/usr/lib/python2.7/dist-packages/theano/configdefaults.py is in python-theano 0.8.2-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 | import errno
import os
import sys
import logging
import numpy
import platform
import textwrap
import re
import socket
import struct
import warnings
from six import string_types
import theano
from theano.configparser import (AddConfigVar, BoolParam, ConfigParam, EnumStr,
FloatParam, IntParam, StrParam,
TheanoConfigParser, THEANO_FLAGS_DICT)
from theano.misc.cpucount import cpuCount
from theano.misc.windows import call_subprocess_Popen, output_subprocess_Popen
_logger = logging.getLogger('theano.configdefaults')
config = TheanoConfigParser()
def floatX_convert(s):
if s == "32":
return "float32"
elif s == "64":
return "float64"
elif s == "16":
return "float16"
else:
return s
AddConfigVar('floatX',
"Default floating-point precision for python casts.\n"
"\n"
"Note: float16 support is experimental, use at your own risk.",
EnumStr('float64', 'float32', 'float16',
convert=floatX_convert,),
)
AddConfigVar('warn_float64',
"Do an action when a tensor variable with float64 dtype is"
" created. They can't be run on the GPU with the current(old)"
" gpu back-end and are slow with gamer GPUs.",
EnumStr('ignore', 'warn', 'raise', 'pdb'),
in_c_key=False,
)
AddConfigVar('cast_policy',
'Rules for implicit type casting',
EnumStr('custom', 'numpy+floatX',
# The 'numpy' policy was originally planned to provide a
# smooth transition from numpy. It was meant to behave the
# same as numpy+floatX, but keeping float64 when numpy
# would. However the current implementation of some cast
# mechanisms makes it a bit more complex to add than what
# was expected, so it is currently not available.
# numpy,
),
)
# python 2.* define int / int to return int and int // int to return int.
# python 3* define int / int to return float and int // int to return int.
# numpy 1.6.1 behaves as python 2.*. I think we should not change it faster
# than numpy. When we will do the transition, we should create an int_warn
# and floatX_warn option.
AddConfigVar('int_division',
"What to do when one computes x / y, where both x and y are of "
"integer types",
EnumStr('int', 'raise', 'floatX'),
in_c_key=False)
# gpu means let the driver select the gpu. Needed in case of gpu in
# exclusive mode.
# gpuX mean use the gpu number X.
class DeviceParam(ConfigParam):
def __init__(self, default, *options, **kwargs):
self.default = default
def filter(val):
if val == self.default or val.startswith('gpu') \
or val.startswith('opencl') or val.startswith('cuda'):
return val
else:
raise ValueError(('Invalid value ("%s") for configuration '
'variable "%s". Valid options start with '
'one of "%s", "gpu", "opencl", "cuda"'
% (self.default, val, self.fullname)))
over = kwargs.get("allow_override", True)
super(DeviceParam, self).__init__(default, filter, over)
def __str__(self):
return '%s (%s, gpu*, opencl*, cuda*) ' % (self.fullname, self.default)
AddConfigVar(
'device',
("Default device for computations. If gpu*, change the default to try "
"to move computation to it and to put shared variable of float32 "
"on it. Do not use upper case letters, only lower case even if "
"NVIDIA use capital letters."),
DeviceParam('cpu', allow_override=False),
in_c_key=False)
AddConfigVar(
'init_gpu_device',
("Initialize the gpu device to use, works only if device=cpu. "
"Unlike 'device', setting this option will NOT move computations, "
"nor shared variables, to the specified GPU. "
"It can be used to run GPU-specific tests on a particular GPU."),
DeviceParam('', allow_override=False),
in_c_key=False)
AddConfigVar(
'force_device',
"Raise an error if we can't use the specified device",
BoolParam(False, allow_override=False),
in_c_key=False)
class ContextsParam(ConfigParam):
def __init__(self):
def filter(val):
if val == '':
return val
for v in val.split(';'):
s = v.split('->')
if len(s) != 2:
raise ValueError("Malformed context map: %s" % (v,))
if (s[0] == 'cpu' or s[0].startswith('cuda') or
s[0].startswith('opencl')):
raise ValueError("Cannot use %s as context name" % (s[0],))
return val
ConfigParam.__init__(self, '', filter, False)
AddConfigVar(
'contexts',
"""
Context map for multi-gpu operation. Format is a
semicolon-separated list of names and device names in the
'name->dev_name' format. An example that would map name 'test' to
device 'cuda0' and name 'test2' to device 'opencl0:0' follows:
"test->cuda0;test2->opencl0:0".
Invalid context names are 'cpu', 'cuda*' and 'opencl*'
""", ContextsParam(), in_c_key=False)
AddConfigVar(
'print_active_device',
"Print active device at when the GPU device is initialized.",
BoolParam(True, allow_override=False),
in_c_key=False)
AddConfigVar(
'enable_initial_driver_test',
"Tests the nvidia driver when a GPU device is initialized.",
BoolParam(True, allow_override=False),
in_c_key=False)
def default_cuda_root():
v = os.getenv('CUDA_ROOT', "")
if v:
return v
s = os.getenv("PATH")
if not s:
return ''
for dir in s.split(os.path.pathsep):
if os.path.exists(os.path.join(dir, "nvcc")):
return os.path.dirname(os.path.abspath(dir))
return ''
AddConfigVar(
'cuda.root',
"""directory with bin/, lib/, include/ for cuda utilities.
This directory is included via -L and -rpath when linking
dynamically compiled modules. If AUTO and nvcc is in the
path, it will use one of nvcc parent directory. Otherwise
/usr/local/cuda will be used. Leave empty to prevent extra
linker directives. Default: environment variable "CUDA_ROOT"
or else "AUTO".
""",
StrParam(default_cuda_root),
in_c_key=False)
def filter_nvcc_flags(s):
assert isinstance(s, str)
flags = [flag for flag in s.split(' ') if flag]
if any([f for f in flags if not f.startswith("-")]):
raise ValueError(
"Theano nvcc.flags support only parameter/value pairs without"
" space between them. e.g.: '--machine 64' is not supported,"
" but '--machine=64' is supported. Please add the '=' symbol."
" nvcc.flags value is '%s'" % s)
return ' '.join(flags)
AddConfigVar('nvcc.flags',
"Extra compiler flags for nvcc",
ConfigParam("", filter_nvcc_flags),
# Not needed in c key as it is already added.
# We remove it as we don't make the md5 of config to change
# if theano.sandbox.cuda is loaded or not.
in_c_key=False)
AddConfigVar('nvcc.compiler_bindir',
"If defined, nvcc compiler driver will seek g++ and gcc"
" in this directory",
StrParam(""),
in_c_key=False)
AddConfigVar('nvcc.fastmath',
"",
BoolParam(False),
# Not needed in c key as it is already added.
# We remove it as we don't make the md5 of config to change
# if theano.sandbox.cuda is loaded or not.
in_c_key=False)
AddConfigVar('gpuarray.sync',
"""If True, every op will make sure its work is done before
returning. Setting this to True will slow down execution,
but give much more accurate results in profiling.""",
BoolParam(False),
in_c_key=True)
AddConfigVar('gpuarray.preallocate',
"""If 0 it doesn't do anything. If between 0 and 1 it
will preallocate that fraction of the total GPU memory.
