This file is indexed.

/usr/lib/python2.7/dist-packages/numpy/polynomial/polynomial.py is in python-numpy 1:1.12.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
"""
Objects for dealing with polynomials.

This module provides a number of objects (mostly functions) useful for
dealing with polynomials, including a `Polynomial` class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with polynomial objects is in
the docstring for its "parent" sub-package, `numpy.polynomial`).

Constants
---------
- `polydomain` -- Polynomial default domain, [-1,1].
- `polyzero` -- (Coefficients of the) "zero polynomial."
- `polyone` -- (Coefficients of the) constant polynomial 1.
- `polyx` -- (Coefficients of the) identity map polynomial, ``f(x) = x``.

Arithmetic
----------
- `polyadd` -- add two polynomials.
- `polysub` -- subtract one polynomial from another.
- `polymul` -- multiply two polynomials.
- `polydiv` -- divide one polynomial by another.
- `polypow` -- raise a polynomial to an positive integer power
- `polyval` -- evaluate a polynomial at given points.
- `polyval2d` -- evaluate a 2D polynomial at given points.
- `polyval3d` -- evaluate a 3D polynomial at given points.
- `polygrid2d` -- evaluate a 2D polynomial on a Cartesian product.
- `polygrid3d` -- evaluate a 3D polynomial on a Cartesian product.

Calculus
--------
- `polyder` -- differentiate a polynomial.
- `polyint` -- integrate a polynomial.

Misc Functions
--------------
- `polyfromroots` -- create a polynomial with specified roots.
- `polyroots` -- find the roots of a polynomial.
- `polyvalfromroots` -- evalute a polynomial at given points from roots.
- `polyvander` -- Vandermonde-like matrix for powers.
- `polyvander2d` -- Vandermonde-like matrix for 2D power series.
- `polyvander3d` -- Vandermonde-like matrix for 3D power series.
- `polycompanion` -- companion matrix in power series form.
- `polyfit` -- least-squares fit returning a polynomial.
- `polytrim` -- trim leading coefficients from a polynomial.
- `polyline` -- polynomial representing given straight line.

Classes
-------
- `Polynomial` -- polynomial class.

See Also
--------
`numpy.polynomial`

"""
from __future__ import division, absolute_import, print_function

__all__ = [
    'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd',
    'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval',
    'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
    'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d',
    'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d']

import warnings
import numpy as np
import numpy.linalg as la

from . import polyutils as pu
from ._polybase import ABCPolyBase

polytrim = pu.trimcoef

#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#

# Polynomial default domain.
polydomain = np.array([-1, 1])

# Polynomial coefficients representing zero.
polyzero = np.array([0])

# Polynomial coefficients representing one.
polyone = np.array([1])

# Polynomial coefficients representing the identity x.
polyx = np.array([0, 1])

#
# Polynomial series functions
#


def polyline(off, scl):
    """
    Returns an array representing a linear polynomial.

    Parameters
    ----------
    off, scl : scalars
        The "y-intercept" and "slope" of the line, respectively.

    Returns
    -------
    y : ndarray
        This module's representation of the linear polynomial ``off +
        scl*x``.

    See Also
    --------
    chebline

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> P.polyline(1,-1)
    array([ 1, -1])
    >>> P.polyval(1, P.polyline(1,-1)) # should be 0
    0.0

    """
    if scl != 0:
        return np.array([off, scl])
    else:
        return np.array([off])


def polyfromroots(roots):
    """
    Generate a monic polynomial with given roots.

    Return the coefficients of the polynomial

    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),

    where the `r_n` are the roots specified in `roots`.  If a zero has
    multiplicity n, then it must appear in `roots` n times. For instance,
    if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
    then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear
    in any order.

    If the returned coefficients are `c`, then

    .. math:: p(x) = c_0 + c_1 * x + ... +  x^n

    The coefficient of the last term is 1 for monic polynomials in this
    form.

    Parameters
    ----------
    roots : array_like
        Sequence containing the roots.

    Returns
    -------
    out : ndarray
        1-D array of the polynomial's coefficients If all the roots are
        real, then `out` is also real, otherwise it is complex.  (see
        Examples below).

    See Also
    --------
    chebfromroots, legfromroots, lagfromroots, hermfromroots
    hermefromroots

    Notes
    -----
    The coefficients are determined by multiplying together linear factors
    of the form `(x - r_i)`, i.e.

    .. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n)

    where ``n == len(roots) - 1``; note that this implies that `1` is always
    returned for :math:`a_n`.

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
    array([ 0., -1.,  0.,  1.])
    >>> j = complex(0,1)
    >>> P.polyfromroots((-j,j)) # complex returned, though values are real
    array([ 1.+0.j,  0.+0.j,  1.+0.j])

    """
    if len(roots) == 0:
        return np.ones(1)
    else:
        [roots] = pu.as_series([roots], trim=False)
        roots.sort()
        p = [polyline(-r, 1) for r in roots]
        n = len(p)
        while n > 1:
            m, r = divmod(n, 2)
            tmp = [polymul(p[i], p[i+m]) for i in range(m)]
            if r:
                tmp[0] = polymul(tmp[0], p[-1])
            p = tmp
            n = m
        return p[0]


def polyadd(c1, c2):
    """
    Add one polynomial to another.

