This file is indexed.

/usr/lib/python2.7/dist-packages/numpy/lib/type_check.py is in python-numpy 1:1.12.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
"""Automatically adapted for numpy Sep 19, 2005 by convertcode.py

"""
from __future__ import division, absolute_import, print_function

__all__ = ['iscomplexobj', 'isrealobj', 'imag', 'iscomplex',
           'isreal', 'nan_to_num', 'real', 'real_if_close',
           'typename', 'asfarray', 'mintypecode', 'asscalar',
           'common_type']

import numpy.core.numeric as _nx
from numpy.core.numeric import asarray, asanyarray, array, isnan, \
                obj2sctype, zeros
from .ufunclike import isneginf, isposinf

_typecodes_by_elsize = 'GDFgdfQqLlIiHhBb?'

def mintypecode(typechars,typeset='GDFgdf',default='d'):
    """
    Return the character for the minimum-size type to which given types can
    be safely cast.

    The returned type character must represent the smallest size dtype such
    that an array of the returned type can handle the data from an array of
    all types in `typechars` (or if `typechars` is an array, then its
    dtype.char).

    Parameters
    ----------
    typechars : list of str or array_like
        If a list of strings, each string should represent a dtype.
        If array_like, the character representation of the array dtype is used.
    typeset : str or list of str, optional
        The set of characters that the returned character is chosen from.
        The default set is 'GDFgdf'.
    default : str, optional
        The default character, this is returned if none of the characters in
        `typechars` matches a character in `typeset`.

    Returns
    -------
    typechar : str
        The character representing the minimum-size type that was found.

    See Also
    --------
    dtype, sctype2char, maximum_sctype

    Examples
    --------
    >>> np.mintypecode(['d', 'f', 'S'])
    'd'
    >>> x = np.array([1.1, 2-3.j])
    >>> np.mintypecode(x)
    'D'

    >>> np.mintypecode('abceh', default='G')
    'G'

    """
    typecodes = [(isinstance(t, str) and t) or asarray(t).dtype.char
                 for t in typechars]
    intersection = [t for t in typecodes if t in typeset]
    if not intersection:
        return default
    if 'F' in intersection and 'd' in intersection:
        return 'D'
    l = []
    for t in intersection:
        i = _typecodes_by_elsize.index(t)
        l.append((i, t))
    l.sort()
    return l[0][1]

def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    dtype = _nx.obj2sctype(dtype)
    if not issubclass(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype)

def real(val):
    """
    Return the real part of the elements of the array.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray
        Output array. If `val` is real, the type of `val` is used for the
        output.  If `val` has complex elements, the returned type is float.

    See Also
    --------
    real_if_close, imag, angle

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.real
    array([ 1.,  3.,  5.])
    >>> a.real = 9
    >>> a
    array([ 9.+2.j,  9.+4.j,  9.+6.j])
    >>> a.real = np.array([9, 8, 7])
    >>> a
    array([ 9.+2.j,  8.+4.j,  7.+6.j])

    """
    return asanyarray(val).real

def imag(val):
    """
    Return the imaginary part of the elements of the array.

    Parameters
    ----------
    val : array_like
        Input array.

    Returns
    -------
    out : ndarray
        Output array. If `val` is real, the type of `val` is used for the
        output.  If `val` has complex elements, the returned type is float.

    See Also
    --------
    real, angle, real_if_close

    Examples
    --------
    >>> a = np.array([1+2j, 3+4j, 5+6j])
    >>> a.imag
    array([ 2.,  4.,  6.])
    >>> a.imag = np.array([8, 10, 12])
    >>> a
    array([ 1. +8.j,  3.+10.j,  5.+12.j])

    """
    return asanyarray(val).imag

def iscomplex(x):
    """
    Returns a bool array, where True if input element is complex.

    What is tested is whether the input has a non-zero imaginary part, not if
    the input type is complex.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray of bools
        Output array.