If 1 or greater it will preallocate that amount of memory
(in megabytes).""",
FloatParam(0, lambda i: i >= 0),
in_c_key=False)
def safe_no_dnn_workmem(workmem):
"""
Make sure the user is not attempting to use dnn.conv.workmem`.
"""
if workmem:
raise RuntimeError(
'The option `dnn.conv.workmem` has been removed and should '
'not be used anymore. Please use the option '
'`dnn.conv.algo_fwd` instead.')
return True
AddConfigVar('dnn.conv.workmem',
"This flag is deprecated; use dnn.conv.algo_fwd.",
ConfigParam('', allow_override=False, filter=safe_no_dnn_workmem),
in_c_key=False)
def safe_no_dnn_workmem_bwd(workmem):
"""
Make sure the user is not attempting to use dnn.conv.workmem_bwd`.
"""
if workmem:
raise RuntimeError(
'The option `dnn.conv.workmem_bwd` has been removed and '
'should not be used anymore. Please use the options '
'`dnn.conv.algo_bwd_filter` and `dnn.conv.algo_bwd_data` instead.')
return True
AddConfigVar('dnn.conv.workmem_bwd',
"This flag is deprecated; use dnn.conv.algo_bwd.",
ConfigParam('', allow_override=False,
filter=safe_no_dnn_workmem_bwd),
in_c_key=False)
def safe_no_dnn_algo_bwd(algo):
"""
Make sure the user is not attempting to use dnn.conv.algo_bwd`.
"""
if algo:
raise RuntimeError(
'The option `dnn.conv.algo_bwd` has been removed and '
'should not be used anymore. Please use the options '
'`dnn.conv.algo_bwd_filter` and `dnn.conv.algo_bwd_data` instead.')
return True
# Those are the supported algorithm by Theano,
# The tests will reference those lists.
SUPPORTED_DNN_CONV_ALGO_FWD = ('small', 'none', 'large', 'fft', 'fft_tiling',
'winograd', 'guess_once', 'guess_on_shape_change',
'time_once', 'time_on_shape_change')
SUPPORTED_DNN_CONV_ALGO_BWD_DATA = ('none', 'deterministic', 'fft', 'fft_tiling',
'winograd', 'guess_once', 'guess_on_shape_change',
'time_once', 'time_on_shape_change')
SUPPORTED_DNN_CONV_ALGO_BWD_FILTER = ('none', 'deterministic', 'fft', 'small',
'guess_once', 'guess_on_shape_change',
'time_once', 'time_on_shape_change')
AddConfigVar('dnn.conv.algo_bwd',
"This flag is deprecated; use dnn.conv.algo_bwd_data and "
"dnn.conv.algo_bwd_filter.",
ConfigParam('', allow_override=False,
filter=safe_no_dnn_algo_bwd),
in_c_key=False)
AddConfigVar('dnn.conv.algo_fwd',
"Default implementation to use for cuDNN forward convolution.",
EnumStr(*SUPPORTED_DNN_CONV_ALGO_FWD),
in_c_key=False)
AddConfigVar('dnn.conv.algo_bwd_data',
"Default implementation to use for cuDNN backward convolution to "
"get the gradients of the convolution with regard to the inputs.",
EnumStr(*SUPPORTED_DNN_CONV_ALGO_BWD_DATA),
in_c_key=False)
AddConfigVar('dnn.conv.algo_bwd_filter',
"Default implementation to use for cuDNN backward convolution to "
"get the gradients of the convolution with regard to the "
"filters.",
EnumStr(*SUPPORTED_DNN_CONV_ALGO_BWD_FILTER),
in_c_key=False)
AddConfigVar('dnn.conv.precision',
"Default data precision to use for the computation in cuDNN "
"convolutions (defaults to the same dtype as the inputs of the "
"convolutions).",
EnumStr('as_input', 'float16', 'float32', 'float64'),
in_c_key=False)
def default_dnn_path(suffix):
def f(suffix=suffix):
if theano.config.cuda.root == '':
return ''
return os.path.join(theano.config.cuda.root, suffix)
return f
AddConfigVar('dnn.include_path',
"Location of the cudnn header (defaults to the cuda root)",
StrParam(default_dnn_path('include')))
AddConfigVar('dnn.library_path',
"Location of the cudnn header (defaults to the cuda root)",
StrParam(default_dnn_path('lib' if sys.platform == 'darwin' else 'lib64')))
AddConfigVar('dnn.enabled',
"'auto', use cuDNN if available, but silently fall back"
" to not using it if not present."
" If True and cuDNN can not be used, raise an error."
" If False, disable cudnn",
StrParam("auto", "True", "False"),
in_c_key=False)
# This flag determines whether or not to raise error/warning message if
# there is a CPU Op in the computational graph.
AddConfigVar(
'assert_no_cpu_op',
"Raise an error/warning if there is a CPU op in the computational graph.",
EnumStr('ignore', 'warn', 'raise', 'pdb', allow_override=True),
in_c_key=False)
# Do not add FAST_RUN_NOGC to this list (nor any other ALL CAPS shortcut).
# The way to get FAST_RUN_NOGC is with the flag 'linker=c|py_nogc'.
# The old all capital letter way of working is deprecated as it is not
# scalable.
# Also, please be careful not to modify the first item in the enum when adding
# new modes, since it is the default mode.
AddConfigVar(
'mode',
"Default compilation mode",
EnumStr('Mode', 'ProfileMode', 'DebugMode', 'FAST_RUN',
'NanGuardMode',
'FAST_COMPILE', 'PROFILE_MODE', 'DEBUG_MODE'),
in_c_key=False)
param = "g++"
# Test whether or not g++ is present: disable C code if it is not.
try:
rc = call_subprocess_Popen(['g++', '-v'])
except OSError:
rc = 1
if rc != 0:
param = ""
# On Mac we test for 'clang++' and use it by default
if sys.platform == 'darwin':
try:
rc = call_subprocess_Popen(['clang++', '-v'])
if rc == 0:
param = "clang++"
except OSError:
pass
# Try to find the full compiler path from the name
if param != "":
import distutils.spawn
newp = distutils.spawn.find_executable(param)
if newp is not None:
param = newp
del newp
del distutils
AddConfigVar('cxx',
"The C++ compiler to use. Currently only g++ is"
" supported, but supporting additional compilers should not be "
"too difficult. "
"If it is empty, no C++ code is compiled.",
StrParam(param),
in_c_key=False)
del param
if rc == 0 and config.cxx != "":
# Keep the default linker the same as the one for the mode FAST_RUN
AddConfigVar('linker',
("Default linker used if the theano flags mode is Mode "
"or ProfileMode(deprecated)"),
EnumStr('cvm', 'c|py', 'py', 'c', 'c|py_nogc',
'vm', 'vm_nogc', 'cvm_nogc'),
in_c_key=False)
else:
# g++ is not present or the user disabled it,
# linker should default to python only.
AddConfigVar('linker',
("Default linker used if the theano flags mode is Mode "
"or ProfileMode(deprecated)"),
EnumStr('vm', 'py', 'vm_nogc'),
in_c_key=False)
try:
# If the user provided an empty value for cxx, do not warn.
theano.configparser.fetch_val_for_key('cxx')
except KeyError:
_logger.warning(
'g++ not detected ! Theano will be unable to execute '
'optimized C-implementations (for both CPU and GPU) and will '
'default to Python implementations. Performance will be severely '
'degraded. To remove this warning, set Theano flags cxx to an '
'empty string.')
# Keep the default value the same as the one for the mode FAST_RUN
AddConfigVar('allow_gc',
"Do we default to delete intermediate results during Theano"
" function calls? Doing so lowers the memory requirement, but"
" asks that we reallocate memory at the next function call."
" This is implemented for the default linker, but may not work"
" for all linkers.",
BoolParam(True),
in_c_key=False)
# Keep the default optimizer the same as the one for the mode FAST_RUN
AddConfigVar(
'optimizer',
("Default optimizer. If not None, will use this linker with the Mode "
"object (not ProfileMode(deprecated) or DebugMode)"),
EnumStr('fast_run', 'merge', 'fast_compile', 'None'),
in_c_key=False)
AddConfigVar('optimizer_verbose',
"If True, we print all optimization being applied",
BoolParam(False),
in_c_key=False)
AddConfigVar(
'on_opt_error',
("What to do when an optimization crashes: warn and skip it, raise "
"the exception, or fall into the pdb debugger."),
EnumStr('warn', 'raise', 'pdb', 'ignore'),
in_c_key=False)
def safe_no_home(home):
"""
Make sure the user is not attempting to use `config.home`.
This config option was removed in Thenao 0.5 since it was redundant with
`config.base_compiledir`. This filter function ensures people who were
setting the location of their compilation directory through `config.home`
switch to `config.basecompiledir` instead, by raising an error when
`config.home` is used.
"""
if home:
raise RuntimeError(
'The `config.home` option has been removed and should not be '
'used anymore. Please set the `config.base_compiledir` option '
'instead (for instance to: %s)' %
os.path.join(home, '.theano'))
return True
AddConfigVar(
'home',
"This config option was removed in 0.5: do not use it!",
ConfigParam('', allow_override=False, filter=safe_no_home),
in_c_key=False)
AddConfigVar(
'nocleanup',
"Suppress the deletion of code files that did not compile cleanly",
BoolParam(False),
in_c_key=False)
AddConfigVar('on_unused_input',
"What to do if a variable in the 'inputs' list of "
" theano.function() is not used in the graph.",
EnumStr('raise', 'warn', 'ignore'),
in_c_key=False)
# This flag is used when we import Theano to initialize global variables.
# So changing it after import will not modify these global variables.
# This could be done differently... but for now we simply prevent it from being
# changed at runtime.
AddConfigVar(
'tensor.cmp_sloppy',
"Relax tensor._allclose (0) not at all, (1) a bit, (2) more",
IntParam(0, lambda i: i in (0, 1, 2), allow_override=False),
in_c_key=False)
AddConfigVar(
'tensor.local_elemwise_fusion',
("Enable or not in fast_run mode(fast_run optimization) the elemwise "
"fusion optimization"),
BoolParam(True),
in_c_key=False)
AddConfigVar(
'gpu.local_elemwise_fusion',
("Enable or not in fast_run mode(fast_run optimization) the gpu "
"elemwise fusion optimization"),
BoolParam(True),
in_c_key=False)
# http://developer.amd.com/CPU/LIBRARIES/LIBM/Pages/default.aspx
AddConfigVar(
'lib.amdlibm',
"Use amd's amdlibm numerical library",
BoolParam(False))
AddConfigVar(
'gpuelemwise.sync',
"when true, wait that the gpu fct finished and check it error code.",
BoolParam(True),
in_c_key=False)
AddConfigVar(
'traceback.limit',
"The number of stack to trace. -1 mean all.",
# We default to a number to be able to know where v1 + v2 is created in the
# user script. The bigger this number is, the more run time it takes.
# We need to default to 8 to support theano.tensor.tensor(...).
# import theano, numpy
# X = theano.tensor.matrix()
# y = X.reshape((5,3,1))
# assert y.tag.trace
IntParam(8),
in_c_key=False)
AddConfigVar('experimental.mrg',
"Another random number generator that work on the gpu",
BoolParam(False))
AddConfigVar('experimental.unpickle_gpu_on_cpu',
"Allow unpickling of pickled CudaNdarrays as numpy.ndarrays."
"This is useful, if you want to open a CudaNdarray without "
"having cuda installed."
"If you have cuda installed, this will force unpickling to"
"be done on the cpu to numpy.ndarray."
"Please be aware that this may get you access to the data,"
"however, trying to unpicke gpu functions will not succeed."
"This flag is experimental and may be removed any time, when"
"gpu<>cpu transparency is solved.",
BoolParam(default=False),
in_c_key=False)
AddConfigVar('numpy.seterr_all',
("Sets numpy's behaviour for floating-point errors, ",
"see numpy.seterr. "
"'None' means not to change numpy's default, which can be "
"different for different numpy releases. "
"This flag sets the default behaviour for all kinds of floating-"
"point errors, its effect can be overriden for specific errors "
"by the following flags: seterr_divide, seterr_over, "
"seterr_under and seterr_invalid."),
EnumStr('ignore', 'warn', 'raise', 'call', 'print', 'log', 'None',
allow_override=False),
in_c_key=False)
AddConfigVar('numpy.seterr_divide',
("Sets numpy's behavior for division by zero, see numpy.seterr. "
"'None' means using the default, defined by numpy.seterr_all."),
EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
allow_override=False),
in_c_key=False)
AddConfigVar('numpy.seterr_over',
("Sets numpy's behavior for floating-point overflow, "
"see numpy.seterr. "
"'None' means using the default, defined by numpy.seterr_all."),
EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
allow_override=False),
in_c_key=False)
AddConfigVar('numpy.seterr_under',
("Sets numpy's behavior for floating-point underflow, "
"see numpy.seterr. "
"'None' means using the default, defined by numpy.seterr_all."),
EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
allow_override=False),
in_c_key=False)
AddConfigVar('numpy.seterr_invalid',
("Sets numpy's behavior for invalid floating-point operation, "
"see numpy.seterr. "
"'None' means using the default, defined by numpy.seterr_all."),
EnumStr('None', 'ignore', 'warn', 'raise', 'call', 'print', 'log',
allow_override=False),
in_c_key=False)
###
# To disable some warning about old bug that are fixed now.
###
AddConfigVar('warn.ignore_bug_before',
("If 'None', we warn about all Theano bugs found by default. "
"If 'all', we don't warn about Theano bugs found by default. "
"If a version, we print only the warnings relative to Theano "
"bugs found after that version. "
"Warning for specific bugs can be configured with specific "
"[warn] flags."),
EnumStr('0.7', 'None', 'all', '0.3', '0.4', '0.4.1', '0.5', '0.7',
'0.8', '0.8.1', '0.8.2',
allow_override=False),
in_c_key=False)
def warn_default(version):
"""
Return True iff we should warn about bugs fixed after a given version.
"""
if config.warn.ignore_bug_before == 'None':
return True
if config.warn.ignore_bug_before == 'all':
return False
if config.warn.ignore_bug_before >= version:
return False
return True
AddConfigVar('warn.argmax_pushdown_bug',
("Warn if in past version of Theano we generated a bug with the "
"theano.tensor.nnet.nnet.local_argmax_pushdown optimization. "
"Was fixed 27 may 2010"),
BoolParam(warn_default('0.3')),
in_c_key=False)
AddConfigVar('warn.gpusum_01_011_0111_bug',
("Warn if we are in a case where old version of Theano had a "
"silent bug with GpuSum pattern 01,011 and 0111 when the first "
"dimensions was bigger then 4096. Was fixed 31 may 2010"),
BoolParam(warn_default('0.3')),
in_c_key=False)
AddConfigVar('warn.sum_sum_bug',
("Warn if we are in a case where Theano version between version "
"9923a40c7b7a and the 2 august 2010 (fixed date), generated an "
"error in that case. This happens when there are 2 consecutive "
"sums in the graph, bad code was generated. "
"Was fixed 2 August 2010"),
BoolParam(warn_default('0.3')),
in_c_key=False)
AddConfigVar('warn.sum_div_dimshuffle_bug',
("Warn if previous versions of Theano (between rev. "
"3bd9b789f5e8, 2010-06-16, and cfc6322e5ad4, 2010-08-03) "
"would have given incorrect result. This bug was triggered by "
"sum of division of dimshuffled tensors."),
BoolParam(warn_default('0.3')),
in_c_key=False)
AddConfigVar(
'warn.subtensor_merge_bug',
"Warn if previous versions of Theano (before 0.5rc2) could have given "
"incorrect results when indexing into a subtensor with negative "
"stride (for instance, for instance, x[a:b:-1][c]).",
BoolParam(warn_default('0.5')),
in_c_key=False)
AddConfigVar(
'warn.gpu_set_subtensor1',
"Warn if previous versions of Theano (before 0.6) could have given "
"incorrect results when moving to the gpu "
"set_subtensor(x[int vector], new_value)",
BoolParam(warn_default('0.6')),
in_c_key=False)
AddConfigVar(
'warn.vm_gc_bug',
"There was a bug that existed in the default Theano configuration,"
" only in the development version between July 5th 2012"
" and July 30th 2012. This was not in a released version."
" If your code was affected by this bug, a warning"
" will be printed during the code execution if you use the"
" `linker=vm,vm.lazy=True,warn.vm_gc_bug=True` Theano flags."
" This warning is disabled by default as the bug was not released.",
BoolParam(False),
in_c_key=False)
AddConfigVar('warn.signal_conv2d_interface',
("Warn we use the new signal.conv2d() when its interface"
" changed mid June 2014"),
BoolParam(warn_default('0.7')),
in_c_key=False)
AddConfigVar('warn.reduce_join',
('Your current code is fine, but Theano versions '
'prior to 0.7 (or this development version) '
'might have given an incorrect result. '
'To disable this warning, set the Theano flag '
'warn.reduce_join to False. The problem was an '
'optimization, that modified the pattern '
'"Reduce{scalar.op}(Join(axis=0, a, b), axis=0)", '
'did not check the reduction axis. So if the '
'reduction axis was not 0, you got a wrong answer.'),
BoolParam(warn_default('0.7')),
in_c_key=False)
AddConfigVar('warn.inc_set_subtensor1',
('Warn if previous versions of Theano (before 0.7) could have '
'given incorrect results for inc_subtensor and set_subtensor '
'when using some patterns of advanced indexing (indexing with '
'one vector or matrix of ints).'),
BoolParam(warn_default('0.7')),
in_c_key=False)
AddConfigVar(
'compute_test_value',
("If 'True', Theano will run each op at graph build time, using "
"Constants, SharedVariables and the tag 'test_value' as inputs "
"to the function. This helps the user track down problems in the "
"graph before it gets optimized."),
EnumStr('off', 'ignore', 'warn', 'raise', 'pdb'),
in_c_key=False)
AddConfigVar(
'print_test_value',
("If 'True', the __eval__ of a Theano variable will return its test_value "
"when this is available. This has the practical conseguence that, e.g., "
"in debugging `my_var` will print the same as `my_var.tag.test_value` "
"when a test value is defined."),
BoolParam(False),
in_c_key=False)
AddConfigVar('compute_test_value_opt',
("For debugging Theano optimization only."
" Same as compute_test_value, but is used"
" during Theano optimization"),
EnumStr('off', 'ignore', 'warn', 'raise', 'pdb'),
in_c_key=False)
AddConfigVar('unpickle_function',
("Replace unpickled Theano functions with None. "
"This is useful to unpickle old graphs that pickled"
" them when it shouldn't"),
BoolParam(True),
in_c_key=False)
AddConfigVar(
'reoptimize_unpickled_function',
"Re-optimize the graph when a theano function is unpickled from the disk.",
BoolParam(False, allow_override=True),
in_c_key=False)
"""Note to developers:
Generally your exceptions should use an apply node's __str__
method when exception_verbosity == 'low'. When exception_verbosity
== 'high', you should include a call to printing.min_informative_str
on all important apply nodes.
"""
AddConfigVar(
'exception_verbosity',
"If 'low', the text of exceptions will generally refer "
"to apply nodes with short names such as "
"Elemwise{add_no_inplace}. If 'high', some exceptions "
"will also refer to apply nodes with long descriptions "
""" like:
A. Elemwise{add_no_inplace}
B. log_likelihood_v_given_h
C. log_likelihood_h""",
EnumStr('low', 'high'),
in_c_key=False)
# Test if the env variable is set
var = os.getenv('OMP_NUM_THREADS', None)
if var:
try:
int(var)
except ValueError:
raise TypeError("The environment variable OMP_NUM_THREADS"
" should be a number, got '%s'." % var)
else:
default_openmp = not int(var) == 1
else:
# Check the number of cores availables.
count = cpuCount()
if count == -1:
_logger.warning("We are not able to detect the number of CPU cores."