    Returns the sum of two polynomials `c1` + `c2`.  The arguments are
    sequences of coefficients from lowest order term to highest, i.e.,
    [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of polynomial coefficients ordered from low to high.

    Returns
    -------
    out : ndarray
        The coefficient array representing their sum.

    See Also
    --------
    polysub, polymul, polydiv, polypow

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> sum = P.polyadd(c1,c2); sum
    array([ 4.,  4.,  4.])
    >>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
    28.0

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if len(c1) > len(c2):
        c1[:c2.size] += c2
        ret = c1
    else:
        c2[:c1.size] += c1
        ret = c2
    return pu.trimseq(ret)


def polysub(c1, c2):
    """
    Subtract one polynomial from another.

    Returns the difference of two polynomials `c1` - `c2`.  The arguments
    are sequences of coefficients from lowest order term to highest, i.e.,
    [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of polynomial coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of coefficients representing their difference.

    See Also
    --------
    polyadd, polymul, polydiv, polypow

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> P.polysub(c1,c2)
    array([-2.,  0.,  2.])
    >>> P.polysub(c2,c1) # -P.polysub(c1,c2)
    array([ 2.,  0., -2.])

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if len(c1) > len(c2):
        c1[:c2.size] -= c2
        ret = c1
    else:
        c2 = -c2
        c2[:c1.size] += c1
        ret = c2
    return pu.trimseq(ret)


def polymulx(c):
    """Multiply a polynomial by x.

    Multiply the polynomial `c` by x, where x is the independent
    variable.


    Parameters
    ----------
    c : array_like
        1-D array of polynomial coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the result of the multiplication.

    Notes
    -----

    .. versionadded:: 1.5.0

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    # The zero series needs special treatment
    if len(c) == 1 and c[0] == 0:
        return c

    prd = np.empty(len(c) + 1, dtype=c.dtype)
    prd[0] = c[0]*0
    prd[1:] = c
    return prd


def polymul(c1, c2):
    """
    Multiply one polynomial by another.

    Returns the product of two polynomials `c1` * `c2`.  The arguments are
    sequences of coefficients, from lowest order term to highest, e.g.,
    [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of coefficients representing a polynomial, relative to the
        "standard" basis, and ordered from lowest order term to highest.

    Returns
    -------
    out : ndarray
        Of the coefficients of their product.

    See Also
    --------
    polyadd, polysub, polydiv, polypow

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> P.polymul(c1,c2)
    array([  3.,   8.,  14.,   8.,   3.])

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    ret = np.convolve(c1, c2)
    return pu.trimseq(ret)


def polydiv(c1, c2):
    """
    Divide one polynomial by another.

    Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
    The arguments are sequences of coefficients, from lowest order term
    to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of polynomial coefficients ordered from low to high.

    Returns
    -------
    [quo, rem] : ndarrays
        Of coefficient series representing the quotient and remainder.

    See Also
    --------
    polyadd, polysub, polymul, polypow

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> P.polydiv(c1,c2)
    (array([ 3.]), array([-8., -4.]))
    >>> P.polydiv(c2,c1)
    (array([ 0.33333333]), array([ 2.66666667,  1.33333333]))

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if c2[-1] == 0:
        raise ZeroDivisionError()

    len1 = len(c1)
    len2 = len(c2)
    if len2 == 1:
        return c1/c2[-1], c1[:1]*0
    elif len1 < len2:
        return c1[:1]*0, c1
    else:
        dlen = len1 - len2
        scl = c2[-1]
        c2 = c2[:-1]/scl
        i = dlen
        j = len1 - 1
        while i >= 0:
            c1[i:j] -= c2*c1[j]
            i -= 1
            j -= 1
        return c1[j+1:]/scl, pu.trimseq(c1[:j+1])


def polypow(c, pow, maxpower=None):
    """Raise a polynomial to a power.

    Returns the polynomial `c` raised to the power `pow`. The argument
    `c` is a sequence of coefficients ordered from low to high. i.e.,
    [1,2,3] is the series  ``1 + 2*x + 3*x**2.``

    Parameters
    ----------
    c : array_like
        1-D array of array of series coefficients ordered from low to
        high degree.
    pow : integer
        Power to which the series will be raised
    maxpower : integer, optional
        Maximum power allowed. This is mainly to limit growth of the series
        to unmanageable size. Default is 16

    Returns
    -------
    coef : ndarray
        Power series of power.

    See Also
    --------
    polyadd, polysub, polymul, polydiv

    Examples
    --------

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    power = int(pow)
    if power != pow or power < 0:
        raise ValueError("Power must be a non-negative integer.")
    elif maxpower is not None and power > maxpower:
        raise ValueError("Power is too large")
    elif power == 0:
        return np.array([1], dtype=c.dtype)
    elif power == 1:
        return c
    else:
        # This can be made more efficient by using powers of two
        # in the usual way.
        prd = c
        for i in range(2, power + 1):
            prd = np.convolve(prd, c)
        return prd


def polyder(c, m=1, scl=1, axis=0):
    """
    Differentiate a polynomial.

    Returns the polynomial coefficients `c` differentiated `m` times along
    `axis`.  At each iteration the result is multiplied by `scl` (the
    scaling factor is for use in a linear change of variable).  The
    argument `c` is an array of coefficients from low to high degree along
    each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``
    while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is
    ``x`` and axis=1 is ``y``.

    Parameters
    ----------
    c : array_like
        Array of polynomial coefficients. If c is multidimensional the
        different axis correspond to different variables with the degree
        in each axis given by the corresponding index.
    m : int, optional
        Number of derivatives taken, must be non-negative. (Default: 1)
    scl : scalar, optional
        Each differentiation is multiplied by `scl`.  The end result is
        multiplication by ``scl**m``.  This is for use in a linear change
        of variable. (Default: 1)
    axis : int, optional
        Axis over which the derivative is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    der : ndarray
        Polynomial coefficients of the derivative.

    See Also
    --------
    polyint

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
    >>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
    array([  2.,   6.,  12.])
    >>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
    array([ 24.])
    >>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
    array([ -2.,  -6., -12.])
    >>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
    array([  6.,  24.])

    """
    c = np.array(c, ndmin=1, copy=1)
    if c.dtype.char in '?bBhHiIlLqQpP':
        # astype fails with NA
        c = c + 0.0
    cdt = c.dtype
    cnt, iaxis = [int(t) for t in [m, axis]]

    if cnt != m:
        raise ValueError("The order of derivation must be integer")
    if cnt < 0:
        raise ValueError("The order of derivation must be non-negative")
    if iaxis != axis:
        raise ValueError("The axis must be integer")
    if not -c.ndim <= iaxis < c.ndim:
        raise ValueError("The axis is out of range")
    if iaxis < 0:
        iaxis += c.ndim

    if cnt == 0:
        return c

    c = np.rollaxis(c, iaxis)
    n = len(c)
    if cnt >= n:
        c = c[:1]*0
    else:
        for i in range(cnt):
            n = n - 1
            c *= scl
            der = np.empty((n,) + c.shape[1:], dtype=cdt)
            for j in range(n, 0, -1):
                der[j - 1] = j*c[j]
            c = der
    c = np.rollaxis(c, 0, iaxis + 1)
    return c


def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
    """
    Integrate a polynomial.

    Returns the polynomial coefficients `c` integrated `m` times from
    `lbnd` along `axis`.  At each iteration the resulting series is
    **multiplied** by `scl` and an integration constant, `k`, is added.
    The scaling factor is for use in a linear change of variable.  ("Buyer
    beware": note that, depending on what one is doing, one may want `scl`
    to be the reciprocal of what one might expect; for more information,
    see the Notes section below.) The argument `c` is an array of
    coefficients, from low to high degree along each axis, e.g., [1,2,3]
    represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]]
    represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is
    ``y``.

    Parameters
    ----------
    c : array_like
        1-D array of polynomial coefficients, ordered from low to high.
    m : int, optional
        Order of integration, must be positive. (Default: 1)
    k : {[], list, scalar}, optional
        Integration constant(s).  The value of the first integral at zero
        is the first value in the list, the value of the second integral
        at zero is the second value, etc.  If ``k == []`` (the default),
        all constants are set to zero.  If ``m == 1``, a single scalar can
        be given instead of a list.
    lbnd : scalar, optional
        The lower bound of the integral. (Default: 0)
    scl : scalar, optional
        Following each integration the result is *multiplied* by `scl`
        before the integration constant is added. (Default: 1)
    axis : int, optional
        Axis over which the integral is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    S : ndarray
        Coefficient array of the integral.

    Raises
    ------
    ValueError
        If ``m < 1``, ``len(k) > m``.

    See Also
    --------
    polyder

    Notes
    -----
    Note that the result of each integration is *multiplied* by `scl`.  Why
    is this important to note?  Say one is making a linear change of
    variable :math:`u = ax + b` in an integral relative to `x`. Then
    .. math::`dx = du/a`, so one will need to set `scl` equal to
    :math:`1/a` - perhaps not what one would have first thought.

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> c = (1,2,3)
    >>> P.polyint(c) # should return array([0, 1, 1, 1])
    array([ 0.,  1.,  1.,  1.])
    >>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
    array([ 0.        ,  0.        ,  0.        ,  0.16666667,  0.08333333,
            0.05      ])
    >>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
    array([ 3.,  1.,  1.,  1.])
    >>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
    array([ 6.,  1.,  1.,  1.])
    >>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
    array([ 0., -2., -2., -2.])

