC is with the flag 'linker=c|py_nogc'.
# The old all capital letter way of working is deprecated as it is not
# scalable.
# Also, please be careful not to modify the first item in the enum when adding
# new modes, since it is the default mode.
AddConfigVar(
    'mode',
    "Default compilation mode",
    EnumStr('Mode', 'ProfileMode', 'DebugMode', 'FAST_RUN',
            'NanGuardMode',
            'FAST_COMPILE', 'PROFILE_MODE', 'DEBUG_MODE'),
    in_c_key=False)

param = "g++"

# Test whether or not g++ is present: disable C code if it is not.
try:
    rc = call_subprocess_Popen(['g++', '-v'])
except OSError:
    rc = 1

if rc != 0:
    param = ""

# On Mac we test for 'clang++' and use it by default
if sys.platform == 'darwin':
    try:
        rc = call_subprocess_Popen(['clang++', '-v'])
        if rc == 0:
            param = "clang++"
    except OSError:
        pass

# Try to find the full compiler path from the name
if param != "":
    import distutils.spawn
    newp = distutils.spawn.find_executable(param)
    if newp is not None:
        param = newp
    del newp
    del distutils

AddConfigVar('cxx',
             "The C++ compiler to use. Currently only g++ is"
             " supported, but supporting additional compilers should not be "
             "too difficult. "
             "If it is empty, no C++ code is compiled.",
             StrParam(param),
             in_c_key=False)
del param

if rc == 0 and config.cxx != "":
    # Keep the default linker the same as the one for the mode FAST_RUN
    AddConfigVar('linker',
                 ("Default linker used if the theano flags mode is Mode "
                  "or ProfileMode(deprecated)"),
                 EnumStr('cvm', 'c|py', 'py', 'c', 'c|py_nogc',
                         'vm', 'vm_nogc', 'cvm_nogc'),
                 in_c_key=False)
else:
    # g++ is not present or the user disabled it,
    # linker should default to python only.
    AddConfigVar('linker',
                 ("Default linker used if the theano flags mode is Mode "
                  "or ProfileMode(deprecated)"),
                 EnumStr('vm', 'py', 'vm_nogc'),
                 in_c_key=False)
    try:
        # If the user provided an empty value for cxx, do not warn.
        theano.configparser.fetch_val_for_key('cxx')
    except KeyError:
        _logger.warning(
            'g++ not detected ! Theano will be unable to execute '
            'optimized C-implementations (for both CPU and GPU) and will '
            'default to Python implementations. Performance will be severely '
            'degraded. To remove this warning, set Theano flags cxx to an '
            'empty string.')


# Keep the default value the same as the one for the mode FAST_RUN
AddConfigVar('allow_gc',
             "Do we default to delete intermediate results during Theano"
             " function calls? Doing so lowers the memory requirement, but"
             " asks that we reallocate memory at the next function call."
             " This is implemented for the default linker, but may not work"
             " for all linkers.",
             BoolParam(True),
             in_c_key=False)

# Keep the default optimizer the same as the one for the mode FAST_RUN
AddConfigVar(
    'optimizer',
    ("Default optimizer. If not None, will use this linker with the Mode "
     "object (not ProfileMode(deprecated) or DebugMode)"),
    EnumStr('fast_run', 'merge', 'fast_compile', 'None'),
    in_c_key=False)

AddConfigVar('optimizer_verbose',
             "If True, we print all optimization being applied",
             BoolParam(False),
             in_c_key=False)

AddConfigVar(
    'on_opt_error',
    ("What to do when an optimization crashes: warn and skip it, raise "
     "the exception, or fall into the pdb debugger."),
    EnumStr('warn', 'raise', 'pdb', 'ignore'),
    in_c_key=False)


def safe_no_home(home):
    """
    Make sure the user is not attempting to use `config.home`.

    This config option was removed in Thenao 0.5 since it was redundant with
    `config.base_compiledir`. This filter function ensures people who were
    setting the location of their compilation directory through `config.home`
    switch to `config.basecompiledir` instead, by raising an error when
    `config.home` is used.
    """
    if home:
        raise RuntimeError(
            'The `config.home` option has been removed and should not be '
            'used anymore. Please set the `config.base_compiledir` option '
            'instead (for instance to: %s)' %
            os.path.join(home, '.theano'))
    return True


AddConfigVar(
    'home',
    "This config option was removed in 0.5: do not use it!",
    ConfigParam('', allow_override=False, filter=safe_no_home),
    in_c_key=False)


AddConfigVar(
    'nocleanup',
    "Suppress the deletion of code files that did not compile cleanly",
    BoolParam(False),
    in_c_key=False)

AddConfigVar('on_unused_input',
             "What to do if a variable in the 'inputs' list of "
             " theano.function() is not used in the graph.",
             EnumStr('raise', 'warn', 'ignore'),
             in_c_key=False)

# This flag is used when we import Theano to initialize global variables.
# So changing it after import will not modify these global variables.
# This could be done differently... but for now we simply prevent it from being
# changed at runtime.
AddConfigVar(
    'tensor.cmp_sloppy',
    "Relax tensor._allclose (0) not at all, (1) a bit, (2) more",
    IntParam(0, lambda i: i in (0, 1, 2), allow_override=False),
    in_c_key=False)

AddConfigVar(
    'tensor.local_elemwise_fusion',
    ("Enable or not in fast_run mode(fast_run optimization) the elemwise "
     "fusion optimization"),
    BoolParam(True),
    in_c_key=False)

AddConfigVar(
    'gpu.local_elemwise_fusion',
    ("Enable or not in fast_run mode(fast_run optimization) the gpu "
     "elemwise fusion optimization"),
    BoolParam(True),
    in_c_key=False)