" We disable openmp by default. To remove this"
" warning, set the environment variable"
" OMP_NUM_THREADS to the number of threads you"
" want theano to use.")
default_openmp = count > 1
# Disable it by default for now as currently only the ConvOp supports
# it, and this causes slowdown by default as we do not disable it for
# too small convolution.
default_openmp = False
AddConfigVar('openmp',
"Allow (or not) parallel computation on the CPU with OpenMP. "
"This is the default value used when creating an Op that "
"supports OpenMP parallelization. It is preferable to define it "
"via the Theano configuration file ~/.theanorc or with the "
"environment variable THEANO_FLAGS. Parallelization is only "
"done for some operations that implement it, and even for "
"operations that implement parallelism, each operation is free "
"to respect this flag or not. You can control the number of "
"threads used with the environment variable OMP_NUM_THREADS."
" If it is set to 1, we disable openmp in Theano by default.",
BoolParam(default_openmp),
in_c_key=False,
)
AddConfigVar('openmp_elemwise_minsize',
"If OpenMP is enabled, this is the minimum size of vectors "
"for which the openmp parallelization is enabled "
"in element wise ops.",
IntParam(200000),
in_c_key=False,
)
AddConfigVar(
'check_input',
"Specify if types should check their input in their C code. "
"It can be used to speed up compilation, reduce overhead "
"(particularly for scalars) and reduce the number of generated C "
"files.",
BoolParam(True))
AddConfigVar(
'cache_optimizations',
"WARNING: work in progress, does not work yet. "
"Specify if the optimization cache should be used. This cache will "
"any optimized graph and its optimization. Actually slow downs a lot "
"the first optimization, and could possibly still contains some bugs. "
"Use at your own risks.",
BoolParam(False))
def good_seed_param(seed):
if seed == "random":
return True
try:
int(seed)
except Exception:
return False
return True
AddConfigVar('unittests.rseed',
"Seed to use for randomized unit tests. "
"Special value 'random' means using a seed of None.",
StrParam(666, is_valid=good_seed_param),
in_c_key=False)
AddConfigVar('NanGuardMode.nan_is_error',
"Default value for nan_is_error",
BoolParam(True),
in_c_key=False)
AddConfigVar('NanGuardMode.inf_is_error',
"Default value for inf_is_error",
BoolParam(True),
in_c_key=False)
AddConfigVar('NanGuardMode.big_is_error',
"Default value for big_is_error",
BoolParam(True),
in_c_key=False)
AddConfigVar('NanGuardMode.action',
"What NanGuardMode does when it finds a problem",
EnumStr('raise', 'warn', 'pdb'),
in_c_key=False)
AddConfigVar('ProfileMode.n_apply_to_print',
"Number of apply instances to print by default",
IntParam(15, lambda i: i > 0),
in_c_key=False)
AddConfigVar('ProfileMode.n_ops_to_print',
"Number of ops to print by default",
IntParam(20, lambda i: i > 0),
in_c_key=False)
AddConfigVar('ProfileMode.min_memory_size',
"For the memory profile, do not print apply nodes if the size "
"of their outputs (in bytes) is lower then this threshold",
IntParam(1024, lambda i: i >= 0),
in_c_key=False)
AddConfigVar('ProfileMode.profile_memory',
"""Enable profiling of memory used by Theano functions""",
BoolParam(False),
in_c_key=False)
AddConfigVar('optimizer_excluding',
("When using the default mode, we will remove optimizer with "
"these tags. Separate tags with ':'."),
StrParam("", allow_override=False),
in_c_key=False)
AddConfigVar('optimizer_including',
("When using the default mode, we will add optimizer with "
"these tags. Separate tags with ':'."),
StrParam("", allow_override=False),
in_c_key=False)
AddConfigVar('optimizer_requiring',
("When using the default mode, we will require optimizer with "
"these tags. Separate tags with ':'."),
StrParam("", allow_override=False),
in_c_key=False)
AddConfigVar('DebugMode.patience',
"Optimize graph this many times to detect inconsistency",
IntParam(10, lambda i: i > 0),
in_c_key=False)
AddConfigVar('DebugMode.check_c',
"Run C implementations where possible",
BoolParam(
lambda: bool(theano.config.cxx)),
in_c_key=False)
AddConfigVar('DebugMode.check_py',
"Run Python implementations where possible",
BoolParam(True),
in_c_key=False)
AddConfigVar('DebugMode.check_finite',
"True -> complain about NaN/Inf results",
BoolParam(True),
in_c_key=False)
AddConfigVar('DebugMode.check_strides',
("Check that Python- and C-produced ndarrays have same strides. "
"On difference: (0) - ignore, (1) warn, or (2) raise error"),
IntParam(0, lambda i: i in (0, 1, 2)),
in_c_key=False)
AddConfigVar('DebugMode.warn_input_not_reused',
("Generate a warning when destroy_map or view_map says that an "
"op works inplace, but the op did not reuse the input for its "
"output."),
BoolParam(True),
in_c_key=False)
def is_valid_check_preallocated_output_param(param):
if not isinstance(param, string_types):
return False
valid = ["initial", "previous", "c_contiguous", "f_contiguous",
"strided", "wrong_size", "ALL", ""]
for p in param.split(":"):
if p not in valid:
return False
return True
AddConfigVar('DebugMode.check_preallocated_output',
('Test thunks with pre-allocated memory as output storage. '
'This is a list of strings separated by ":". Valid values are: '
'"initial" (initial storage in storage map, happens with Scan),'
'"previous" (previously-returned memory), '
'"c_contiguous", "f_contiguous", '
'"strided" (positive and negative strides), '
'"wrong_size" (larger and smaller dimensions), and '
'"ALL" (all of the above).'),
StrParam('', is_valid=is_valid_check_preallocated_output_param),
in_c_key=False)
AddConfigVar('DebugMode.check_preallocated_output_ndim',
('When testing with "strided" preallocated output memory, '
'test all combinations of strides over that number of '
'(inner-most) dimensions. You may want to reduce that number '
'to reduce memory or time usage, but it is advised to keep a '
'minimum of 2.'),
IntParam(4, lambda i: i > 0),
in_c_key=False)
AddConfigVar('profiling.time_thunks',
"""Time individual thunks when profiling""",
BoolParam(True),
in_c_key=False)
AddConfigVar('profiling.n_apply',
"Number of Apply instances to print by default",
IntParam(20, lambda i: i > 0),
in_c_key=False)
AddConfigVar('profiling.n_ops',
"Number of Ops to print by default",
IntParam(20, lambda i: i > 0),
in_c_key=False)
AddConfigVar('profiling.output_line_width',
"Max line width for the profiling output",
IntParam(512, lambda i: i > 0),
in_c_key=False)
AddConfigVar('profiling.min_memory_size',
"""For the memory profile, do not print Apply nodes if the size
of their outputs (in bytes) is lower than this threshold""",
IntParam(1024, lambda i: i >= 0),
in_c_key=False)
AddConfigVar('profiling.min_peak_memory',
"""The min peak memory usage of the order""",
BoolParam(False),
in_c_key=False)
AddConfigVar('profiling.destination',
"""
File destination of the profiling output
""",
StrParam('stderr'),
in_c_key=False)
AddConfigVar('profiling.debugprint',
"""
Do a debugprint of the profiled functions
""",
BoolParam(False),
in_c_key=False)
AddConfigVar('optdb.position_cutoff',
'Where to stop eariler during optimization. It represent the'
' position of the optimizer where to stop.',
FloatParam(numpy.inf),
in_c_key=False)
AddConfigVar('optdb.max_use_ratio',
'A ratio that prevent infinite loop in EquilibriumOptimizer.',
FloatParam(5),
in_c_key=False)
AddConfigVar('gcc.cxxflags',
"Extra compiler flags for gcc",
StrParam(""))
AddConfigVar(
'cmodule.mac_framework_link',
"If set to True, breaks certain MacOS installations with the infamous "
"Bus Error",
BoolParam(False))
AddConfigVar('cmodule.warn_no_version',
"If True, will print a warning when compiling one or more Op "
"with C code that can't be cached because there is no "
"c_code_cache_version() function associated to at least one of "
"those Ops.",
BoolParam(False),
in_c_key=False)
AddConfigVar('cmodule.remove_gxx_opt',
"If True, will remove the -O* parameter passed to g++."