    See Also
    --------
    isreal
    iscomplexobj : Return True if x is a complex type or an array of complex
                   numbers.

    Examples
    --------
    >>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([ True, False, False, False, False,  True], dtype=bool)

    """
    ax = asanyarray(x)
    if issubclass(ax.dtype.type, _nx.complexfloating):
        return ax.imag != 0
    res = zeros(ax.shape, bool)
    return +res  # convet to array-scalar if needed

def isreal(x):
    """
    Returns a bool array, where True if input element is real.

    If element has complex type with zero complex part, the return value
    for that element is True.

    Parameters
    ----------
    x : array_like
        Input array.

    Returns
    -------
    out : ndarray, bool
        Boolean array of same shape as `x`.

    See Also
    --------
    iscomplex
    isrealobj : Return True if x is not a complex type.

    Examples
    --------
    >>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j])
    array([False,  True,  True,  True,  True, False], dtype=bool)

    """
    return imag(x) == 0

def iscomplexobj(x):
    """
    Check for a complex type or an array of complex numbers.

    The type of the input is checked, not the value. Even if the input
    has an imaginary part equal to zero, `iscomplexobj` evaluates to True.

    Parameters
    ----------
    x : any
        The input can be of any type and shape.

    Returns
    -------
    iscomplexobj : bool
        The return value, True if `x` is of a complex type or has at least
        one complex element.

    See Also
    --------
    isrealobj, iscomplex

    Examples
    --------
    >>> np.iscomplexobj(1)
    False
    >>> np.iscomplexobj(1+0j)
    True
    >>> np.iscomplexobj([3, 1+0j, True])
    True

    """
    try:
        dtype = x.dtype
        type_ = dtype.type
    except AttributeError:
        type_ = asarray(x).dtype.type
    return issubclass(type_, _nx.complexfloating)


def isrealobj(x):
    """
    Return True if x is a not complex type or an array of complex numbers.

    The type of the input is checked, not the value. So even if the input
    has an imaginary part equal to zero, `isrealobj` evaluates to False
    if the data type is complex.

    Parameters
    ----------
    x : any
        The input can be of any type and shape.

    Returns
    -------
    y : bool
        The return value, False if `x` is of a complex type.

    See Also
    --------
    iscomplexobj, isreal

    Examples
    --------
    >>> np.isrealobj(1)
    True
    >>> np.isrealobj(1+0j)
    False
    >>> np.isrealobj([3, 1+0j, True])
    False

    """
    return not iscomplexobj(x)

#-----------------------------------------------------------------------------

def _getmaxmin(t):
    from numpy.core import getlimits
    f = getlimits.finfo(t)
    return f.max, f.min

def nan_to_num(x):
    """
    Replace nan with zero and inf with finite numbers.

    Returns an array or scalar replacing Not a Number (NaN) with zero,
    (positive) infinity with a very large number and negative infinity
    with a very small (or negative) number.

    Parameters
    ----------
    x : array_like
        Input data.

    Returns
    -------
    out : ndarray
        New Array with the same shape as `x` and dtype of the element in
        `x`  with the greatest precision. If `x` is inexact, then NaN is
        replaced by zero, and infinity (-infinity) is replaced by the
        largest (smallest or most negative) floating point value that fits
        in the output dtype. If `x` is not inexact, then a copy of `x` is
        returned.

    See Also
    --------
    isinf : Shows which elements are positive or negative infinity.
    isneginf : Shows which elements are negative infinity.
    isposinf : Shows which elements are positive infinity.
    isnan : Shows which elements are Not a Number (NaN).
    isfinite : Shows which elements are finite (not NaN, not infinity)

    Notes
    -----
    NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
    (IEEE 754). This means that Not a Number is not equivalent to infinity.