# http://developer.amd.com/CPU/LIBRARIES/LIBM/Pages/default.aspx
AddConfigVar(
    'lib.amdlibm',
    "Use amd's amdlibm numerical library",
    BoolParam(False))

AddConfigVar(
    'gpuelemwise.sync',
    "when true, wait that the gpu fct finished and check it error code.",
    BoolParam(True),
    in_c_key=False)

AddConfigVar(
    'traceback.limit',
    "The number of stack to trace. -1 mean all.",
    # We default to a number to be able to know where v1 + v2 is created in the
    # user script. The bigger this number is, the more run time it takes.
    # We need to default to 8 to support theano.tensor.tensor(...).
    # import theano, numpy
    # X = theano.tensor.matrix()
    # y = X.reshape((5,3,1))
    # assert y.tag.trace
    IntParam(8),
    in_c_key=False)

AddConfigVar('experimental.mrg',
             "Another random number generator that work on the gpu",
             BoolParam(False))

AddConfigVar('experimental.unpickle_gpu_on_cpu',
             "Allow unpickling of pickled CudaNdarrays as numpy.ndarrays."
             "This is useful, if you want to open a CudaNdarray without "
             "having cuda installed."
             "If you have cuda installed, this will force unpickling to"
             "be done on the cpu to numpy.ndarray."
             "Please be aware that this may get you access to the data,"
             "however, trying to unpicke gpu functions will not succeed."
             "This flag is experimental and may be removed any time, when"
             "gpu<>cpu transparency is solved.",
             BoolParam(default=False),
             in_c_key=False)

AddConfigVar('numpy.seterr_all',
             ("Sets numpy's behaviour for floating-point errors, ",
              "see numpy.seterr. "
              "'None' means not to change numpy's default, which can be "
              "different for different numpy releases. "
              "This flag sets the default behaviour for all kinds of floating-"
              "point errors, its effect can be overriden for specific errors "
              "by the following flags: seterr_divide, seterr_over, "
              "seterr_under and seterr_invalid."),
             EnumStr('ignore', 'warn', 'raise', 'call', 'print', 'log', 'None',
                     allow_override=False),
             in_c_key=False)

AddConfigVar('numpy.seterr_divide',
             ("Sets numpy's behavior for division by zero, see numpy.seterr. "
              "'None' means using the default, defined by numpy.seterr_all."),
             EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
                     allow_override=False),
             in_c_key=False)

AddConfigVar('numpy.seterr_over',
             ("Sets numpy's behavior for floating-point overflow, "
              "see numpy.seterr. "
              "'None' means using the default, defined by numpy.seterr_all."),
             EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
                     allow_override=False),
             in_c_key=False)

AddConfigVar('numpy.seterr_under',
             ("Sets numpy's behavior for floating-point underflow, "
              "see numpy.seterr. "
              "'None' means using the default, defined by numpy.seterr_all."),
             EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
                     allow_override=False),
             in_c_key=False)

AddConfigVar('numpy.seterr_invalid',
             ("Sets numpy's behavior for invalid floating-point operation, "
              "see numpy.seterr. "
              "'None' means using the default, defined by numpy.seterr_all."),
             EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
                     allow_override=False),
             in_c_key=False)

###
# To disable some warning about old bug that are fixed now.
###
AddConfigVar('warn.ignore_bug_before',
             ("If 'None', we warn about all Theano bugs found by default. "
              "If 'all', we don't warn about Theano bugs found by default. "
              "If a version, we print only the warnings relative to Theano "
              "bugs found after that version. "
              "Warning for specific bugs can be configured with specific "
              "[warn] flags."),
             EnumStr('0.7', 'None', 'all', '0.3', '0.4', '0.4.1', '0.5', '0.7',
                     '0.8', '0.8.1', '0.8.2',
                     allow_override=False),
             in_c_key=False)


def warn_default(version):
    """
    Return True iff we should warn about bugs fixed after a given version.
    """
    if config.warn.ignore_bug_before == 'None':
        return True
    if config.warn.ignore_bug_before == 'all':
        return False
    if config.warn.ignore_bug_before >= version:
        return False
    return True


AddConfigVar('warn.argmax_pushdown_bug',
             ("Warn if in past version of Theano we generated a bug with the "
              "theano.tensor.nnet.nnet.local_argmax_pushdown optimization. "
              "Was fixed 27 may 2010"),
             BoolParam(warn_default('0.3')),
             in_c_key=False)

AddConfigVar('warn.gpusum_01_011_0111_bug',
             ("Warn if we are in a case where old version of Theano had a "
              "silent bug with GpuSum pattern 01,011 and 0111 when the first "
              "dimensions was bigger then 4096. Was fixed 31 may 2010"),
             BoolParam(warn_default('0.3')),
             in_c_key=False)

AddConfigVar('warn.sum_sum_bug',
             ("Warn if we are in a case where Theano version between version "
              "9923a40c7b7a and the 2 august 2010 (fixed date), generated an "
              "error in that case. This happens when there are 2 consecutive "
              "sums in the graph, bad code was generated. "
              "Was fixed 2 August 2010"),
             BoolParam(warn_default('0.3')),
             in_c_key=False)

AddConfigVar('warn.sum_div_dimshuffle_bug',
             ("Warn if previous versions of Theano (between rev. "
              "3bd9b789f5e8, 2010-06-16, and cfc6322e5ad4, 2010-08-03) "
              "would have given incorrect result. This bug was triggered by "
              "sum of division of dimshuffled tensors."),
             BoolParam(warn_default('0.3')),
             in_c_key=False)

AddConfigVar(
    'warn.subtensor_merge_bug',
    "Warn if previous versions of Theano (before 0.5rc2) could have given "
    "incorrect results when indexing into a subtensor with negative "
    "stride (for instance, for instance, x[a:b:-1][c]).",
    BoolParam(warn_default('0.5')),
    in_c_key=False)

AddConfigVar(
    'warn.gpu_set_subtensor1',
    "Warn if previous versions of Theano (before 0.6) could have given "
    "incorrect results when moving to the gpu "
    "set_subtensor(x[int vector], new_value)",
    BoolParam(warn_default('0.6')),
    in_c_key=False)

AddConfigVar(
    'warn.vm_gc_bug',
    "There was a bug that existed in the default Theano configuration,"
    " only in the development version between July 5th 2012"
    " and July 30th 2012. This was not in a released version."
    " If your code was affected by this bug, a warning"
    " will be printed during the code execution if you use the"
    " `linker=vm,vm.lazy=True,warn.vm_gc_bug=True` Theano flags."
    " This warning is disabled by default as the bug was not released.",
    BoolParam(False),
    in_c_key=False)

AddConfigVar('warn.signal_conv2d_interface',
             ("Warn we use the new signal.conv2d() when its interface"
              " changed mid June 2014"),
             BoolParam(warn_default('0.7')),
             in_c_key=False)

AddConfigVar('warn.reduce_join',
             ('Your current code is fine, but Theano versions '
              'prior to 0.7 (or this development version) '
              'might have given an incorrect result. '
              'To disable this warning, set the Theano flag '
              'warn.reduce_join to False. The problem was an '
              'optimization, that modified the pattern '
              '"Reduce{scalar.op}(Join(axis=0, a, b), axis=0)", '
              'did not check the reduction axis. So if the '
              'reduction axis was not 0, you got a wrong answer.'),
             BoolParam(warn_default('0.7')),
             in_c_key=False)

AddConfigVar('warn.inc_set_subtensor1',
             ('Warn if previous versions of Theano (before 0.7) could have '
              'given incorrect results for inc_subtensor and set_subtensor '
              'when using some patterns of advanced indexing (indexing with '
              'one vector or matrix of ints).'),
             BoolParam(warn_default('0.7')),
             in_c_key=False)

AddConfigVar(
    'compute_test_value',
    ("If 'True', Theano will run each op at graph build time, using "
     "Constants, SharedVariables and the tag 'test_value' as inputs "
     "to the function. This helps the user track down problems in the "
     "graph before it gets optimized."),
    EnumStr('off', 'ignore', 'warn', 'raise', 'pdb'),
    in_c_key=False)


AddConfigVar(
    'print_test_value',
    ("If 'True', the __eval__ of a Theano variable will return its test_value "
     "when this is available. This has the practical conseguence that, e.g., "
     "in debugging `my_var` will print the same as `my_var.tag.test_value` "
     "when a test value is defined."),
    BoolParam(False),
    in_c_key=False)


AddConfigVar('compute_test_value_opt',
             ("For debugging Theano optimization only."
              " Same as compute_test_value, but is used"
              " during Theano optimization"),
             EnumStr('off', 'ignore', 'warn', 'raise', 'pdb'),
             in_c_key=False)

AddConfigVar('unpickle_function',
             ("Replace unpickled Theano functions with None. "
              "This is useful to unpickle old graphs that pickled"
              " them when it shouldn't"),
             BoolParam(True),
             in_c_key=False)

AddConfigVar(
    'reoptimize_unpickled_function',
    "Re-optimize the graph when a theano function is unpickled from the disk.",
    BoolParam(False, allow_override=True),
    in_c_key=False)

"""Note to developers:
    Generally your exceptions should use an apply node's __str__
    method when exception_verbosity == 'low'. When exception_verbosity
    == 'high', you should include a call to printing.min_informative_str
    on all important apply nodes.
"""
AddConfigVar(
    'exception_verbosity',
    "If 'low', the text of exceptions will generally refer "
    "to apply nodes with short names such as "
    "Elemwise{add_no_inplace}. If 'high', some exceptions "
    "will also refer to apply nodes with long descriptions "
    """ like:
    A. Elemwise{add_no_inplace}
            B. log_likelihood_v_given_h
            C. log_likelihood_h""",
    EnumStr('low', 'high'),
    in_c_key=False)

# Test if the env variable is set
var = os.getenv('OMP_NUM_THREADS', None)
if var:
    try:
        int(var)
    except ValueError:
        raise TypeError("The environment variable OMP_NUM_THREADS"
                        " should be a number, got '%s'." % var)
    else:
        default_openmp = not int(var) == 1
else:
    # Check the number of cores availables.
    count = cpuCount()
    if count == -1:
        _logger.warning("We are not able to detect the number of CPU cores."
                        " We disable openmp by default. To remove this"
                        " warning, set the environment variable"
                        " OMP_NUM_THREADS to the number of threads you"
                        " want theano to use.")
    default_openmp = count > 1

# Disable it by default for now as currently only the ConvOp supports
# it, and this causes slowdown by default as we do not disable it for
# too small convolution.
default_openmp = False

AddConfigVar('openmp',
             "Allow (or not) parallel computation on the CPU with OpenMP. "
             "This is the default value used when creating an Op that "
             "supports OpenMP parallelization. It is preferable to define it "
             "via the Theano configuration file ~/.theanorc or with the "
             "environment variable THEANO_FLAGS. Parallelization is only "
             "done for some operations that implement it, and even for "
             "operations that implement parallelism, each operation is free "
             "to respect this flag or not. You can control the number of "
             "threads used with the environment variable OMP_NUM_THREADS."
             " If it is set to 1, we disable openmp in Theano by default.",
             BoolParam(default_openmp),
             in_c_key=False,
             )

AddConfigVar('openmp_elemwise_minsize',
             "If OpenMP is enabled, this is the minimum size of vectors "
             "for which the openmp parallelization is enabled "
             "in element wise ops.",
             IntParam(200000),
             in_c_key=False,
             )

AddConfigVar(
    'check_input',
    "Specify if types should check their input in their C code. "
    "It can be used to speed up compilation, reduce overhead "
    "(particularly for scalars) and reduce the number of generated C "
    "files.",
    BoolParam(True))

AddConfigVar(
    'cache_optimizations',
    "WARNING: work in progress, does not work yet. "
    "Specify if the optimization cache should be used. This cache will "
    "any optimized graph and its optimization. Actually slow downs a lot "
    "the first optimization, and could possibly still contains some bugs. "
    "Use at your own risks.",
    BoolParam(False))


def good_seed_param(seed):
    if seed == "random":
        return True
    try:
        int(seed)
    except Exception:
        return False
    return True


AddConfigVar('unittests.rseed',
             "Seed to use for randomized unit tests. "
             "Special value 'random' means using a seed of None.",
             StrParam(666, is_valid=good_seed_param),
             in_c_key=False)

AddConfigVar('NanGuardMode.nan_is_error',
             "Default value for nan_is_error",
             BoolParam(True),
             in_c_key=False)

AddConfigVar('NanGuardMode.inf_is_error',
             "Default value for inf_is_error",
             BoolParam(True),
             in_c_key=False)

AddConfigVar('NanGuardMode.big_is_error',
             "Default value for big_is_error",
             BoolParam(True),
             in_c_key=False)

AddConfigVar('NanGuardMode.action',
             "What NanGuardMode does when it finds a problem",
             EnumStr('raise', 'warn', 'pdb'),
             in_c_key=False)

AddConfigVar('ProfileMode.n_apply_to_print',
             "Number of apply instances to print by default",
             IntParam(15, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('ProfileMode.n_ops_to_print',
             "Number of ops to print by default",
             IntParam(20, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('ProfileMode.min_memory_size',
             "For the memory profile, do not print apply nodes if the size "
             "of their outputs (in bytes) is lower then this threshold",
             IntParam(1024, lambda i: i >= 0),
             in_c_key=False)

AddConfigVar('ProfileMode.profile_memory',
             """Enable profiling of memory used by Theano functions""",
             BoolParam(False),
             in_c_key=False)

AddConfigVar('optimizer_excluding',
             ("When using the default mode, we will remove optimizer with "
              "these tags. Separate tags with ':'."),
             StrParam("", allow_override=False),
             in_c_key=False)

AddConfigVar('optimizer_including',
             ("When using the default mode, we will add optimizer with "
              "these tags. Separate tags with ':'."),
             StrParam("", allow_override=False),
             in_c_key=False)

AddConfigVar('optimizer_requiring',
             ("When using the default mode, we will require optimizer with "
              "these tags. Separate tags with ':'."),
             StrParam("", allow_override=False),
             in_c_key=False)

AddConfigVar('DebugMode.patience',
             "Optimize graph this many times to detect inconsistency",
             IntParam(10, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('DebugMode.check_c',
             "Run C implementations where possible",
             BoolParam(
                 lambda: bool(theano.config.cxx)),
             in_c_key=False)

AddConfigVar('DebugMode.check_py',
             "Run Python implementations where possible",
             BoolParam(True),
             in_c_key=False)

AddConfigVar('DebugMode.check_finite',
             "True -> complain about NaN/Inf results",
             BoolParam(True),
             in_c_key=False)

AddConfigVar('DebugMode.check_strides',
             ("Check that Python- and C-produced ndarrays have same strides. "
              "On difference: (0) - ignore, (1) warn, or (2) raise error"),
             IntParam(0, lambda i: i in (0, 1, 2)),
             in_c_key=False)

AddConfigVar('DebugMode.warn_input_not_reused',
             ("Generate a warning when destroy_map or view_map says that an "
              "op works inplace, but the op did not reuse the input for its "
              "output."),
             BoolParam(True),
             in_c_key=False)


def is_valid_check_preallocated_output_param(param):
    if not isinstance(param, string_types):
        return False
    valid = ["initial", "previous", "c_contiguous", "f_contiguous",
             "strided", "wrong_size", "ALL", ""]
    for p in param.split(":"):
        if p not in valid:
            return False
    return True

AddConfigVar('DebugMode.check_preallocated_output',
             ('Test thunks with pre-allocated memory as output storage. '
              'This is a list of strings separated by ":". Valid values are: '
              '"initial" (initial storage in storage map, happens with Scan),'
              '"previous" (previously-returned memory), '
              '"c_contiguous", "f_contiguous", '
              '"strided" (positive and negative strides), '
              '"wrong_size" (larger and smaller dimensions), and '
              '"ALL" (all of the above).'),
             StrParam('', is_valid=is_valid_check_preallocated_output_param),
             in_c_key=False)

AddConfigVar('DebugMode.check_preallocated_output_ndim',
             ('When testing with "strided" preallocated output memory, '
              'test all combinations of strides over that number of '
              '(inner-most) dimensions. You may want to reduce that number '
              'to reduce memory or time usage, but it is advised to keep a '
              'minimum of 2.'),
             IntParam(4, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('profiling.time_thunks',
             """Time individual thunks when profiling""",
             BoolParam(True),
             in_c_key=False)

AddConfigVar('profiling.n_apply',
             "Number of Apply instances to print by default",
             IntParam(20, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('profiling.n_ops',
             "Number of Ops to print by default",
             IntParam(20, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('profiling.output_line_width',
             "Max line width for the profiling output",
             IntParam(512, lambda i: i > 0),
             in_c_key=False)