    """
    c = np.array(c, ndmin=1, copy=1)
    if c.dtype.char in '?bBhHiIlLqQpP':
        # astype doesn't preserve mask attribute.
        c = c + 0.0
    cdt = c.dtype
    if not np.iterable(k):
        k = [k]
    cnt, iaxis = [int(t) for t in [m, axis]]

    if cnt != m:
        raise ValueError("The order of integration must be integer")
    if cnt < 0:
        raise ValueError("The order of integration must be non-negative")
    if len(k) > cnt:
        raise ValueError("Too many integration constants")
    if iaxis != axis:
        raise ValueError("The axis must be integer")
    if not -c.ndim <= iaxis < c.ndim:
        raise ValueError("The axis is out of range")
    if iaxis < 0:
        iaxis += c.ndim

    if cnt == 0:
        return c

    k = list(k) + [0]*(cnt - len(k))
    c = np.rollaxis(c, iaxis)
    for i in range(cnt):
        n = len(c)
        c *= scl
        if n == 1 and np.all(c[0] == 0):
            c[0] += k[i]
        else:
            tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
            tmp[0] = c[0]*0
            tmp[1] = c[0]
            for j in range(1, n):
                tmp[j + 1] = c[j]/(j + 1)
            tmp[0] += k[i] - polyval(lbnd, tmp)
            c = tmp
    c = np.rollaxis(c, 0, iaxis + 1)
    return c


def polyval(x, c, tensor=True):
    """
    Evaluate a polynomial at points x.

    If `c` is of length `n + 1`, this function returns the value

    .. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n

    The parameter `x` is converted to an array only if it is a tuple or a
    list, otherwise it is treated as a scalar. In either case, either `x`
    or its elements must support multiplication and addition both with
    themselves and with the elements of `c`.

    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If
    `c` is multidimensional, then the shape of the result depends on the
    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
    scalars have shape (,).

    Trailing zeros in the coefficients will be used in the evaluation, so
    they should be avoided if efficiency is a concern.

    Parameters
    ----------
    x : array_like, compatible object
        If `x` is a list or tuple, it is converted to an ndarray, otherwise
        it is left unchanged and treated as a scalar. In either case, `x`
        or its elements must support addition and multiplication with
        with themselves and with the elements of `c`.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree n are contained in c[n]. If `c` is multidimensional the
        remaining indices enumerate multiple polynomials. In the two
        dimensional case the coefficients may be thought of as stored in
        the columns of `c`.
    tensor : boolean, optional
        If True, the shape of the coefficient array is extended with ones
        on the right, one for each dimension of `x`. Scalars have dimension 0
        for this action. The result is that every column of coefficients in
        `c` is evaluated for every element of `x`. If False, `x` is broadcast
        over the columns of `c` for the evaluation.  This keyword is useful
        when `c` is multidimensional. The default value is True.

        .. versionadded:: 1.7.0

    Returns
    -------
    values : ndarray, compatible object
        The shape of the returned array is described above.

    See Also
    --------
    polyval2d, polygrid2d, polyval3d, polygrid3d

    Notes
    -----
    The evaluation uses Horner's method.

    Examples
    --------
    >>> from numpy.polynomial.polynomial import polyval
    >>> polyval(1, [1,2,3])
    6.0
    >>> a = np.arange(4).reshape(2,2)
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> polyval(a, [1,2,3])
    array([[  1.,   6.],
           [ 17.,  34.]])
    >>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
    >>> coef
    array([[0, 1],
           [2, 3]])
    >>> polyval([1,2], coef, tensor=True)
    array([[ 2.,  4.],
           [ 4.,  7.]])
    >>> polyval([1,2], coef, tensor=False)
    array([ 2.,  7.])

    """
    c = np.array(c, ndmin=1, copy=0)
    if c.dtype.char in '?bBhHiIlLqQpP':
        # astype fails with NA
        c = c + 0.0
    if isinstance(x, (tuple, list)):
        x = np.asarray(x)
    if isinstance(x, np.ndarray) and tensor:
        c = c.reshape(c.shape + (1,)*x.ndim)

    c0 = c[-1] + x*0
    for i in range(2, len(c) + 1):
        c0 = c[-i] + c0*x
    return c0


def polyvalfromroots(x, r, tensor=True):
    """
    Evaluate a polynomial specified by its roots at points x.

    If `r` is of length `N`, this function returns the value

    .. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)

    The parameter `x` is converted to an array only if it is a tuple or a
    list, otherwise it is treated as a scalar. In either case, either `x`
    or its elements must support multiplication and addition both with
    themselves and with the elements of `r`.

    If `r` is a 1-D array, then `p(x)` will have the same shape as `x`.  If `r`
    is multidimensional, then the shape of the result depends on the value of
    `tensor`. If `tensor is ``True`` the shape will be r.shape[1:] + x.shape;
    that is, each polynomial is evaluated at every value of `x`. If `tensor` is
    ``False``, the shape will be r.shape[1:]; that is, each polynomial is
    evaluated only for the corresponding broadcast value of `x`. Note that
    scalars have shape (,).

    .. versionadded:: 1.12

    Parameters
    ----------
    x : array_like, compatible object
        If `x` is a list or tuple, it is converted to an ndarray, otherwise
        it is left unchanged and treated as a scalar. In either case, `x`
        or its elements must support addition and multiplication with
        with themselves and with the elements of `r`.
    r : array_like
        Array of roots. If `r` is multidimensional the first index is the
        root index, while the remaining indices enumerate multiple
        polynomials. For instance, in the two dimensional case the roots
        of each polynomial may be thought of as stored in the columns of `r`.
    tensor : boolean, optional
        If True, the shape of the roots array is extended with ones on the
        right, one for each dimension of `x`. Scalars have dimension 0 for this
        action. The result is that every column of coefficients in `r` is
        evaluated for every element of `x`. If False, `x` is broadcast over the
        columns of `r` for the evaluation.  This keyword is useful when `r` is
        multidimensional. The default value is True.

    Returns
    -------
    values : ndarray, compatible object
        The shape of the returned array is described above.

    See Also
    --------
    polyroots, polyfromroots, polyval

    Examples
    --------
    >>> from numpy.polynomial.polynomial import polyvalfromroots
    >>> polyvalfromroots(1, [1,2,3])
    0.0
    >>> a = np.arange(4).reshape(2,2)
    >>> a
    array([[0, 1],
           [2, 3]])
    >>> polyvalfromroots(a, [-1, 0, 1])
    array([[ -0.,   0.],
           [  6.,  24.]])
    >>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
    >>> r # each column of r defines one polynomial
    array([[-2, -1],
           [ 0,  1]])
    >>> b = [-2, 1]
    >>> polyvalfromroots(b, r, tensor=True)
    array([[-0.,  3.],
           [ 3., 0.]])
    >>> polyvalfromroots(b, r, tensor=False)
    array([-0.,  0.])
    """
    r = np.array(r, ndmin=1, copy=0)
    if r.dtype.char in '?bBhHiIlLqQpP':
        r = r.astype(np.double)
    if isinstance(x, (tuple, list)):
        x = np.asarray(x)
    if isinstance(x, np.ndarray):
        if tensor:
            r = r.reshape(r.shape + (1,)*x.ndim)
        elif x.ndim >= r.ndim:
            raise ValueError("x.ndim must be < r.ndim when tensor == False")
    return np.prod(x - r, axis=0)


def polyval2d(x, y, c):
    """
    Evaluate a 2-D polynomial at points (x, y).

    This function returns the value

    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars and they
    must have the same shape after conversion. In either case, either `x`
    and `y` or their elements must support multiplication and addition both
    with themselves and with the elements of `c`.

    If `c` has fewer than two dimensions, ones are implicitly appended to
    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
    x.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points `(x, y)`,
        where `x` and `y` must have the same shape. If `x` or `y` is a list
        or tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and, if it isn't an ndarray, it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term
        of multi-degree i,j is contained in `c[i,j]`. If `c` has
        dimension greater than two the remaining indices enumerate multiple
        sets of coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points formed with
        pairs of corresponding values from `x` and `y`.

    See Also
    --------
    polyval, polygrid2d, polyval3d, polygrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    try:
        x, y = np.array((x, y), copy=0)
    except:
        raise ValueError('x, y are incompatible')

    c = polyval(x, c)
    c = polyval(y, c, tensor=False)
    return c


def polygrid2d(x, y, c):
    """
    Evaluate a 2-D polynomial on the Cartesian product of x and y.

    This function returns the values:

    .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j

    where the points `(a, b)` consist of all pairs formed by taking
    `a` from `x` and `b` from `y`. The resulting points form a grid with
    `x` in the first dimension and `y` in the second.

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars. In either
    case, either `x` and `y` or their elements must support multiplication
    and addition both with themselves and with the elements of `c`.

    If `c` has fewer than two dimensions, ones are implicitly appended to
    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
    x.shape + y.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points in the
        Cartesian product of `x` and `y`.  If `x` or `y` is a list or
        tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and, if it isn't an ndarray, it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree i,j are contained in ``c[i,j]``. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points in the Cartesian
        product of `x` and `y`.

    See Also
    --------
    polyval, polyval2d, polyval3d, polygrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    c = polyval(x, c)
    c = polyval(y, c)
    return c


def polyval3d(x, y, z, c):
    """
    Evaluate a 3-D polynomial at points (x, y, z).

    This function returns the values:

    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k

    The parameters `x`, `y`, and `z` are converted to arrays only if
    they are tuples or a lists, otherwise they are treated as a scalars and
    they must have the same shape after conversion. In either case, either
    `x`, `y`, and `z` or their elements must support multiplication and
    addition both with themselves and with the elements of `c`.

    If `c` has fewer than 3 dimensions, ones are implicitly appended to its
    shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible object
        The three dimensional series is evaluated at the points
        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If
        any of `x`, `y`, or `z` is a list or tuple, it is first converted
        to an ndarray, otherwise it is left unchanged and if it isn't an
        ndarray it is  treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term of
        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
        greater than 3 the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the multidimensional polynomial on points formed with
        triples of corresponding values from `x`, `y`, and `z`.

    See Also
    --------
    polyval, polyval2d, polygrid2d, polygrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    try:
        x, y, z = np.array((x, y, z), copy=0)
    except:
        raise ValueError('x, y, z are incompatible')

    c = polyval(x, c)
    c = polyval(y, c, tensor=False)
    c = polyval(z, c, tensor=False)
    return c


def polygrid3d(x, y, z, c):
    """
    Evaluate a 3-D polynomial on the Cartesian product of x, y and z.

    This function returns the values:

    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k

    where the points `(a, b, c)` consist of all triples formed by taking
    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
    a grid with `x` in the first dimension, `y` in the second, and `z` in
    the third.

    The parameters `x`, `y`, and `z` are converted to arrays only if they
    are tuples or a lists, otherwise they are treated as a scalars. In
    either case, either `x`, `y`, and `z` or their elements must support
    multiplication and addition both with themselves and with the elements
    of `c`.

    If `c` has fewer than three dimensions, ones are implicitly appended to
    its shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape + y.shape + z.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible objects
        The three dimensional series is evaluated at the points in the
        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a
        list or tuple, it is first converted to an ndarray, otherwise it is
        left unchanged and, if it isn't an ndarray, it is treated as a
        scalar.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree i,j are contained in ``c[i,j]``. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points in the Cartesian
        product of `x` and `y`.

    See Also
    --------
    polyval, polyval2d, polygrid2d, polyval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    c = polyval(x, c)
    c = polyval(y, c)
    c = polyval(z, c)
    return c


def polyvander(x, deg):
    """Vandermonde matrix of given degree.

    Returns the Vandermonde matrix of degree `deg` and sample points
    `x`. The Vandermonde matrix is defined by

    .. math:: V[..., i] = x^i,

    where `0 <= i <= deg`. The leading indices of `V` index the elements of
    `x` and the last index is the power of `x`.

    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
    matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and
    ``polyval(x, c)`` are the same up to roundoff. This equivalence is
    useful both for least squares fitting and for the evaluation of a large
    number of polynomials of the same degree and sample points.

    Parameters
    ----------
    x : array_like
        Array of points. The dtype is converted to float64 or complex128
        depending on whether any of the elements are complex. If `x` is
        scalar it is converted to a 1-D array.
    deg : int
        Degree of the resulting matrix.

    Returns
    -------
    vander : ndarray.
        The Vandermonde matrix. The shape of the returned matrix is
        ``x.shape + (deg + 1,)``, where the last index is the power of `x`.
        The dtype will be the same as the converted `x`.

    See Also
    --------
    polyvander2d, polyvander3d

    """
    ideg = int(deg)
    if ideg != deg:
        raise ValueError("deg must be integer")
    if ideg < 0:
        raise ValueError("deg must be non-negative")

    x = np.array(x, copy=0, ndmin=1) + 0.0
    dims = (ideg + 1,) + x.shape
    dtyp = x.dtype
    v = np.empty(dims, dtype=dtyp)
    v[0] = x*0 + 1
    if ideg > 0:
        v[1] = x
        for i in range(2, ideg + 1):
            v[i] = v[i-1]*x
    return np.rollaxis(v, 0, v.ndim)


def polyvander2d(x, y, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y)`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., deg[1]*i + j] = x^i * y^j,

    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
    `V` index the points `(x, y)` and the last index encodes the powers of
    `x` and `y`.

    If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
    correspond to the elements of a 2-D coefficient array `c` of shape
    (xdeg + 1, ydeg + 1) in the order

    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...

    and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same
    up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 2-D polynomials
    of the same degrees and sample points.

    Parameters
    ----------
    x, y : array_like
        Arrays of point coordinates, all of the same shape. The dtypes
        will be converted to either float64 or complex128 depending on
        whether any of the elements are complex. Scalars are converted to
        1-D arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg].

    Returns
    -------
    vander2d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg([1]+1)`.  The dtype will be the same
        as the converted `x` and `y`.

    See Also
    --------
    polyvander, polyvander3d. polyval2d, polyval3d

    """
    ideg = [int(d) for d in deg]
    is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
    if is_valid != [1, 1]:
        raise ValueError("degrees must be non-negative integers")
    degx, degy = ideg
    x, y = np.array((x, y), copy=0) + 0.0

    vx = polyvander(x, degx)
    vy = polyvander(y, degy)
    v = vx[..., None]*vy[..., None,:]
    # einsum bug
    #v = np.einsum("...i,...j->...ij", vx, vy)
    return v.reshape(v.shape[:-2] + (-1,))


def polyvander3d(x, y, z, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
    then The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,

    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading
    indices of `V` index the points `(x, y, z)` and the last index encodes
    the powers of `x`, `y`, and `z`.

    If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
    of `V` correspond to the elements of a 3-D coefficient array `c` of
    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...

    and  ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the
    same up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 3-D polynomials
    of the same degrees and sample points.

    Parameters
    ----------
    x, y, z : array_like
        Arrays of point coordinates, all of the same shape. The dtypes will
        be converted to either float64 or complex128 depending on whether
        any of the elements are complex. Scalars are converted to 1-D
        arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg, z_deg].

    Returns
    -------
    vander3d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`.  The dtype will
        be the same as the converted `x`, `y`, and `z`.

    See Also
    --------
    polyvander, polyvander3d. polyval2d, polyval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    ideg = [int(d) for d in deg]
    is_valid = [id == d and id >= 0 for id, d in zip(ideg, deg)]
    if is_valid != [1, 1, 1]:
        raise ValueError("degrees must be non-negative integers")
    degx, degy, degz = ideg
    x, y, z = np.array((x, y, z), copy=0) + 0.0

    vx = polyvander(x, degx)
    vy = polyvander(y, degy)
    vz = polyvander(z, degz)
    v = vx[..., None, None]*vy[..., None,:, None]*vz[..., None, None,:]
    # einsum bug
    #v = np.einsum("...i, ...j, ...k->...ijk", vx, vy, vz)
    return v.reshape(v.shape[:-3] + (-1,))


def polyfit(x, y, deg, rcond=None, full=False, w=None):
    """
    Least-squares fit of a polynomial to data.