"This is useful to debug in gdb modules compiled by Theano."
"The parameter -g is passed by default to g++",
BoolParam(False))
AddConfigVar('cmodule.compilation_warning',
"If True, will print compilation warnings.",
BoolParam(False))
AddConfigVar('cmodule.preload_cache',
"If set to True, will preload the C module cache at import time",
BoolParam(False, allow_override=False),
in_c_key=False)
def default_blas_ldflags():
global numpy
try:
if (hasattr(numpy.distutils, '__config__') and
numpy.distutils.__config__):
# If the old private interface is available use it as it
# don't print information to the user.
blas_info = numpy.distutils.__config__.blas_opt_info
else:
# We do this import only here, as in some setup, if we
# just import theano and exit, with the import at global
# scope, we get this error at exit: "Exception TypeError:
# "'NoneType' object is not callable" in <bound method
# Popen.__del__ of <subprocess.Popen object at 0x21359d0>>
# ignored"
# This happen with Python 2.7.3 |EPD 7.3-1 and numpy 1.8.1
import numpy.distutils.system_info # noqa
# We need to catch warnings as in some cases NumPy print
# stuff that we don't want the user to see.
# I'm not able to remove all printed stuff
with warnings.catch_warnings(record=True):
numpy.distutils.system_info.system_info.verbosity = 0
blas_info = numpy.distutils.system_info.get_info("blas_opt")
# If we are in a EPD installation, mkl is available
if "EPD" in sys.version:
use_unix_epd = True
if sys.platform == 'win32':
return ' '.join(
['-L%s' % os.path.join(sys.prefix, "Scripts")] +
# Why on Windows, the library used are not the
# same as what is in
# blas_info['libraries']?
['-l%s' % l for l in ["mk2_core", "mk2_intel_thread",
"mk2_rt"]])
elif sys.platform == 'darwin':
# The env variable is needed to link with mkl
new_path = os.path.join(sys.prefix, "lib")
v = os.getenv("DYLD_FALLBACK_LIBRARY_PATH", None)
if v is not None:
# Explicit version could be replaced by a symbolic
# link called 'Current' created by EPD installer
# This will resolve symbolic links
v = os.path.realpath(v)
# The python __import__ don't seam to take into account
# the new env variable "DYLD_FALLBACK_LIBRARY_PATH"
# when we set with os.environ['...'] = X or os.putenv()
# So we warn the user and tell him what todo.
if v is None or new_path not in v.split(":"):
_logger.warning(
"The environment variable "
"'DYLD_FALLBACK_LIBRARY_PATH' does not contain "
"the '%s' path in its value. This will make "
"Theano use a slow version of BLAS. Update "
"'DYLD_FALLBACK_LIBRARY_PATH' to contain the "
"said value, this will disable this warning."
% new_path)
use_unix_epd = False
if use_unix_epd:
return ' '.join(
['-L%s' % os.path.join(sys.prefix, "lib")] +
['-l%s' % l for l in blas_info['libraries']])
# Canopy
if "Canopy" in sys.prefix:
subsub = 'lib'
if sys.platform == 'win32':
subsub = 'Scripts'
lib_path = os.path.join(sys.base_prefix, subsub)
if not os.path.exists(lib_path):
# Old logic to find the path. I don't think we still
# need it, but I don't have the time to test all
# installation configuration. So I keep this as a fall
# back in case the current expectation don't work.
# This old logic don't work when multiple version of
# Canopy is installed.
p = os.path.join(sys.base_prefix, "..", "..", "appdata")
assert os.path.exists(p), "Canopy changed the location of MKL"
lib_paths = os.listdir(p)
# Try to remove subdir that can't contain MKL
for sub in lib_paths:
if not os.path.exists(os.path.join(p, sub, subsub)):
lib_paths.remove(sub)
assert len(lib_paths) == 1, (
"Unexpected case when looking for Canopy MKL libraries",
p, lib_paths, [os.listdir(os.path.join(p, sub))
for sub in lib_paths])
lib_path = os.path.join(p, lib_paths[0], subsub)
assert os.path.exists(lib_path), "Canopy changed the location of MKL"
if sys.platform == "linux2" or sys.platform == "darwin":
return ' '.join(
['-L%s' % lib_path] +
['-l%s' % l for l in blas_info['libraries']])
elif sys.platform == 'win32':
return ' '.join(
['-L%s' % lib_path] +
# Why on Windows, the library used are not the
# same as what is in blas_info['libraries']?
['-l%s' % l for l in ["mk2_core", "mk2_intel_thread",
"mk2_rt"]])
# Anaconda
if "Anaconda" in sys.version and sys.platform == "win32":
# If the "mkl-service" conda package (available
# through Python package "mkl") is installed and
# importable, then the libraries (installed by conda
# package "mkl-rt") are actually available. Using
# "conda install mkl" will install both, as well as
# optimized versions of numpy and scipy.
try:
import mkl # noqa
except ImportError as e:
_logger.info('Conda mkl is not available: %s', e)
else:
# This branch is executed if no exception was raised
lib_path = os.path.join(sys.prefix, 'DLLs')
flags = ['-L%s' % lib_path]
flags += ['-l%s' % l for l in ["mkl_core",
"mkl_intel_thread",
"mkl_rt"]]
res = try_blas_flag(flags)
if res:
return res
ret = (
# TODO: the Gemm op below should separate the
# -L and -l arguments into the two callbacks
# that CLinker uses for that stuff. for now,
# we just pass the whole ldflags as the -l
# options part.
['-L%s' % l for l in blas_info.get('library_dirs', [])] +
['-l%s' % l for l in blas_info.get('libraries', [])] +
blas_info.get('extra_link_args', []))
# For some very strange reason, we need to specify -lm twice
# to get mkl to link correctly. I have no idea why.
if any('mkl' in fl for fl in ret):
ret.extend(['-lm', '-lm'])
res = try_blas_flag(ret)
if res:
return res
# Some environment don't have the lib dir in LD_LIBRARY_PATH.
# So add it.
ret.extend(['-Wl,-rpath,' + l for l in
blas_info.get('library_dirs', [])])
res = try_blas_flag(ret)
if res:
return res
# Try to add the anaconda lib directory to runtime loading of lib.
# This fix some case with Anaconda 2.3 on Linux.
# Newer Anaconda still have this problem but only have
# Continuum in sys.version.
if (("Anaconda" in sys.version or
"Continuum" in sys.version) and
"linux" in sys.platform):
lib_path = os.path.join(sys.prefix, 'lib')
ret.append('-Wl,-rpath,' + lib_path)
res = try_blas_flag(ret)
if res:
return res
except KeyError:
pass
# Even if we could not detect what was used for numpy, or if these
# libraries are not found, most Linux systems have a libblas.so
# readily available. We try to see if that's the case, rather
# than disable blas. To test it correctly, we must load a program.
# Otherwise, there could be problem in the LD_LIBRARY_PATH.
return try_blas_flag(['-lblas'])
def try_blas_flag(flags):
from theano.gof.cmodule import GCC_compiler
test_code = textwrap.dedent("""\
extern "C" double ddot_(int*, double*, int*, double*, int*);
int main(int argc, char** argv)
{
int Nx = 5;
int Sx = 1;
double x[5] = {0, 1, 2, 3, 4};
double r = ddot_(&Nx, x, &Sx, x, &Sx);
if ((r - 30.) > 1e-6 || (r - 30.) < -1e-6)
{
return -1;
}
return 0;
}
""")
cflags = flags + ['-L' + d for d in theano.gof.cmodule.std_lib_dirs()]
res = GCC_compiler.try_compile_tmp(
test_code, tmp_prefix='try_blas_',
flags=cflags, try_run=True)
# res[0]: shows successful compilation
# res[1]: shows successful execution
if res and res[0] and res[1]:
return ' '.join(flags)
else:
return ""
AddConfigVar('blas.ldflags',
"lib[s] to include for [Fortran] level-3 blas implementation",
StrParam(default_blas_ldflags))
AddConfigVar(
'metaopt.verbose',
"Enable verbose output for meta optimizers",
theano.configparser.BoolParam(False),
in_c_key=False)
AddConfigVar('profile',
"If VM should collect profile information",
BoolParam(False),
in_c_key=False)
AddConfigVar('profile_optimizer',
"If VM should collect optimizer profile information",
BoolParam(False),
in_c_key=False)
AddConfigVar('profile_memory',
"If VM should collect memory profile information and print it",
BoolParam(False),
in_c_key=False)
def filter_vm_lazy(val):
if val == 'False' or val is False:
return False
elif val == 'True' or val is True:
return True
elif val == 'None' or val is None:
return None
else:
raise ValueError('Valid values for an vm.lazy parameter '
'should be None, False or True, not `%s`.' % val)
AddConfigVar('vm.lazy',
"Useful only for the vm linkers. When lazy is None,"
" auto detect if lazy evaluation is needed and use the apropriate"
" version. If lazy is True/False, force the version used between"
" Loop/LoopGC and Stack.",
ConfigParam('None', filter_vm_lazy),
in_c_key=False)
AddConfigVar(
'warn.identify_1pexp_bug',
'Warn if Theano versions prior to 7987b51 (2011-12-18) could have '
'yielded a wrong result due to a bug in the is_1pexp function',
BoolParam(warn_default('0.4.1')),
in_c_key=False)
AddConfigVar('on_shape_error',
"warn: print a warning and use the default"
" value. raise: raise an error",
theano.configparser.EnumStr("warn", "raise"),
in_c_key=False)
AddConfigVar(
'tensor.insert_inplace_optimizer_validate_nb',
"-1: auto, if graph have less then 500 nodes 1, else 10",
theano.configparser.IntParam(-1),
in_c_key=False)
AddConfigVar('experimental.local_alloc_elemwise',
"DEPRECATED: If True, enable the experimental"
" optimization local_alloc_elemwise."
" Generates error if not True. Use"
" optimizer_excluding=local_alloc_elemwise"
" to dsiable.",
theano.configparser.BoolParam(
True,
is_valid=lambda x: x
),
in_c_key=False)
# False could make the graph faster but not as safe.
AddConfigVar(
'experimental.local_alloc_elemwise_assert',
"When the local_alloc_elemwise is applied, add"
" an assert to highlight shape errors.",
theano.configparser.BoolParam(True),
in_c_key=False)
AddConfigVar('scan.allow_gc',
"Allow/disallow gc inside of Scan (default: False)",
BoolParam(False))
AddConfigVar('scan.allow_output_prealloc',
"Allow/disallow memory preallocation for outputs inside of scan "
"(default: True)",
BoolParam(True))
AddConfigVar('pycuda.init',
"""If True, always initialize PyCUDA when Theano want to
initilize the GPU. Currently, we must always initialize
PyCUDA before Theano do it. Setting this flag to True,
ensure that, but always import PyCUDA. It can be done
manually by importing theano.misc.pycuda_init before theano
initialize the GPU device.
""",
BoolParam(False),
in_c_key=False)
AddConfigVar('cublas.lib',
"""Name of the cuda blas library for the linker.""",
StrParam('cublas'))
AddConfigVar('lib.cnmem',
"""Do we enable CNMeM or not (a faster CUDA memory allocator).
The parameter represent the start size (in MB or % of
total GPU memory) of the memory pool.
0: not enabled.
0 < N <= 1: % of the total GPU memory (clipped to .985 for driver memory)
> 0: use that number of MB of memory.
""",
# We should not mix both allocator, so we can't override
FloatParam(0, lambda i: i >= 0, allow_override=False),
in_c_key=False)
AddConfigVar('compile.wait',
"""Time to wait before retrying to aquire the compile lock.""",
IntParam(5, lambda i: i > 0, allow_override=False),
in_c_key=False)
def _timeout_default():
return theano.config.compile.wait * 24
AddConfigVar('compile.timeout',
"""In seconds, time that a process will wait before deciding to
override an existing lock. An override only happens when the existing
lock is held by the same owner *and* has not been 'refreshed' by this
owner for more than this period. Refreshes are done every half timeout
period for running processes.""",
IntParam(_timeout_default, lambda i: i >= 0,
allow_override=False),
in_c_key=False)
try:
p_out = output_subprocess_Popen([config.cxx, '-dumpversion'])
gcc_version_str = p_out[0].strip().decode()
except OSError:
# Typically means gcc cannot be found.
gcc_version_str = 'GCC_NOT_FOUND'
def local_bitwidth():
"""
Return 32 for 32bit arch, 64 for 64bit arch.
By "architecture", we mean the size of memory pointers (size_t in C),
*not* the size of long int, as it can be different.
"""
# Note that according to Python documentation, `platform.architecture()` is
# not reliable on OS X with universal binaries.
# Also, sys.maxsize does not exist in Python < 2.6.
# 'P' denotes a void*, and the size is expressed in bytes.
return struct.calcsize('P') * 8
def python_int_bitwidth():
"""
Return the bit width of Python int (C long int).
Note that it can be different from the size of a memory pointer.
"""
# 'l' denotes a C long int, and the size is expressed in bytes.
return struct.calcsize('l') * 8
compiledir_format_dict = {
"platform": platform.platform(),
"processor": platform.processor(),
"python_version": platform.python_version(),
"python_bitwidth": local_bitwidth(),
"python_int_bitwidth": python_int_bitwidth(),
"theano_version": theano.__version__,
"numpy_version": numpy.__version__,
"gxx_version": gcc_version_str.replace(" ", "_"),
"hostname": socket.gethostname()}
def short_platform(r=None, p=None):
"""
Return a safe shorter version of platform.platform().
The old default Theano compiledir used platform.platform in
it. This use the platform.version() as a substring. This is too
specific as it contain the full kernel number and package
version. This cause the compiledir to change each time there is a
new linux kernel update. This function remove the part of platform
that are too precise.
If we have something else then expected, we do nothing. So this
should be safe on other OS.
Some example if we use platform.platform() direction. On the same
OS, with just some kernel updates.
compiledir_Linux-2.6.32-504.el6.x86_64-x86_64-with-redhat-6.6-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-431.29.2.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-431.23.3.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-431.20.3.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-431.17.1.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-431.11.2.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-431.el6.x86_64-x86_64-with-redhat-6.5-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-358.23.2.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-358.6.2.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-358.6.1.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-358.2.1.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-358.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6-64
compiledir_Linux-2.6.32-358.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-279.14.1.el6.x86_64-x86_64-with-redhat-6.4-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-279.14.1.el6.x86_64-x86_64-with-redhat-6.3-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-279.5.2.el6.x86_64-x86_64-with-redhat-6.3-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.3-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-220.13.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-220.7.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago-x86_64-2.6.6
compiledir_Linux-2.6.32-220.4.1.el6.x86_64-x86_64-with-redhat-6.2-Santiago-x86_64-2.6.6
We suppose the version are ``X.Y[.*]-(digit)*(anything)*``. We keep ``X.Y``
and don't keep less important digit in the part before ``-`` and we remove
the leading digit after the first ``-``.
If the information don't fit that pattern, we do not modify platform.
"""
if r is None:
r = platform.release()
if p is None:
p = platform.platform()
sp = r.split('-')
if len(sp) < 2:
return p
# For the split before the first -, we remove all learning digit:
kernel_version = sp[0].split('.')
if len(kernel_version) <= 2:
# kernel version should always have at least 3 number.
# If not, it use another semantic, so don't change it.
return p
sp[0] = '.'.join(kernel_version[:2])
# For the split after the first -, we remove leading non-digit value.
rest = sp[1].split('.')
while len(rest):
if rest[0].isdigit():
del rest[0]
else:
break
sp[1] = '.'.join(rest)
# For sp[2:], we don't change anything.
sr = '-'.join(sp)
p = p.replace(r, sr)
return p
compiledir_format_dict['short_platform'] = short_platform()
compiledir_format_keys = ", ".join(sorted(compiledir_format_dict.keys()))
default_compiledir_format = ("compiledir_%(short_platform)s-%(processor)s-"
"%(python_version)s-%(python_bitwidth)s")
AddConfigVar("compiledir_format",
textwrap.fill(textwrap.dedent("""\
Format string for platform-dependent compiled
module subdirectory (relative to base_compiledir).
Available keys: %s. Defaults to %r.
""" % (compiledir_format_keys, default_compiledir_format))),
StrParam(default_compiledir_format, allow_override=False),
in_c_key=False)
def default_compiledirname():
formatted = theano.config.compiledir_format % compiledir_format_dict
safe = re.sub("[\(\)\s,]+", "_", formatted)
return safe
def filter_base_compiledir(path):
# Expand '~' in path
return os.path.expanduser(str(path))
def filter_compiledir(path):
# Expand '~' in path
path = os.path.expanduser(path)
# Turn path into the 'real' path. This ensures that:
# 1. There is no relative path, which would fail e.g. when trying to
# import modules from the compile dir.
# 2. The path is stable w.r.t. e.g. symlinks (which makes it easier
# to re-use compiled modules).
path = os.path.realpath(path)
if os.access(path, os.F_OK): # Do it exist?
if not os.access(path, os.R_OK | os.W_OK | os.X_OK):
# If it exist we need read, write and listing access
raise ValueError(
"compiledir '%s' exists but you don't have read, write"
" or listing permissions." % path)
else:
try:
os.makedirs(path, 0o770) # read-write-execute for user and group
except OSError as e:
# Maybe another parallel execution of theano was trying to create
# the same directory at the same time.
if e.errno != errno.EEXIST:
raise ValueError(
"Unable to create the compiledir directory"
" '%s'. Check the permissions." % path)
# PROBLEM: sometimes the initial approach based on
# os.system('touch') returned -1 for an unknown reason; the
# alternate approach here worked in all cases... it was weird.
# No error should happen as we checked the permissions.
init_file = os.path.join(path, '__init__.py')
if not os.path.exists(init_file):
try:
open(init_file, 'w').close()
except IOError as e:
if os.path.exists(init_file):
pass # has already been created
else:
e.args += ('%s exist? %s' % (path, os.path.exists(path)),)
raise
return path
def get_home_dir():
"""
Return location of the user's home directory.
"""
home = os.getenv('HOME')
if home is None:
# This expanduser usually works on Windows (see discussion on
# theano-users, July 13 2010).
home = os.path.expanduser('~')
if home == '~':
# This might happen when expanduser fails. Although the cause of
# failure is a mystery, it has been seen on some Windows system.
home = os.getenv('USERPROFILE')
assert home is not None
return home
# On Windows we should avoid writing temporary files to a directory that is
# part of the roaming part of the user profile. Instead we use the local part
# of the user profile, when available.
if sys.platform == 'win32' and os.getenv('LOCALAPPDATA') is not None:
default_base_compiledir = os.path.join(os.getenv('LOCALAPPDATA'), 'Theano')
else:
default_base_compiledir = os.path.join(get_home_dir(), '.theano')
AddConfigVar(
'base_compiledir',
"platform-independent root directory for compiled modules",
ConfigParam(
default_base_compiledir,
filter=filter_base_compiledir,
allow_override=False),
in_c_key=False)
def default_compiledir():
return os.path.join(
theano.config.base_compiledir,
default_compiledirname())
AddConfigVar(
'compiledir',
"platform-dependent cache directory for compiled modules",
ConfigParam(
default_compiledir,
filter=filter_compiledir,
allow_override=False),
in_c_key=False)
# Check if there are remaining flags provided by the user through THEANO_FLAGS.
for key in THEANO_FLAGS_DICT.keys():
warnings.warn('Theano does not recognise this flag: {0}'.format(key))
|