AddConfigVar('profiling.min_memory_size',
             """For the memory profile, do not print Apply nodes if the size
             of their outputs (in bytes) is lower than this threshold""",
             IntParam(1024, lambda i: i >= 0),
             in_c_key=False)

AddConfigVar('profiling.min_peak_memory',
             """The min peak memory usage of the order""",
             BoolParam(False),
             in_c_key=False)

AddConfigVar('profiling.destination',
             """
             File destination of the profiling output
             """,
             StrParam('stderr'),
             in_c_key=False)

AddConfigVar('profiling.debugprint',
             """
             Do a debugprint of the profiled functions
             """,
             BoolParam(False),
             in_c_key=False)

AddConfigVar('optdb.position_cutoff',
             'Where to stop eariler during optimization. It represent the'
             ' position of the optimizer where to stop.',
             FloatParam(numpy.inf),
             in_c_key=False)

AddConfigVar('optdb.max_use_ratio',
             'A ratio that prevent infinite loop in EquilibriumOptimizer.',
             FloatParam(5),
             in_c_key=False)

AddConfigVar('gcc.cxxflags',
             "Extra compiler flags for gcc",
             StrParam(""))

AddConfigVar(
    'cmodule.mac_framework_link',
    "If set to True, breaks certain MacOS installations with the infamous "
    "Bus Error",
    BoolParam(False))

AddConfigVar('cmodule.warn_no_version',
             "If True, will print a warning when compiling one or more Op "
             "with C code that can't be cached because there is no "
             "c_code_cache_version() function associated to at least one of "
             "those Ops.",
             BoolParam(False),
             in_c_key=False)

AddConfigVar('cmodule.remove_gxx_opt',
             "If True, will remove the -O* parameter passed to g++."
             "This is useful to debug in gdb modules compiled by Theano."
             "The parameter -g is passed by default to g++",
             BoolParam(False))

AddConfigVar('cmodule.compilation_warning',
             "If True, will print compilation warnings.",
             BoolParam(False))


AddConfigVar('cmodule.preload_cache',
             "If set to True, will preload the C module cache at import time",
             BoolParam(False, allow_override=False),
             in_c_key=False)


def default_blas_ldflags():
    global numpy
    try:
        if (hasattr(numpy.distutils, '__config__') and
                numpy.distutils.__config__):
            # If the old private interface is available use it as it
            # don't print information to the user.
            blas_info = numpy.distutils.__config__.blas_opt_info
        else:
            # We do this import only here, as in some setup, if we
            # just import theano and exit, with the import at global
            # scope, we get this error at exit: "Exception TypeError:
            # "'NoneType' object is not callable" in <bound method
            # Popen.__del__ of <subprocess.Popen object at 0x21359d0>>
            # ignored"

            # This happen with Python 2.7.3 |EPD 7.3-1 and numpy 1.8.1
            import numpy.distutils.system_info  # noqa

            # We need to catch warnings as in some cases NumPy print
            # stuff that we don't want the user to see.
            # I'm not able to remove all printed stuff
            with warnings.catch_warnings(record=True):
                numpy.distutils.system_info.system_info.verbosity = 0
                blas_info = numpy.distutils.system_info.get_info("blas_opt")

        # If we are in a EPD installation, mkl is available
        if "EPD" in sys.version:
            use_unix_epd = True
            if sys.platform == 'win32':
                return ' '.join(
                    ['-L%s' % os.path.join(sys.prefix, "Scripts")] +
                    # Why on Windows, the library used are not the
                    # same as what is in
                    # blas_info['libraries']?
                    ['-l%s' % l for l in ["mk2_core", "mk2_intel_thread",
                                          "mk2_rt"]])
            elif sys.platform == 'darwin':
                # The env variable is needed to link with mkl
                new_path = os.path.join(sys.prefix, "lib")
                v = os.getenv("DYLD_FALLBACK_LIBRARY_PATH", None)
                if v is not None:
                    # Explicit version could be replaced by a symbolic
                    # link called 'Current' created by EPD installer
                    # This will resolve symbolic links
                    v = os.path.realpath(v)

                # The python __import__ don't seam to take into account
                # the new env variable "DYLD_FALLBACK_LIBRARY_PATH"
                # when we set with os.environ['...'] = X or os.putenv()
                # So we warn the user and tell him what todo.
                if v is None or new_path not in v.split(":"):
                    _logger.warning(
                        "The environment variable "
                        "'DYLD_FALLBACK_LIBRARY_PATH' does not contain "
                        "the '%s' path in its value. This will make "
                        "Theano use a slow version of BLAS. Update "
                        "'DYLD_FALLBACK_LIBRARY_PATH' to contain the "
                        "said value, this will disable this warning."
                        % new_path)

                    use_unix_epd = False
            if use_unix_epd:
                return ' '.join(
                    ['-L%s' % os.path.join(sys.prefix, "lib")] +
                    ['-l%s' % l for l in blas_info['libraries']])

                # Canopy
        if "Canopy" in sys.prefix:
            subsub = 'lib'
            if sys.platform == 'win32':
                subsub = 'Scripts'
            lib_path = os.path.join(sys.base_prefix, subsub)
            if not os.path.exists(lib_path):
                # Old logic to find the path. I don't think we still
                # need it, but I don't have the time to test all
                # installation configuration. So I keep this as a fall
                # back in case the current expectation don't work.

                # This old logic don't work when multiple version of
                # Canopy is installed.
                p = os.path.join(sys.base_prefix, "..", "..", "appdata")
                assert os.path.exists(p), "Canopy changed the location of MKL"
                lib_paths = os.listdir(p)
                # Try to remove subdir that can't contain MKL
                for sub in lib_paths:
                    if not os.path.exists(os.path.join(p, sub, subsub)):
                        lib_paths.remove(sub)
                assert len(lib_paths) == 1, (
                    "Unexpected case when looking for Canopy MKL libraries",
                    p, lib_paths, [os.listdir(os.path.join(p, sub))
                                   for sub in lib_paths])
                lib_path = os.path.join(p, lib_paths[0], subsub)
                assert os.path.exists(lib_path), "Canopy changed the location of MKL"

            if sys.platform == "linux2" or sys.platform == "darwin":
                return ' '.join(
                    ['-L%s' % lib_path] +
                    ['-l%s' % l for l in blas_info['libraries']])
            elif sys.platform == 'win32':
                return ' '.join(
                    ['-L%s' % lib_path] +
                    # Why on Windows, the library used are not the
                    # same as what is in blas_info['libraries']?
                    ['-l%s' % l for l in ["mk2_core", "mk2_intel_thread",
                                          "mk2_rt"]])

        # Anaconda
        if "Anaconda" in sys.version and sys.platform == "win32":
            # If the "mkl-service" conda package (available
            # through Python package "mkl") is installed and
            # importable, then the libraries (installed by conda
            # package "mkl-rt") are actually available.  Using
            # "conda install mkl" will install both, as well as
            # optimized versions of numpy and scipy.
            try:
                import mkl  # noqa
            except ImportError as e:
                _logger.info('Conda mkl is not available: %s', e)
            else:
                # This branch is executed if no exception was raised
                lib_path = os.path.join(sys.prefix, 'DLLs')
                flags = ['-L%s' % lib_path]
                flags += ['-l%s' % l for l in ["mkl_core",
                                               "mkl_intel_thread",
                                               "mkl_rt"]]
                res = try_blas_flag(flags)
                if res:
                    return res

        ret = (
            # TODO: the Gemm op below should separate the
            # -L and -l arguments into the two callbacks
            # that CLinker uses for that stuff.  for now,
            # we just pass the whole ldflags as the -l
            # options part.
            ['-L%s' % l for l in blas_info.get('library_dirs', [])] +
            ['-l%s' % l for l in blas_info.get('libraries', [])] +
            blas_info.get('extra_link_args', []))
        # For some very strange reason, we need to specify -lm twice
        # to get mkl to link correctly.  I have no idea why.
        if any('mkl' in fl for fl in ret):
            ret.extend(['-lm', '-lm'])
        res = try_blas_flag(ret)
        if res:
            return res

        # Some environment don't have the lib dir in LD_LIBRARY_PATH.
        # So add it.
        ret.extend(['-Wl,-rpath,' + l for l in
                    blas_info.get('library_dirs', [])])
        res = try_blas_flag(ret)
        if res:
            return res

        # Try to add the anaconda lib directory to runtime loading of lib.
        # This fix some case with Anaconda 2.3 on Linux.
        # Newer Anaconda still have this problem but only have
        # Continuum in sys.version.
        if (("Anaconda" in sys.version or
             "Continuum" in sys.version) and
                "linux" in sys.platform):
            lib_path = os.path.join(sys.prefix, 'lib')
            ret.append('-Wl,-rpath,' + lib_path)
            res = try_blas_flag(ret)
            if res:
                return res

    except KeyError:
        pass

    # Even if we could not detect what was used for numpy, or if these
    # libraries are not found, most Linux systems have a libblas.so
    # readily available. We try to see if that's the case, rather
    # than disable blas. To test it correctly, we must load a program.
    # Otherwise, there could be problem in the LD_LIBRARY_PATH.
    return try_blas_flag(['-lblas'])


def try_blas_flag(flags):
    from theano.gof.cmodule import GCC_compiler
    test_code = textwrap.dedent("""\
        extern "C" double ddot_(int*, double*, int*, double*, int*);
        int main(int argc, char** argv)
        {
            int Nx = 5;
            int Sx = 1;
            double x[5] = {0, 1, 2, 3, 4};
            double r = ddot_(&Nx, x, &Sx, x, &Sx);

            if ((r - 30.) > 1e-6 || (r - 30.) < -1e-6)
            {
                return -1;
            }
            return 0;
        }
        """)
    cflags = flags + ['-L' + d for d in theano.gof.cmodule.std_lib_dirs()]
    res = GCC_compiler.try_compile_tmp(
        test_code, tmp_prefix='try_blas_',
        flags=cflags, try_run=True)
    # res[0]: shows successful compilation
    # res[1]: shows successful execution
    if res and res[0] and res[1]:
        return ' '.join(flags)
    else:
        return ""

AddConfigVar('blas.ldflags',
             "lib[s] to include for [Fortran] level-3 blas implementation",
             StrParam(default_blas_ldflags))

AddConfigVar(
    'metaopt.verbose',
    "Enable verbose output for meta optimizers",
    theano.configparser.BoolParam(False),
    in_c_key=False)

AddConfigVar('profile',
             "If VM should collect profile information",
             BoolParam(False),
             in_c_key=False)

AddConfigVar('profile_optimizer',
             "If VM should collect optimizer profile information",
             BoolParam(False),
             in_c_key=False)

AddConfigVar('profile_memory',
             "If VM should collect memory profile information and print it",
             BoolParam(False),
             in_c_key=False)


def filter_vm_lazy(val):
    if val == 'False' or val is False:
        return False
    elif val == 'True' or val is True:
        return True
    elif val == 'None' or val is None:
        return None
    else:
        raise ValueError('Valid values for an vm.lazy parameter '
                         'should be None, False or True, not `%s`.' % val)

AddConfigVar('vm.lazy',
             "Useful only for the vm linkers. When lazy is None,"
             " auto detect if lazy evaluation is needed and use the apropriate"
             " version. If lazy is True/False, force the version used between"
             " Loop/LoopGC and Stack.",
             ConfigParam('None', filter_vm_lazy),
             in_c_key=False)

AddConfigVar(
    'warn.identify_1pexp_bug',
    'Warn if Theano versions prior to 7987b51 (2011-12-18) could have '
    'yielded a wrong result due to a bug in the is_1pexp function',
    BoolParam(warn_default('0.4.1')),
    in_c_key=False)

AddConfigVar('on_shape_error',
             "warn: print a warning and use the default"
             " value. raise: raise an error",
             theano.configparser.EnumStr("warn", "raise"),
             in_c_key=False)

AddConfigVar(
    'tensor.insert_inplace_optimizer_validate_nb',
    "-1: auto, if graph have less then 500 nodes 1, else 10",
    theano.configparser.IntParam(-1),
    in_c_key=False)

AddConfigVar('experimental.local_alloc_elemwise',
             "DEPRECATED: If True, enable the experimental"
             " optimization local_alloc_elemwise."
             " Generates error if not True. Use"
             " optimizer_excluding=local_alloc_elemwise"
             " to dsiable.",
             theano.configparser.BoolParam(
                 True,
                 is_valid=lambda x: x
             ),
             in_c_key=False)

# False could make the graph faster but not as safe.
AddConfigVar(
    'experimental.local_alloc_elemwise_assert',
    "When the local_alloc_elemwise is applied, add"
    " an assert to highlight shape errors.",
    theano.configparser.BoolParam(True),
    in_c_key=False)

AddConfigVar('scan.allow_gc',
             "Allow/disallow gc inside of Scan (default: False)",
             BoolParam(False))

AddConfigVar('scan.allow_output_prealloc',
             "Allow/disallow memory preallocation for outputs inside of scan "
             "(default: True)",
             BoolParam(True))

AddConfigVar('pycuda.init',
             """If True, always initialize PyCUDA when Theano want to
                initilize the GPU.  Currently, we must always initialize
                PyCUDA before Theano do it.  Setting this flag to True,
                ensure that, but always import PyCUDA.  It can be done
                manually by importing theano.misc.pycuda_init before theano
                initialize the GPU device.
                  """,
             BoolParam(False),
             in_c_key=False)

AddConfigVar('cublas.lib',
             """Name of the cuda blas library for the linker.""",
             StrParam('cublas'))

AddConfigVar('lib.cnmem',
             """Do we enable CNMeM or not (a faster CUDA memory allocator).

             The parameter represent the start size (in MB or % of
             total GPU memory) of the memory pool.

             0: not enabled.
             0 < N <= 1: % of the total GPU memory (clipped to .985 for driver memory)
             > 0: use that number of MB of memory.

             """,
             # We should not mix both allocator, so we can't override
             FloatParam(0, lambda i: i >= 0, allow_override=False),
             in_c_key=False)

AddConfigVar('compile.wait',
             """Time to wait before retrying to aquire the compile lock.""",
             IntParam(5, lambda i: i > 0, allow_override=False),
             in_c_key=False)


def _timeout_default():
    return theano.config.compile.wait * 24

AddConfigVar('compile.timeout',
             """In seconds, time that a process will wait before deciding to
override an existing lock. An override only happens when the existing
lock is held by the same owner *and* has not been 'refreshed' by this
owner for more than this period. Refreshes are done every half timeout
period for running processes.""",
             IntParam(_timeout_default, lambda i: i >= 0,
                      allow_override=False),
             in_c_key=False)


try:
    p_out = output_subprocess_Popen([config.cxx, '-dumpversion'])
    gcc_version_str = p_out[0].strip().decode()
except OSError:
    # Typically means gcc cannot be found.
    gcc_version_str = 'GCC_NOT_FOUND'


def local_bitwidth():
    """
    Return 32 for 32bit arch, 64 for 64bit arch.

    By "architecture", we mean the size of memory pointers (size_t in C),
    *not* the size of long int, as it can be different.

    """
    # Note that according to Python documentation, `platform.architecture()` is
    # not reliable on OS X with universal binaries.
    # Also, sys.maxsize does not exist in Python < 2.6.
    # 'P' denotes a void*, and the size is expressed in bytes.
    return struct.calcsize('P') * 8


def python_int_bitwidth():
    """
    Return the bit width of Python int (C long int).

    Note that it can be different from the size of a memory pointer.

    """
    # 'l' denotes a C long int, and the size is expressed in bytes.
    return struct.calcsize('l') * 8


compiledir_format_dict = {
    "platform": platform.platform(),
    "processor": platform.processor(),
    "python_version": platform.python_version(),
    "python_bitwidth": local_bitwidth(),
    "python_int_bitwidth": python_int_bitwidth(),
    "theano_version": theano.__version__,
    "numpy_version": numpy.__version__,
    "gxx_version": gcc_version_str.replace(" ", "_"),
    "hostname": socket.gethostname()}


def short_platform(r=None, p=None):
    """
    Return a safe shorter version of platform.platform().

    The old default Theano compiledir used platform.platform in
    it. This use the platform.version() as a substring. This is too
    specific as it contain the full kernel number and package
    version. This cause the compiledir to change each time there is a
    new linux kernel update. This function remove the part of platform
    that are too precise.

    If we have something else then expected, we do nothing. So this
    should be safe on other OS.

    Some example if we use platform.platform() direction. On the same
    OS, with just some kernel updates.

    compiledir_Linux-2.6.32-504.el6.x86_64-x86_64-with-redhat-6.6-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-431.29.2.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-431.23.3.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-431.20.3.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-431.17.1.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-431.11.2.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-431.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-358.23.2.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-358.6.2.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-358.6.1.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-358.2.1.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-358.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
    compiledir_Linux-2.6.32-358.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-279.14.1.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-279.14.1.el6.x86_64-x86_64-with-redhat-6.3-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-279.5.2.el6.x86_64-x86_64-with-redhat-6.3-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.3-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-220.7.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago-x86_64-2.6.6
    compiledir_Linux-2.6.32-220.4.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago-x86_64-2.6.6

    We suppose the version are ``X.Y[.*]-(digit)*(anything)*``. We keep ``X.Y``
    and don't keep less important digit in the part before ``-`` and we remove
    the leading digit after the first ``-``.

    If the information don't fit that pattern, we do not modify platform.

    """
    if r is None:
        r = platform.release()
    if p is None:
        p = platform.platform()
    sp = r.split('-')
    if len(sp) < 2:
        return p

    # For the split before the first -, we remove all learning digit:
    kernel_version = sp[0].split('.')
    if len(kernel_version) <= 2:
        # kernel version should always have at least 3 number.
        # If not, it use another semantic, so don't change it.
        return p
    sp[0] = '.'.join(kernel_version[:2])

    # For the split after the first -, we remove leading non-digit value.
    rest = sp[1].split('.')
    while len(rest):
        if rest[0].isdigit():
            del rest[0]
        else:
            break
    sp[1] = '.'.join(rest)

    # For sp[2:], we don't change anything.
    sr = '-'.join(sp)
    p = p.replace(r, sr)

    return p
compiledir_format_dict['short_platform'] = short_platform()
compiledir_format_keys = ", ".join(sorted(compiledir_format_dict.keys()))
default_compiledir_format = ("compiledir_%(short_platform)s-%(processor)s-"
                             "%(python_version)s-%(python_bitwidth)s")

AddConfigVar("compiledir_format",
             textwrap.fill(textwrap.dedent("""\
                 Format string for platform-dependent compiled
                 module subdirectory (relative to base_compiledir).
                 Available keys: %s. Defaults to %r.
             """ % (compiledir_format_keys, default_compiledir_format))),
             StrParam(default_compiledir_format, allow_override=False),
             in_c_key=False)


def default_compiledirname():
    formatted = theano.config.compiledir_format % compiledir_format_dict
    safe = re.sub("[\(\)\s,]+", "_", formatted)
    return safe


def filter_base_compiledir(path):
    # Expand '~' in path
    return os.path.expanduser(str(path))


def filter_compiledir(path):
    # Expand '~' in path
    path = os.path.expanduser(path)
    # Turn path into the 'real' path. This ensures that:
    #   1. There is no relative path, which would fail e.g. when trying to
    #      import modules from the compile dir.
    #   2. The path is stable w.r.t. e.g. symlinks (which makes it easier
    #      to re-use compiled modules).
    path = os.path.realpath(path)
    if os.access(path, os.F_OK):  # Do it exist?
        if not os.access(path, os.R_OK | os.W_OK | os.X_OK):
            # If it exist we need read, write and listing access
            raise ValueError(
                "compiledir '%s' exists but you don't have read, write"
                " or listing permissions." % path)
    else:
        try:
            os.makedirs(path, 0o770)  # read-write-execute for user and group
        except OSError as e:
            # Maybe another parallel execution of theano was trying to create
            # the same directory at the same time.
            if e.errno != errno.EEXIST:
                raise ValueError(
                    "Unable to create the compiledir directory"
                    " '%s'. Check the permissions." % path)

    # PROBLEM: sometimes the initial approach based on
    # os.system('touch') returned -1 for an unknown reason; the
    # alternate approach here worked in all cases... it was weird.
    # No error should happen as we checked the permissions.
    init_file = os.path.join(path, '__init__.py')
    if not os.path.exists(init_file):
        try:
            open(init_file, 'w').close()
        except IOError as e:
            if os.path.exists(init_file):
                pass  # has already been created
            else:
                e.args += ('%s exist? %s' % (path, os.path.exists(path)),)
                raise
    return path


def get_home_dir():
    """
    Return location of the user's home directory.

    """
    home = os.getenv('HOME')
    if home is None:
        # This expanduser usually works on Windows (see discussion on
        # theano-users, July 13 2010).
        home = os.path.expanduser('~')
        if home == '~':
            # This might happen when expanduser fails. Although the cause of
            # failure is a mystery, it has been seen on some Windows system.
            home = os.getenv('USERPROFILE')
    assert home is not None
    return home


# On Windows we should avoid writing temporary files to a directory that is
# part of the roaming part of the user profile. Instead we use the local part
# of the user profile, when available.
if sys.platform == 'win32' and os.getenv('LOCALAPPDATA') is not None:
    default_base_compiledir = os.path.join(os.getenv('LOCALAPPDATA'), 'Theano')
else:
    default_base_compiledir = os.path.join(get_home_dir(), '.theano')


AddConfigVar(
    'base_compiledir',
    "platform-independent root directory for compiled modules",
    ConfigParam(
        default_base_compiledir,
        filter=filter_base_compiledir,
        allow_override=False),
    in_c_key=False)


def default_compiledir():
    return os.path.join(
        theano.config.base_compiledir,
        default_compiledirname())

AddConfigVar(
    'compiledir',
    "platform-dependent cache directory for compiled modules",

    ConfigParam(
        default_compiledir,
        filter=filter_compiledir,
        allow_override=False),
    in_c_key=False)

# Check if there are remaining flags provided by the user through THEANO_FLAGS.
for key in THEANO_FLAGS_DICT.keys():
    warnings.warn('Theano does not recognise this flag: {0}'.format(key))