    Return the coefficients of a polynomial of degree `deg` that is the
    least squares fit to the data values `y` given at points `x`. If `y` is
    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
    fits are done, one for each column of `y`, and the resulting
    coefficients are stored in the corresponding columns of a 2-D return.
    The fitted polynomial(s) are in the form

    .. math::  p(x) = c_0 + c_1 * x + ... + c_n * x^n,

    where `n` is `deg`.

    Parameters
    ----------
    x : array_like, shape (`M`,)
        x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
    y : array_like, shape (`M`,) or (`M`, `K`)
        y-coordinates of the sample points.  Several sets of sample points
        sharing the same x-coordinates can be (independently) fit with one
        call to `polyfit` by passing in for `y` a 2-D array that contains
        one data set per column.
    deg : int or 1-D array_like
        Degree(s) of the fitting polynomials. If `deg` is a single integer
        all terms up to and including the `deg`'th term are included in the
        fit. For NumPy versions >= 1.11.0 a list of integers specifying the
        degrees of the terms to include may be used instead.
    rcond : float, optional
        Relative condition number of the fit.  Singular values smaller
        than `rcond`, relative to the largest singular value, will be
        ignored.  The default value is ``len(x)*eps``, where `eps` is the
        relative precision of the platform's float type, about 2e-16 in
        most cases.
    full : bool, optional
        Switch determining the nature of the return value.  When ``False``
        (the default) just the coefficients are returned; when ``True``,
        diagnostic information from the singular value decomposition (used
        to solve the fit's matrix equation) is also returned.
    w : array_like, shape (`M`,), optional
        Weights. If not None, the contribution of each point
        ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
        weights are chosen so that the errors of the products ``w[i]*y[i]``
        all have the same variance.  The default value is None.

        .. versionadded:: 1.5.0

    Returns
    -------
    coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
        Polynomial coefficients ordered from low to high.  If `y` was 2-D,
        the coefficients in column `k` of `coef` represent the polynomial
        fit to the data in `y`'s `k`-th column.

    [residuals, rank, singular_values, rcond] : list
        These values are only returned if `full` = True

        resid -- sum of squared residuals of the least squares fit
        rank -- the numerical rank of the scaled Vandermonde matrix
        sv -- singular values of the scaled Vandermonde matrix
        rcond -- value of `rcond`.

        For more details, see `linalg.lstsq`.

    Raises
    ------
    RankWarning
        Raised if the matrix in the least-squares fit is rank deficient.
        The warning is only raised if `full` == False.  The warnings can
        be turned off by:

        >>> import warnings
        >>> warnings.simplefilter('ignore', RankWarning)

    See Also
    --------
    chebfit, legfit, lagfit, hermfit, hermefit
    polyval : Evaluates a polynomial.
    polyvander : Vandermonde matrix for powers.
    linalg.lstsq : Computes a least-squares fit from the matrix.
    scipy.interpolate.UnivariateSpline : Computes spline fits.

    Notes
    -----
    The solution is the coefficients of the polynomial `p` that minimizes
    the sum of the weighted squared errors

    .. math :: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,

    where the :math:`w_j` are the weights. This problem is solved by
    setting up the (typically) over-determined matrix equation:

    .. math :: V(x) * c = w * y,

    where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
    coefficients to be solved for, `w` are the weights, and `y` are the
    observed values.  This equation is then solved using the singular value
    decomposition of `V`.

    If some of the singular values of `V` are so small that they are
    neglected (and `full` == ``False``), a `RankWarning` will be raised.
    This means that the coefficient values may be poorly determined.
    Fitting to a lower order polynomial will usually get rid of the warning
    (but may not be what you want, of course; if you have independent
    reason(s) for choosing the degree which isn't working, you may have to:
    a) reconsider those reasons, and/or b) reconsider the quality of your
    data).  The `rcond` parameter can also be set to a value smaller than
    its default, but the resulting fit may be spurious and have large
    contributions from roundoff error.

    Polynomial fits using double precision tend to "fail" at about
    (polynomial) degree 20. Fits using Chebyshev or Legendre series are
    generally better conditioned, but much can still depend on the
    distribution of the sample points and the smoothness of the data.  If
    the quality of the fit is inadequate, splines may be a good
    alternative.

    Examples
    --------
    >>> from numpy.polynomial import polynomial as P
    >>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
    >>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
    >>> c, stats = P.polyfit(x,y,3,full=True)
    >>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
    array([ 0.01909725, -1.30598256, -0.00577963,  1.02644286])
    >>> stats # note the large SSR, explaining the rather poor results
    [array([ 38.06116253]), 4, array([ 1.38446749,  1.32119158,  0.50443316,
    0.28853036]), 1.1324274851176597e-014]

    Same thing without the added noise

    >>> y = x**3 - x
    >>> c, stats = P.polyfit(x,y,3,full=True)
    >>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
    array([ -1.73362882e-17,  -1.00000000e+00,  -2.67471909e-16,
             1.00000000e+00])
    >>> stats # note the minuscule SSR
    [array([  7.46346754e-31]), 4, array([ 1.38446749,  1.32119158,
    0.50443316,  0.28853036]), 1.1324274851176597e-014]

    """
    x = np.asarray(x) + 0.0
    y = np.asarray(y) + 0.0
    deg = np.asarray(deg)

    # check arguments.
    if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
        raise TypeError("deg must be an int or non-empty 1-D array of int")
    if deg.min() < 0:
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2:
        raise TypeError("expected 1D or 2D array for y")
    if len(x) != len(y):
        raise TypeError("expected x and y to have same length")

    if deg.ndim == 0:
        lmax = deg
        order = lmax + 1
        van = polyvander(x, lmax)
    else:
        deg = np.sort(deg)
        lmax = deg[-1]
        order = len(deg)
        van = polyvander(x, lmax)[:, deg]

    # set up the least squares matrices in transposed form
    lhs = van.T
    rhs = y.T
    if w is not None:
        w = np.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError("expected 1D vector for w")
        if len(x) != len(w):
            raise TypeError("expected x and w to have same length")
        # apply weights. Don't use inplace operations as they
        # can cause problems with NA.
        lhs = lhs * w
        rhs = rhs * w

    # set rcond
    if rcond is None:
        rcond = len(x)*np.finfo(x.dtype).eps

    # Determine the norms of the design matrix columns.
    if issubclass(lhs.dtype.type, np.complexfloating):
        scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
    else:
        scl = np.sqrt(np.square(lhs).sum(1))
    scl[scl == 0] = 1

    # Solve the least squares problem.
    c, resids, rank, s = la.lstsq(lhs.T/scl, rhs.T, rcond)
    c = (c.T/scl).T

    # Expand c to include non-fitted coefficients which are set to zero
    if deg.ndim == 1:
        if c.ndim == 2:
            cc = np.zeros((lmax + 1, c.shape[1]), dtype=c.dtype)
        else:
            cc = np.zeros(lmax + 1, dtype=c.dtype)
        cc[deg] = c
        c = cc

    # warn on rank reduction
    if rank != order and not full:
        msg = "The fit may be poorly conditioned"
        warnings.warn(msg, pu.RankWarning, stacklevel=2)

    if full:
        return c, [resids, rank, s, rcond]
    else:
        return c


def polycompanion(c):
    """
    Return the companion matrix of c.

    The companion matrix for power series cannot be made symmetric by
    scaling the basis, so this function differs from those for the
    orthogonal polynomials.

    Parameters
    ----------
    c : array_like
        1-D array of polynomial coefficients ordered from low to high
        degree.

    Returns
    -------
    mat : ndarray
        Companion matrix of dimensions (deg, deg).

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        raise ValueError('Series must have maximum degree of at least 1.')
    if len(c) == 2:
        return np.array([[-c[0]/c[1]]])

    n = len(c) - 1
    mat = np.zeros((n, n), dtype=c.dtype)
    bot = mat.reshape(-1)[n::n+1]
    bot[...] = 1
    mat[:, -1] -= c[:-1]/c[-1]
    return mat


def polyroots(c):
    """
    Compute the roots of a polynomial.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * x^i.

    Parameters
    ----------
    c : 1-D array_like
        1-D array of polynomial coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the polynomial. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    chebroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the power series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    Examples
    --------
    >>> import numpy.polynomial.polynomial as poly
    >>> poly.polyroots(poly.polyfromroots((-1,0,1)))
    array([-1.,  0.,  1.])
    >>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
    dtype('float64')
    >>> j = complex(0,1)
    >>> poly.polyroots(poly.polyfromroots((-j,0,j)))
    array([  0.00000000e+00+0.j,   0.00000000e+00+1.j,   2.77555756e-17-1.j])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    m = polycompanion(c)
    r = la.eigvals(m)
    r.sort()
    return r


#
# polynomial class
#

class Polynomial(ABCPolyBase):
    """A power series class.

    The Polynomial class provides the standard Python numerical methods
    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
    attributes and methods listed in the `ABCPolyBase` documentation.

    Parameters
    ----------
    coef : array_like
        Polynomial coefficients in order of increasing degree, i.e.,
        ``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``.
    domain : (2,) array_like, optional
        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
        to the interval ``[window[0], window[1]]`` by shifting and scaling.
        The default value is [-1, 1].
    window : (2,) array_like, optional
        Window, see `domain` for its use. The default value is [-1, 1].

        .. versionadded:: 1.6.0

    """
    # Virtual Functions
    _add = staticmethod(polyadd)
    _sub = staticmethod(polysub)
    _mul = staticmethod(polymul)
    _div = staticmethod(polydiv)
    _pow = staticmethod(polypow)
    _val = staticmethod(polyval)
    _int = staticmethod(polyint)
    _der = staticmethod(polyder)
    _fit = staticmethod(polyfit)
    _line = staticmethod(polyline)
    _roots = staticmethod(polyroots)
    _fromroots = staticmethod(polyfromroots)

    # Virtual properties
    nickname = 'poly'
    domain = np.array(polydomain)
    window = np.array(polydomain)