    Examples
    --------
    >>> np.set_printoptions(precision=8)
    >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128])
    >>> np.nan_to_num(x)
    array([  1.79769313e+308,  -1.79769313e+308,   0.00000000e+000,
            -1.28000000e+002,   1.28000000e+002])

    """
    x = _nx.array(x, subok=True)
    xtype = x.dtype.type
    if not issubclass(xtype, _nx.inexact):
        return x

    iscomplex = issubclass(xtype, _nx.complexfloating)
    isscalar = (x.ndim == 0)

    x = x[None] if isscalar else x
    dest = (x.real, x.imag) if iscomplex else (x,)
    maxf, minf = _getmaxmin(x.real.dtype)
    for d in dest:
        _nx.copyto(d, 0.0, where=isnan(d))
        _nx.copyto(d, maxf, where=isposinf(d))
        _nx.copyto(d, minf, where=isneginf(d))
    return x[0] if isscalar else x

#-----------------------------------------------------------------------------

def real_if_close(a,tol=100):
    """
    If complex input returns a real array if complex parts are close to zero.

    "Close to zero" is defined as `tol` * (machine epsilon of the type for
    `a`).

    Parameters
    ----------
    a : array_like
        Input array.
    tol : float
        Tolerance in machine epsilons for the complex part of the elements
        in the array.

    Returns
    -------
    out : ndarray
        If `a` is real, the type of `a` is used for the output.  If `a`
        has complex elements, the returned type is float.

    See Also
    --------
    real, imag, angle

    Notes
    -----
    Machine epsilon varies from machine to machine and between data types
    but Python floats on most platforms have a machine epsilon equal to
    2.2204460492503131e-16.  You can use 'np.finfo(np.float).eps' to print
    out the machine epsilon for floats.

    Examples
    --------
    >>> np.finfo(np.float).eps
    2.2204460492503131e-16

    >>> np.real_if_close([2.1 + 4e-14j], tol=1000)
    array([ 2.1])
    >>> np.real_if_close([2.1 + 4e-13j], tol=1000)
    array([ 2.1 +4.00000000e-13j])

    """
    a = asanyarray(a)
    if not issubclass(a.dtype.type, _nx.complexfloating):
        return a
    if tol > 1:
        from numpy.core import getlimits
        f = getlimits.finfo(a.dtype.type)
        tol = f.eps * tol
    if _nx.all(_nx.absolute(a.imag) < tol):
        a = a.real
    return a


def asscalar(a):
    """
    Convert an array of size 1 to its scalar equivalent.

    Parameters
    ----------
    a : ndarray
        Input array of size 1.

    Returns
    -------
    out : scalar
        Scalar representation of `a`. The output data type is the same type
        returned by the input's `item` method.

    Examples
    --------
    >>> np.asscalar(np.array([24]))
    24

    """
    return a.item()

#-----------------------------------------------------------------------------

_namefromtype = {'S1': 'character',
                 '?': 'bool',
                 'b': 'signed char',
                 'B': 'unsigned char',
                 'h': 'short',
                 'H': 'unsigned short',
                 'i': 'integer',
                 'I': 'unsigned integer',
                 'l': 'long integer',
                 'L': 'unsigned long integer',
                 'q': 'long long integer',
                 'Q': 'unsigned long long integer',
                 'f': 'single precision',
                 'd': 'double precision',
                 'g': 'long precision',
                 'F': 'complex single precision',
                 'D': 'complex double precision',
                 'G': 'complex long double precision',
                 'S': 'string',
                 'U': 'unicode',
                 'V': 'void',
                 'O': 'object'
                 }

def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays.
array_type = [[_nx.half, _nx.single, _nx.double, _nx.longdouble],
              [None, _nx.csingle, _nx.cdouble, _nx.clongdouble]]
array_precision = {_nx.half: 0,
                   _nx.single: 1,
                   _nx.double: 2,
                   _nx.longdouble: 3,
                   _nx.csingle: 1,
                   _nx.cdouble: 2,
                   _nx.clongdouble: 3}
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision]